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We consider a univariate binomial probit model where we use X,W , and Y ∈ {0, 1} to
denote the observed covariates, the latent variables, and binomial responces respectively.
The latent variables W are modelled as:

W = Xβ + ε

with ε ∼ N (0, σ2). The binomial variable is Y (W ) = 0 if W < 0 and Y (W ) = 1 if
W > 0. The model in this form is known to be non-identifiable as the likelihood is constant
along straight lines out of the origin of the β, σ plane and therefore is only informative
about their ratio (Nobile, 1998, 2000; McCulloch et al., 2000; Imai and van Dyk, 2005).
This poses significant challenges to the MCMC methods discussed in this paper since the
Fisher information (FI) matrix is not positive definite. The problem can be resolved by
considering an informative prior Nobile (1998) and by adding the negative of its Hessian
to the FI as suggested by the Authors in Section 4.2. The resulting posterior, however, is
strongly skewed and, as we discuss here, this can lead to very poor mixing of the chains.

For the experiments presented here, we generated a synthetic dataset for the binomial
model as described in Nobile (1998) and used the priors p(β) = N (0, 100) and p(1/σ2) =
G(3/2, 1/6) which ensure weak identifiability. Furthermore, we re-parameterise σ, such that
ψ = log(σ2), and sample ψ. The log-likelihood is given by:
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where Φ is the cumulative function of N (0, 1). The gradient of the log likelihood and the
FI follow as
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Table 1. ESS of the proposed algorithms and MH with Gaussian proposal. ESS is calculated
from 3,000 posterior samples after a burn-in period of 1,000 samples. The low ESS for RMHMC
is due to the small step-size required to achieve accurate integration of the Hamiltonian system.

Metropolis. MALA MMALA Simplified HMC RMHMC

Hastings MMALA

minimum ESS 244± 24.5 36± 7.6 133± 42.6 100 ± 38.3 143± 18.3 26± 17
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Figure 1. Illustration of the point adaptive proposal mechanism of simplified MMALA. A rectangle
denotes the current state while the mean of the proposal is denoted by a filled circle. The 90% and
50% of the Gaussian proposal are presented by the ellipses. The shaded area is the acceptance
rate for the underlying regions with dark areas denoting high acceptance rate.
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In Table 1 we compare the proposed MCMC algorithms with a component wise-adaptive
Metropolis Hastings (MH) algorithm in terms of ESS. Figure 1 also illustrates the prob-
lems associated with the skew posterior distribution and the position dependent proposal
mechanisms of MMALA and simplified MMALA. From the right column of Figure 1, we see
that in ”steep” regions of the posterior the proposal distribution adapts to the curvature
forcing the algorithm to make small steps. On the other hand, in smoother regions the
proposal allows for larger steps which can sometimes overshoot. This behaviour also leads
to very low acceptance rates for large regions where the log joint likelihood is higher than
the current state. This is illustrated in the left and middle columns of Figure 1 and is due
to the acceptance ratio for non-symetric proposal mechanisms.
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