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Abstract

Parameter inference in mechanistic models
based on systems of coupled differential equa-
tions is a topical yet computationally chal-
lenging problem, due to the need to fol-
low each parameter adaptation with a nu-
merical integration of the differential equa-
tions. Techniques based on gradient match-
ing, which aim to minimize the discrepancy
between the slope of a data interpolant and
the derivatives predicted from the differen-
tial equations, offer a computationally ap-
pealing shortcut to the inference problem.
The present paper discusses a method based
on nonparametric Bayesian statistics with
Gaussian processes due to Calderhead et al.
(2008), and shows how inference in this model
can be substantially improved by consistently
sampling from the joint distribution of the
ODE parameters and GP hyperparameters.
We demonstrate the efficiency of our adaptive
gradient matching technique on three bench-
mark systems, and perform a detailed com-
parison with the method in Calderhead et al.
(2008) and the explicit ODE integration ap-
proach, both in terms of parameter inference
accuracy and in terms of computational effi-
ciency.

1 INTRODUCTION

In many domains of applications, ordinary differen-
tial equations (ODEs) are a useful tool for modeling
the behaviour of a system. Systems where they have
been applied range from physics and engineering to
ecology (Lotka, 1932), and recently, systems biology
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(see e.g. De Jong, 2002). In systems biology, ODEs
have been used to describe the dynamics of pathways
and gene regulatory interactions in the cell (Pokhilko
et al., 2010). Frequently, molecular biologists will have
sufficient knowledge about a system to define the equa-
tions that govern its behaviour, but there will be un-
certainty about the kinetic or thermodynamic param-
eters. A common way to resolve this uncertainty is
to use some form of parameter inference based on
the available experimental data (Ashyraliyev et al.,
2009). Previous approaches to parameter inference
in ODEs have ranged from maximum likelihood over
variational approximations and Markov Chain Monte
Carlo (MCMC) to Hamiltonian Monte Carlo (Giro-
lami and Calderhead, 2011). Generally, all of these
approaches involve explicitly solving the ODE system
at each inference step to evaluate how well the inferred
parameter values match the data. As this incurs a
computational cost at each step, which grows linearly
with the dataset size and size of the system, alterna-
tives have been developed that avoid explicitly solv-
ing the system of differential equations (Varah, 1982;
Poyton et al., 2006; Ramsay et al., 2007; Calderhead
et al., 2008). These alternatives work by interpolating
the signal from the observed experimental data and
calculating the gradients, to which the ODE system
can then be fitted directly.

One recent approach is described in Calderhead et al.
(2008). This approach uses Gaussian Processes (GPs)
to model the experimental data, which has the ad-
vantage that all the parameters can be inferred from
the data. A disadvantage of the method proposed
in Calderhead et al. (2008) is that the hyperparam-
eters of the Gaussian process are inferred based on
the data alone, without any rectifying feedback mech-
anism from the ODE system. This falls short of re-
lated previous approaches, like Ramsay et al. (2007).
While the approach in Calderhead et al. (2008) gen-
erally works well for the limiting case of zero noise,
we have observed that it tends to lead to rather poor
parameter estimation from data subject to noise. In
the present paper, we propose an improved inference
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scheme, which we call adaptive gradient matching
(AGM). In this scheme, both the hyperparameters of
the Gaussian process as well as the ODE parameters
are jointly and consistently inferred from the poste-
rior distribution, leading to an essential information
coupling between both, by taking account of their cor-
relation. The scheme is adaptive, in that unlike in
Calderhead et al. (2008), the GP is adapted during
the inference based on information from the ODE sys-
tem. We demonstrate that this leads to a significant
improvement in the robustness with respect to noise.

2 METHOD

2.1 Proposal by Calderhead et al. (2008)

Consider a set of T arbitrary time points t1 <
. . . < tT , and a sequence of noisy observations Y =
(y(t1), ...,y(tT )),

y(t) = x(t) + ε(t) (1)

of a K-dimensional process X = (x(t1), ...,x(tT )),
dim[x(t)] = dim[y(t)] = dim[ε(t)] = K, whose evo-
lution is defined by a system of K ordinary differential
equations (ODEs):

ẋ(t) =
dx(t)

dt
= f(x(t),θ); x(t1) = x1 (2)

with parameter vector θ of length P , and ε is a mul-
tivariate Gaussian noise process ε ∼ N (0,D), where
Dik = σ2

kδik, i.e. for simplicity we assume the covari-
ance matrix D to be diagonal:

P (Y|X,σ) =
∏
k

∏
t

P (yk(t)|xk(t), σk)

=
∏
k

∏
t

N (yk(t)|xk(t), σ2
k) (3)

The matrices X and Y are of dimension K-by-T . Let
xk and yk denote T -dimensional column vectors that
contain the kth row of the matrices X and Y, respec-
tively. Hence, xk and yk represent the respective time
series of the kth state.

