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Statistical agencies and other institutions collect data under the
promise to protect the confidentiality of respondents. When releasing
microdata samples, the risk that records can be identified must be as-
sessed. To this aim, a widely adopted approach is to isolate categorical
variables key to the identification and analyze multi-way contingency
tables of such variables. Common disclosure risk measures focus on
sample unique cells in these tables and adopt parametric log-linear
models as the standard statistical tools for the problem. Such mod-
els have often to deal with large and extremely sparse tables that
pose a number of challenges to risk estimation. This paper proposes
to overcome these problems by studying nonparametric alternatives
based on Dirichlet process random effects. The main finding is that
the inclusion of such random effects allows us to reduce considerably
the number of fixed effects required to achieve reliable risk estimates.
This is studied on applications to real data, suggesting in particu-
lar that our mixed models with main effects only produces roughly
equivalent estimates compared to the all-two way interactions mod-
els, and is effective in defusing potential shortcomings of traditional
log-linear models. This paper adopts a fully Bayesian approach that
accounts for all sources of uncertainty, including that about the pop-
ulation frequencies, and supplies unconditional (posterior) variances
and credible intervals.

1. Introduction. Statistical agencies and other institutions that re-
lease data arising from sample surveys are obliged to protect the confidential-
ity of respondent’s identities and sensitive attributes. In socio-demographic
surveys the observed variables are often categorical; some of these, called key

variables, are identifying in that, being also available in external databases,
allow potential intruders to disclose confidential information on records in
the sample by matching on such keys. Assuming that there are no errors in
the variables above, the problem of assessing disclosure risks associated with
any proposed data release is often tackled by: (i) considering a contingency
table representing the cross-classification of subjects by the key variables
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(often this is a very large and sparse table); (ii) observing that a subject
belonging to a cell with a sample frequency of 1 (sample unique) is at rela-
tively high risk of identification if there are few subjects in the population
with that combination of the key variables.

Common disclosure risk measures are the number of sample uniques which
are also population uniques and the expected number of correct guesses when
each sample unique is matched with a subject randomly chosen from the cor-
responding population cell. Further measures can be found in Forster and Webb
(2007) along with an extensive survey of the previous literature; in this pa-
per we selectively review only those references that are closely related to the
focus of our work.

Disclosure risk is traditionally estimated by parametric models; in this
context, Skinner and Holmes (1998), Fienberg and Makov (1998), Carlson
(2002), Elamir and Skinner (2006), Forster and Webb (2007) and Skinner and Shlomo
(2008) introduce a log-linear model for the expected cell frequencies that
overcomes the assumption of exchangeability of cells of the contingency ta-
ble, implying constant risk estimates across cells having the same sample
frequency. To learn about the risk in a given cell from neighboring cells
without relying on the association structure implied by a log-linear model,
Rinott and Shlomo (2006) and Rinott and Shlomo (2007a) propose a local
smoothing polynomial model, applicable to key variables for which a suitable
definition of closeness is available. As far as estimation goes, the literature
presents a whole variety of strategies, including combinations of methods
ranging from maximum likelihood estimates to fully Bayesian estimates,
and also a method based on multiple imputation.

Drawing from the above mentioned literature, we propose a Bayesian
semi-parametric version of log-linear models, which specifically is a mixed
effects log-linear model with a Dirichlet process (DP) prior (Ferguson, 1973)
for modeling the random effects. As in Fienberg and Makov (1998), Forster and Webb
(2007), and Manrique-Vallier and Reiter (2012, 2013