Given that inference based on an explicit numerical
integration of the differential equations, as pursued in
Vyshemirsky and Girolami (2008), tends to incur high
computational costs, an alternative approach based
on non-parametric Bayesian modelling with Gaussian
processes was proposed in Calderhead et al. (2008).
They put a Gaussian process prior on xk,

p(xk|φk) = N (xk|0,Cφk) (4)

where Cφk
denotes a positive definite matrix of co-

variance functions with hyperparameters φk. Assum-
ing additive Gaussian noise with a state-specific error
variance σ2

k, we get:

p(yk|xk, σk) = N (yk|xk, σ2
kI) (5)

p(yk|φk, σk) =

∫
p(yk|xk, σk)p(xk|φk)dxk

=

∫
N (yk|xk, σ2

kI)N (xk|0,Cφk)dxk

= N (yk|0,Cφk + σ2
kI) (6)

The conditional distribution for the state derivatives
is given by

p(ẋk|xk,φ) = N (mk,Ak) (7)

where

mk = ′CφkCφk

−1xk; Ak = C′′φk
− ′CφkCφk

−1C′φk
(8)

Here, the matrix C′′φk
denotes the auto-covariance for

each state derivative, and the matrices C′φk
and ′Cφk

denote the cross-covariances between the kth state and
its derivative. See supplementary material A.1 for de-
tails. Assuming additive Gaussian noise with a state-
specific error variance γk, one gets from (2):

p(ẋk|X,θ, γk) = N (fk(X,θ), γkI) (9)

where fk(X,θ) = (fk(x(t1),θ), ..., fk(x(tT ),θ))T. Next,
the approach taken in Calderhead et al. (2008) is to
combine (7) and (9) with a product of experts ap-
proach:

p(θ,γ|X,φ) =

∫
p(Ẋ,θ,γ|X,φ)dẊ

∝ p(θ)p(γ)

∫
p(Ẋ,X,φ|θ,γ)dẊ

∝ p(θ)p(γ)
∏
k

∫
p(ẋk|xk,φ)p(ẋk|X,θ, γk)dẋk

= p(θ)p(γ)
∏
k

∫
N (ẋk|mk,Ak)N (ẋk|fk(X,θ), γkI)dẋk

∝ p(θ)p(γ)∏
k Z(γk)

×

exp

{
−1

2

∑
k

(fk −mk)T(Ak + γkI)−1(fk −mk)

}
(10)

where p(θ) and p(γ) are the prior distributions on θ
and γ, Z(γk) = |2π(Ak + γkI)|1/2 and we have de-
fined γ = (γ1, . . . , γK) and fk = fk(X,θ). Inference
is based on sampling the parameters of the ODEs θ,
the hyperparameters of the Gaussian process φ, the
noise variances γ,σ, and the state variables X from
the posterior distribution p(θ,γ,φ,σ,X|Y) with the
following Gibbs sampling procedure:

φ,σ ∼ p∗(φ,σ|Y) (11)

X ∼ p(X|Y,σ,φ) (12)

θ,γ ∼ p(θ,γ|X,φ,σ) (13)

The distribution in the last sampling step, (13),
is given by (10). This distribution does not have
a standard form, and sampling from it directly is
infeasible. Hence, MCMC with the Metropolis-
Hastings algorithm (Hastings, 1970) is used. Note

that p(φ,σ|Y) =
∫
p(Ẋ,φ,σ,θ,γ|Y)dẊdθdγ is an-

alytically intractable. Calderhead et al. (2008) ap-
proximate p(φ,σ|Y) by a distribution derived from
a standard Gaussian process that is decoupled from
the rest of the model. We call this p∗(φ,σ|Y). The
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sampling steps (11) and (12) are broken up into the
contributions from the individual states k:

φk, σk ∼ p∗(φk, σk|yk) (14)

∝ p(yk|φk, σk)p(φk)p(σk)

= N (yk|0, σ2
kI + Cφk)p(φk)p(σk)

xk ∼ p(xk|yk, σk,φk) = N (xk|µk,Σk) (15)

where µk = Cφk(Cφk+σ2
kI)−1yk and Σk = σ2

kCφk(Cφk+

σ2
kI)−1. Equation (15) follows from p(xk|yk, σk,φk) =

p(yk|xk, σk)p(xk|φk)/p(yk|σk,φk), equations (4–6) are
well-established results for Gaussian distributions.
Sampling of the vector of latent variables xk in (15)
follows directly from a multivariate Gaussian distribu-
tion. For sampling φk and σk in (14), one again has
to resort to MCMC. The overall MCMC scheme then
iteratively loops through the steps (11–13) until some
convergence criterion has been met.1 However, the ap-
proximation in equation (11) of the sampling scheme
introduces a certain weakness: the parameters of the
ODE systems, θ,γ, which are sampled in the third
step of the Gibbs sampling routine (13), never feed
back into the first and second steps, (11–12). This im-
plies that θ,γ have no bearing on the inference of the
state variables X; these state variables are solely in-
ferred from the observed data via a standard Gaussian
process interpolation, (11–12). Hence the method pro-
posed in Calderhead et al. (2008) is a two-step proce-
dure, in which first an interpolation problem is solved,
and then the parameters of the ODEs are inferred
by matching the derivatives of the interpolant with
those predicted from the ODEs. This falls short of the
method proposed in Ramsay et al. (2007), where the
interpolation fits both the noisy data and the deriva-
tives from the ODEs simultaneously, allowing the sys-
tem of ODEs to feed back onto the interpolation.

2.2 Adaptive Gradient Matching

We demonstrate that with a mathematically more con-
sistent formulation of the inference procedure, we can
close the desired feedback loop between interpolation
and parameter estimation of the ODEs. Following
Calderhead et al. (2008), we combine (7) and (9) with
a product of experts approach:

p(ẋk|X,θ,φ, γk) ∝ p(ẋk|xk,φ)p(ẋk|X,θ, γk) (16)

= N (ẋk|mk,Ak)N (ẋk|fk(X,θ), γkI)

1Note that the method proposed in Calderhead et al.
(2008) slightly deviates from the summary given here in
that (8) is defined as follows: mk = ′Cφk [Cφk + σ2

kI]−1xk
and Ak = C′′φk

− ′Cφk [Cφk + σ2
kI]−1C′φk

, which leads to
the dependence of (10) on σ. However, this formulation,
which is motivated by including information from the data
Y, is methodologically inconsistent.

We obtain for the joint distribution:

p(Ẋ,X,θ,φ,γ)

= p(Ẋ|X,θ,φ,γ)p(X|φ)p(θ)p(φ)p(γ)

= p(θ)p(φ)p(γ)
∏
k

p(ẋk|X,θ,φ, γk)p(xk|φk)

(17)

Inserting (4) and (16), we get:

p(Ẋ,X,θ,φ,γ) ∝ p(θ)p(φ)p(γ)
∏
k

N (ẋk|mk,Ak)

N (ẋk|fk(X,θ), γkI)N (xk|0,Cφk)
(18)

The marginalization over the state derivatives Ẋ

p(X,θ,φ,γ) =

∫
p(Ẋ,X,θ,φ,γ)dẊ

∝ p(θ)p(φ)p(γ)
∏
k

N (xk|0,Cφk)×∫
N (ẋk|mk,Ak)N (ẋk|fk(X,θ), γkI)dẋk

(19)

is analytically tractable and yields:

p(X,θ,φ,γ) ∝ p(θ)p(φ)p(γ)p(X|θ,φ,γ)

∝
∏
k

N (xk|0,Cφk)×

exp
[
− 1

2
(fk −mk)T(Ak + γkI)−1(fk −mk)

]
∝ exp[−1

2

∑
k

(xT
kC
−1
φk

xk+

(fk −mk)T(Ak + γkI)−1(fk −mk))]
(20)

where mk and Ak were defined in (8). Note that this
distribution is a complicated function of the states X,
owing to the nonlinear dependence via fk = fk(X,θ).
For the joint probability distribution of the whole sys-
tem we obtain:

p(Y,X,θ,φ,γ,σ) =

p(Y|X,σ)p(X|θ,φ,γ)p(θ)p(φ)p(γ)p(σ)
(21)

where the first factor, p(Y|X,σ), was defined in (3),
and the second factor is given by (20). Note that the
functional form of the second term is defined up to an
unknown normalization constant. To bypass the prob-
lem of normalizing the distribution (20), we follow a
Metropolis-Hastings scheme. Denote by q1(σ), q2(φ),
q3(xk) , q4(θ) and q5(γ) the proposal distributions for
the inferred parameters. We propose new values from
these distributions; q1 and q5 are sparse exponential
distributions with λ = 10 to ensure small noise val-
ues and q2, q3 and q4 are uniform distributions over
the intervals [0, 100], [0, 10] and [0, 20], respectively.
These proposal distributions correspond to the prior
distributions for the parameters in our model, except
for σ where we use a sparse gamma prior Ga(1, 1),
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and θ, where we have imposed a gamma distribution
Ga(4, 0.5) as a prior to encode our prior belief about
parameter values, which is that most parameters will
be > 0 and < 5.

We then accept or reject these proposal moves ac-
cording to the standard Metropolis-Hastings crite-
rion (Hastings, 1970). Define π(Y,X,θ,φ,γ,σ) =

p(Y,X,θ,φ,γ,σ)

q1(σ)q2(φ)q4(θ)q5(γ)
∏
k q3(xk)

, then:

Paccept = min

{
1,
π(Y, X̃, θ̃, φ̃, γ̃, σ̃)

π(Y,X,θ,φ,γ,σ)

}
(22)

For improved mixing and convergence, it is advisable
to not propose all moves simultaneously, but to ap-
ply a blocking strategy and employ a Gibbs sampling
scheme. We do not make that explicit in our notation,
though. The effect of (22) is that the parameters θ
have an influence on the acceptance probabilities for
X. This mechanism closes the feedback loop, with the
system of ODEs acting back in an adaptive manner
on the interpolants xk via the parameters θ. In this
way, we address the main shortcoming of the method
proposed in Calderhead et al. (2008).

3 SAMPLING SETUP

For running simulations with the model in Calderhead
et al. (2008), we make use of the MATLAB code pro-
vided by the authors. Our adaptive gradient matching
model was implemented in R, where we followed the
sampling scheme from Calderhead et al. (2008) when-
ever possible. Like Calderhead et al., we used pop-
ulation MCMC (Jasra et al., 2007) to deal with the
potentially rugged likelihood landscapes of the non-
linear ODE systems. For all MCMC simulations in
this paper, we ran 10 chains at different temperatures,
starting from an exponential scale which we tuned dur-
ing the burn-in phase to achieve an acceptance rate of
0.25 for exchange moves.2. Similarly, proposal widths
for all parameters and hyperparameters were tuned to
achieve an acceptance rate of 0.25. The choice of 0.25
is motivated by analogy to Gelman (1997), where an
acceptance rate of 0.234 was found to be asymptoti-
cally optimal for a random walk Metropolis algorithm.
We initialised X and φ using a GP regression fit with
maximum likelihood to the data Y; the same initial
GP hyperparameters were used for the Calderhead et
al. model and for our improved gradient matching
model. All other parameters were initialised by draw-
ing samples from the prior distributions defined in Sec-
tion 2.2.

2We did not employ cross-over moves in this sampler,
although implementing a cross-over scheme similar to the
one in Jasra et al. (2007) could potentially speed up mixing
and convergence.

The sampling of the hyperparameters φ and the latent
variables X warrants further explanation. Although
we could in principle propose new values for X and φ
by sampling them alternately from the prior, or from
some other distribution, e.g. via a random walk, this
is highly inefficient due to the strong coupling between
them. To avoid this problem, we apply a whitening of
the prior, following Murray and Adams (2010). We
introduce an independent Gaussian vector ν, and up-
date the hyperparameters φ for fixed ν instead of fixed
X, by using the transformation X = LCφk

ν, where

LCφk
LT
Cφk

= Cφk
. Since ν and φ are independent,

this scheme removes the problems created by strong
coupling. Furthermore, these updates will change both
X and φ; in effect, we are now treating the latent vari-
ables as ancillary to the GP hyperparameters.

For the GP methods, the choice of covariance func-
tion can be important, as the GP needs to be able
to fit the dynamics of the data. For the PIF4/5
model and the Lotka-Volterra model described in Sec-
tion 4, a radial basis function covariance function
k(t, t′) = σ2

kern exp(−0.5 ∗ (t − t′)2/l2) with hyper-
parameters σ2

kern and l2 (variance and characteris-
tic lengthscale) was used, which provided a good fit.
However, this covariance function does not provide
a good fit for data from the model for the signal
transduction cascade (also described in Section 4).
We therefore switched to a sigmoid covariance func-

tion k(t, t′) = σ2
kern arcsin

(
a+b∗t∗t′√

(a+b∗t∗t+1)(a+b∗t′∗t′+1)

)
with hyperparameters σ2

kern, a and b. Note that in
general the sigmoid covariance function gives good re-
gression fits for all models. For a more in-depth treat-
ment of GP covariance functions, see Chapter 4 in Ras-
mussen and Williams (2006).

In addition to the scheme described in Section 2.2,
we also implemented a sampler which uses the ex-
plicit integration of the ODE system. This sampler is
based on the same population MCMC setup as above,
but samples from the distribution: P (Y,θ∗,σ) =
P (Y|θ∗,σ)P (θ∗)P (σ), where θ∗ is the parameter
vector for the ODE system, augmented with the
initial concentrations for each species, and P (θ∗)
and P (σ) are the priors defined in Section 2.2.
Then we have P (Y|θ∗,σ) =

∏
k

∏
t P (yk(t)|θ∗, σk),

with P (yk(t)|θ∗, σk) = N (yk(t)|xk(t,θ∗), σ2
k) where

xk(t,θ∗) is the solution of the ODE system for species
k at time t, given θ∗. Parameters corresponding to the
initial concentrations are initialised using the observed
concentrations at time t = 0 for each species; however
these are only starting values, and the actual initial
concentrations need to be sampled from the joint dis-
tribution as part of the MCMC.
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4 BENCHMARK ODE SYSTEMS

In this section, we present three small-to-medium-sized
ODE models of biological systems that we will use to
benchmark the parameter inference methods.

The PIF4/5 model. We apply our GP parame-
ter inference method to a model for gene regulation
of genes PIF4 and PIF5 by TOC1 in the circadian
clock gene regulatory network of Arabidopsis thaliana.
The overall network is represented by the Locke 2-
loop model (Locke et al., 2005), with fixed parameters
that were originally inferred following Pokhilko et al.
(2010). Only the parameters involved in regulation
of PIF4 and PIF5 are inferred from the data using
the methods described in this paper. We simplify the
model to represent genes PIF4 and PIF5 as a com-
bined gene PIF4/5. We are interested in the promoter
strength s, the rate constant Kd and Hill coefficient h
of the regulation by TOC1, and the degradation rate
d of the PIF4/5 mRNA. The regulation process is
represented by the following ODE:

d[PIF4/5]

dt
= s · Kh

d

Kh
d + [TOC1]h

− d · [PIF4/5] (23)

where [PIF4/5] and [TOC1] represent the concentra-
tion of PIF4/5 and TOC1, respectively.

For the experiments presented here, data were gener-
ated with parameters {s = 1,Kd = 0.46, h = 2, d = 1},
which generates concentrations that are close to real-
life measurements of PIF4/5. For each dataset, we
simulated data over the interval [0, 24] with sampling
intervals in {2, 4}. We use the PIF4/5 concentration
from a measurement of Arabidopsis gene expressions
at the beginning of the day (0.386) as the concentra-
tion at time t=0 which is used to generate the data.

The Lotka-Volterra model. The Lotka-Volterra
model is a 2-equation system that was originally devel-
oped for modelling predator-prey interaction in ecol-
ogy (Lotka, 1932). There are two species, a prey
species S (the ’sheep’) and a predator species W (the
’wolves’). The dynamics of their interactions are de-

scribed by a system of two ODEs, d[S]dt = [S] · (α− β ·
[W ]) and d[W ]

dt = −[W ] · (γ− δ · [S]). This system is of
interest because it exhibits periodicity, and there are
non-linear interactions between the two species.

For the experiments presented here, data were gener-
ated with parameters {α = 2, β = 1, γ = 4, δ = 1},
which generates stable oscillations. For each dataset,
we simulated data over the interval [0, 2] with sampling
intervals of 0.25. The initial values for the prey species
S and the predator species W were set at [S] = 5 and
[W ] = 3 to generate the data.

The signal transduction cascade. Our third and
final model is a model of a signal transduction cas-
cade that was described in Vyshemirsky and Girolami
(2008) (Model 1). At the top of the cascade we have

protein S, which can degrade into Sd. S activates pro-
tein R into active state Rpp by first binding to it to
form RS, which is then activated to turn into Rpp.
Rpp can degrade back into R, and RS can separate
back into S and R. The model is described by the
following system of five ODEs:

d[S]

dt
= −k1 · [S]− k2 · [S] · [R] + k3 · [RS]

d[Sd]

dt
= k1 · [S]

d[R]

dt
= −k2 · [S] · [R] + k3 · [RS] +

V · [Rpp]
Km+ [Rpp]

d[RS]

dt
= k2 · [S] · [R]− k3 · [RS]− k4 · [RS]

d[Rpp]

dt
= k4 · [RS]− V · [Rpp]

Km+ [Rpp]
(24)

This system is of interest as it represents a realistic
formulation of signal transduction as an ODE system,
using mass action and Michaelis-Menten kinetics.

For the experiments presented here, data were gen-
erated with parameters {k1 = 0.07, k2 = 0.6, k3 =
0.05, k4 = 0.3, V = 0.017,Km = 0.3}, fol-
lowing Vyshemirsky and Girolami (2008). For
each dataset, we simulated data over the in-
terval [0, 100] and took samples at time points
{0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}. This
means that we sampled more timepoints during the
earlier part of the timeseries, where the dynamics tend
to be faster. We also followed Vyshemirsky and Giro-
lami (2008) in setting the initial values for generat-
ing the timecourses of the 5 species: {[S] = 1, [Sd] =
0, [R] = 1, [RS] = 0, [Rpp] = 0}.
5 PARAMETER INFERENCE

RESULTS

We use the three benchmark systems described in Sec-
tion 4 to analyse the performance of our adaptive gra-
dient matching, and to provide a thorough comparison
with both the method in Calderhead et al. (2008), and
the sampler which explicitly solves the ODE system, as
described in Section 3.3 We generated data from each
system using the R package deSolve (Soetaert et al.,
2010) for numerically integrating the systems of differ-
ential equations. See Section 4 for the parameter and
initial concentration settings. We then added white
Gaussian observation noise to the datasets. For the
PIF4/5 system and the signal transduction cascade,
we added noise with standard deviation ∈ {0, 0.1},
and for the Lotka-Volterra system we added noise with

3Note that due to the higher computational cost in-
volved, we could only apply the explicit ODE integration
method to the Lotka-Volterra model and the signal trans-
duction cascade. Applying it to the PIF4/5 system would
have required solving the entire 14-equation system of the
Locke 2-loop model at each step, which was not feasible
with the time and resources at our disposal.
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Figure 1: PIF4/5 expression levels with varying sam-
pling intervals and noise. We show the true (noiseless)
expression values, the sampled latent variables (tri-
angles) and the expression profile simulated from the
ODE using the sampled θ values (circles). Error bars
show one standard deviation. Left: Calderhead et al.
model. Right: Adaptive gradient matching.

standard deviation ∈ {0, 0.5}. The higher noise level
for the Lotka-Volterra system reflects the higher am-
plitude of the signal in this system.

We generated 10 datasets for each noise level and sys-
tem. Convergence was monitored via diagnostic plots
and the potential scale reduction factor (PSRF) (Gel-
man and Rubin, 1992). A PSRF < 1.1 for all ODE
parameters in θ was taken as an indication of suffi-
cient convergence. We collected 1000 samples at in-
tervals of 100 steps from the converged chains. Sam-
ples from all 10 independent datasets were pooled to
obtain the final predictions. Note that we were un-
able to obtain a PSRF < 1.1 for the Calderhead et
al. model in the presence of non-zero Gaussian obser-
vation noise; in this case, we resorted to running the
MCMC chains for 200,000 steps, which corresponds to
roughly twice the number of steps that it took adaptive
gradient matching to reach convergence, before taking
samples as described above.

Figure 1 shows the results for the PIF4/5 system. The
data used for the parameter inference was sampled at
intervals 2 and 4 timesteps, where 4 is a realistic sam-
pling interval for actual measurements. We compare
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Figure 2: Lotka-Volterra concentrations for the prey
species with varying observational noise. We show the
true (noiseless) expression values, the sampled latent
variables (triangles) and the expression profile simu-
lated from the ODE using the sampled θ values (cir-
cles). Error bars show one standard deviation. Top:
Calderhead et al. model. Middle: Adaptive gradient
matching. Bottom: Explicit ODE Integration.

the method in Calderhead et al. (2008) with our adap-
tive gradient matching technique. We see that when
there is no noise, the two methods perform equally
well, but as soon as we introduce noise into the sys-
tem, the predictions by the Calderhead et al. method
become unreliable due to non-convergence.

Figures 2 show the results for the prey species in
the Lotka-Volterra system. Results for the predator
species were similar, and can be found in the supple-
mentary material. The data used for the parameter
inference was sampled at intervals of 0.25 timesteps.
Again the method by Calderhead et al. showed good
performance in the noiseless case, but a deteriorated
performance in the presence of noise. For noise level 0,
adaptive gradient matching performed as well as the
explicit ODE integration, and for the high noise level
of 0.5, the performance of adaptive gradient matching
is still competitive.

Finally, Figure 3 shows the results for the signal trans-
duction cascade. Figure 3 only shows the predictions
for Rpp, which represents the activated protein com-
plex, and is arguably the central species in this sys-
tem. Predictions for the other species can be found in
the supplementary material. Figure 3 also includes
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boxplots for the sampled parameters. For the last
two parameters, we present the ratio V/Km, as this
is the crucial quantity that determines reconstruction
accuracy. Once again, our adaptive gradient matching
performs well, and remains competitive with explicit
ODE integration in the presence of noise. Note that
even though the ratio V/Km is overestimated by our
method for noise level 0.1, the sampled parameters still
result in a good fit to the observed data.

6 SPEED AND COMPUTATIONAL
COMPLEXITY

In Calderhead et al. (2008), the authors demonstrate
that the moves of their sampler scale with O(NT 3),
due to the requirement of inverting a T×T data matrix
N times (where T is the length of the input time series
and N is the number of species in the system). We can
make a similar argument for adaptive gradient match-
ing. The dominant computational cost for each sam-
pling step comes from Equation (20), which requires
inverting two T×T data matrices. Thus the com-
plexity of each sampling step is O(2NT 3)=O(NT 3)
when the sampling is done for all N species4. Hence
each MCMC move using adaptive gradient matching
has the same computational complexity as a move in
Calderhead et al. (2008).

What will matter most in practice is how long each
method takes to converge. Although it is difficult to
prove convergence, we can get an indication by using
the potential scale reduction factor (PSRF) as a con-
vergence diagnostic, as described in Section 5. For
convenience, we will refer to an MCMC run as con-
verged if the PSRF is ≤ 1.1 for all parameters in θ.
Figure 4 compares the explicit ODE integration with
the model by Calderhead et al. (2008), and with adap-
tive gradient matching in terms of computational time
for 105 iterations (in seconds)5 and number of MCMC
iterations before reaching convergence. We used the
signal transduction cascade described in Section 4 as
the test model. Each method was run 10 times us-
ing 10 different data instantiations (adding Gaussian
observation noise with standard deviation 0.1). We
see that, as expected, adaptive gradient matching and
the method in Calderhead et al. (2008) are both faster
than explicit ODE integration for a fixed number of it-
erations. Furthermore, adaptive gradient matching is
only marginally slower than the method in Calderhead

4Note that in practice the inverted matrices can be
cached, so we only have to invert both matrices for MCMC
moves that change the GP hyperparameters. Therefore we
should not expect the computational costs to be double
those of Calderhead et al. (2008).

5Although the simulations were run on the same ma-
chine, there may be implementation-dependent speed dif-
ferences between Calderhead et al. (2008) (implemented in
MATLAB) and AGM (implemented in R).
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Figure 4: Computational efficiency of the different
methods: Explicit ODE integration, Calderhead et al.
(2008) and adaptive gradient matching (AGM). We
use parameter inference for the signal transduction
model as a test case. Left: Time taken for 105 MCMC
iterations. Right: Number of MCMC iterations to
convergence (PSRF ≤ 1.1). Note that Calderhead
et al. (2008) did not achieve PSRF ≤ 1.1 in any of
the runs. The horizontal bar of the boxplots shows
the median, the box margins show the 25th and 75th
percentiles, the whiskers indicate data within 2 times
the interquartile range, and circles are outliers.

et al. (2008). We see that the method in Calderhead
et al. (2008) does not converge for any of the runs, con-
firming our observation from Section 5. Adaptive gra-
dient matching, on the other hand, converges in fewer
iterations than explicit ODE integration. This can be
explained by the difference in the dimensionality of the
parameter space; as we have pointed out in Section 3,
to integrate the ODE system, we also need to infer
the initial concentrations for each species, in effect in-
creasing the number of parameters. Adaptive gradient
matching avoids having to infer the initial concentra-
tions by effectively profiling over them, which, along
with the treatment of latent variables X as ancillary
variables (see Section 3), leads to fast convergence.

7 DISCUSSION

We have described an adaptive gradient matching ap-
proach for parameter inference in ODE systems based
on Calderhead et al. (2008). Adaptive gradient match-
ing avoids the need for explicitly solving the ODE sys-
tem at each MCMC sampling step, which significantly
reduces the computational burden. In the method of
Calderhead et al., an adaptation of the ODE param-
eters has no influence on the inference of the GP hy-
perparameters. This corresponds to a unidirectional
information flow from GP interpolation to parameter
inference in the system of ODEs. We have developed a
methodological improvement that infers both GP hy-
perparameters and ODE parameters jointly from the
posterior distribution, and where due to conditional
dependence between both groups, the latter may exert
an influence on the former. This closes the inference
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Figure 3: Expression levels of activated protein complex Rpp in the signal transduction pathway, with varying
observational noise. Expression levels for other species in the system can be found in the supplementary material.
We show the true (noiseless) expression values, the sampled latent variables (triangles) and the expression profile
simulated from the ODE using the sampled θ values (circles). Error bars show one standard deviation. The
boxplots give an idea of the distribution of the sampled parameters, where the true parameter value is marked
with an X. The horizontal bar shows the median, the box margins show the 25th and 75th percentiles, the
whiskers indicate data within 2 times the interquartile range, and circles are outliers. Top Row: Calderhead et
al. model. Middle Row: Adaptive gradient matching. Bottom Row: Explicit ODE integration.

procedure by effectively introducing an important in-
formation feedback loop from the ODE system back
to the GP interpolation.

We have applied adaptive gradient matching to three
model systems from ecology and systems biology,
and have demonstrated that our method improves on
Calderhead et al. (2008) and performs on a par with
a sampler which explicitly solves the ODE system
at each step. Regarding computational complexity,
our method is marginally slower than the method of
Calderhead et al. (2008) in terms of CPU time per iter-
ation due to the fact that two matrix inversions rather
than one are needed to calculate equation (20). How-
ever, both methods have the same asymptotic com-
plexity of O(NT 3), and caching techniques reduce the
practical difference to much less than a factor of two
(see Figure 4, left panel). Regarding the efficiency
of the MCMC sampler, we found that the method of
Calderhead et al. (2008) often fails to converge for non-
zero noise variance, and that our new sampling ap-
proach substantially improves convergence and mixing
(see Figure 4, right panel). In particular, our method
improves both execution time (CPU time per itera-
tion) and MCMC convergence (number of iterations)
over explicit ODE integration. The former improve-
ment, which is due to the gradient matching approach,
was found to lead to an acceleration by a whole order
of magnitude. In general, the improvement will de-

pend on the size and stiffness of the ODE system. The
latter improvement results from the fact that gradient
matching does not require knowledge or inference of
the initial conditions, which reduces the dimension of
the parameter space by effectively profiling over the
corresponding subdomain.

A close relative of our work is the recent method
of functional tempering (Campbell and Steele, 2012),
which is based on the same gradient matching
paradigm as our approach, but uses B-splines instead
of Gaussian processes for data interpolation. Their
approach has one vector of regularization parameters,
which corresponds to our hyperparameter vector γ and
penalizes the mismatch between the gradients. Our
model additionally profits from the hyperparameters
of the Gaussian process, φ, which define the flexibil-
ity of the interpolant and are automatically inferred
from the data, while in the model of Campbell and
Steele (2012) this flexibility is defined by the B-splines
basis and has to be set in advance. An interesting
difference is the tempering scheme of Campbell and
Steele (2012), which applied to our model corresponds
to gradually forcing γ to zero rather than inferring it
from the posterior distribution. A comparative evalu-
ation is the subject of our future research.
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A SUPPLEMENTARY MATERIAL

Below, we present additional details and results that
could not fit into the main paper: the explicit expres-
sions of the cross-covariance matrices from Section 2.1,
a comparison of the regression fits for the two alterna-
tive Gaussian process covariance functions, as well as
further results for parameter inference comparison be-
tween adaptive gradient matching, the method from
Calderhead et al. (2008), and explicit ODE integra-
tion.

A.1 Cross-Covariance Matrices

Below, we present the explicit expressions for the
cross-covariance matrices. For a derivation of these
results, see Rasmussen and Williams (2006). We ob-
tain that:

C′φk
(i, j) =

dKφk (ti, tj)

dti
(25)

′Cφk(i, j) =
dKφk (ti, tj)

dtj
(26)

C′′φk
(i, j) =

d2Kφk (ti, tj)

dtidtj
(27)

where Kφk(ti, tj) is the chosen covariance function for
the Gaussian process. For the RBF covariance func-
tion, we obtain:

dKrbfφk (t, t′)

dt
= − (t− t′)

l2
Krbfφk (t, t′) (28)

dKrbfφk (t, t′)

dt′
=

(t− t′)
l2

Krbfφk (t, t′) (29)

d2Krbfφk (t, t′)

dtdt′
=

(
1

l2
− (t− t′)2

l4

)
Krbfφk (t, t′) (30)

For the sigmoid covariance function, we obtain:

dKsigφk (t, t′)

dt
=

σ2
sig√

1− Z2

dZ

dt
(31)

dKsigφk (t, t′)

dt′
=

σ2
sig√

1− Z2

dZ

dt′

d2Ksigφk (t, t′)

dtdt′
=

σ2
sig√

1− Z2
× (32)(

Z

1− Z2

dZ

dt′
dZ

dt
+
d2Z

dtdt′

)
(33)

where:

Z =
a+ b ∗ t ∗ t′

Znorm
(34)

with Znorm =
√

(a+ b ∗ t ∗ t+ 1)(a+ b ∗ t′ ∗ t′ + 1),
and we have:

dZ

dt
= b

(
t′

Znorm
− tZ

a+ b ∗ t ∗ t+ 1

)
(35)

dZ

dt′
= b

(
t

Znorm
− t′Z

a+ b ∗ t′ ∗ t′ + 1

)
(36)

d2Z

dtdt′
= b

(
1

Znorm
− bt′t′

(a+ b ∗ t′ ∗ t′ + 1)Znorm

)
−

bt

(a+ b ∗ t ∗ t+ 1)

dZ

dt′
(37)

A.2 GP Covariance Function Comparison

The two covariance functions used in this work are
the RBF (radial basis function) covariance function
k(t, t′) = σ2

kern exp(−0.5 ∗ (t − t′)2/l2) with parame-
ters σ2

kern and l2 (variance and characteristic length-
scale), and the sigmoid covariance function k(t, t′) =

σ2
kern arcsin

(
a+b∗t∗t′√

(a+b∗t∗t+1)(a+b∗t′∗t′+1)

)
with parame-

ters σ2
kern, a and b. Figures 5 - 7 show a comparison

of the GP regression fits (using maximum likelihood)
to data from the different model systems. We see that
the sigmoid covariance function always provides a good
fit, while the RBF covariance function breaks down for
some of the species in the signal transduction cascade.
This is due to the fact that the RBF covariance func-
tion assumes stationarity, with a fixed lengthscale l2.
That assumption is not true for the signal transduc-
tion cascade. The sigmoid covariance function, on the
other hand, is non-stationary and can deal with vary-
ing lengthscales. Note that the in the signal trans-
duction example we applied added the Gaussian noise
on log scale (in effect adding multiplicative noise), to
avoid getting negative values for concentrations close
to zero; this leads to slight distortion for the sigmoid
covariance function as the noise model assumes addi-
tive Gaussian noise.
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Figure 5: GP Regression fits to PIF4/5 expression lev-
els, using the RBF and the sigmoidal covariance func-
tion. The crosses represent the data points, the solid
line is the GP mean. Top Row: Gaussian noise with
standard deviation 0. Bottom Row: Gaussian noise
with standard deviation 0.1.
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Figure 6: GP Regression fits to predator and prey
concentrations in the Lotka-Volterra model, using the
RBF and the sigmoidal covariance function. The
crosses represent the data points, the solid line is the
GP mean. Gaussian noise with standard deviation 0.1
was applied. Top Row: Prey species. Bottom Row:
Predator Species.
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Figure 7: GP Regression fits to species concentrations
in the signal transduction pathway, , using the RBF
and the sigmoidal covariance function. The crosses
represent the data points, the solid line is the GP
mean. Gaussian noise with standard deviation 0.1 was
applied. From top to bottom, the rows show species
S, dS, R, RS and Rpp.
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A.3 Additional Parameter Inference Results

We present some additional parameter inference re-
sults that we had to omit from the main paper due
to space restriction. Figure 8 shows the results for
the PIF4/5 system with sampling interval 1. Figure 9
shows the results for the predator species in the Lotka-
Volterra model. Figures 10 and 11 show the results
for species S, Sd, R and RS in the signal transduction
pathway, for Gaussian noise with standard deviation 0
and 0.1, respectively.
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Figure 8: PIF4/5 expression levels with sampling in-
terval 1 and varying observational noise. We show the
true (noiseless) expression values, the sampled latent
variables (triangles) and the expression profile simu-
lated from the ODEs using the sampled θ values (cir-
cles). Error bars show one standard deviation. Top
Row: Calderhead et al. (2008) model. Bottom Row:
Adaptive gradient matching.
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Figure 9: Lotka-Volterra concentrations for the preda-
tor species with varying observational noise. We show
the true (noiseless) expression values, the sampled la-
tent variables (triangles) and the expression profile
simulated from the ODE using the sampled θ values
(circles). Error bars show one standard deviation. Top
Row: Calderhead et al. (2008) model. Middle Row:
Adaptive gradient matching. Bottom Row: Explicit
ODE integration.
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Figure 10: Expression levels of species other than Rpp in the signal transduction pathway, with no observational
noise. We show the true (noiseless) expression values, the sampled latent variables (triangles) and the expression
profile simulated from the ODE using the sampled θ values (circles). Error bars show one standard deviation.
Top Row: Calderhead et al. (2008) model. Middle Row: Adaptive gradient matching. Bottom Row: Explicit
ODE integration.
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Figure 11: Expression levels of species other than Rpp in the signal transduction pathway, with observational
noise with standard deviation 0.1. We show the true (noiseless) expression values, the sampled latent variables
(triangles) and the expression profile simulated from the ODE using the sampled θ values (circles). Error bars
show one standard deviation. Top Row: Calderhead et al. (2008) model. Middle Row: Adaptive gradient
matching. Bottom Row: Explicit ODE integration.


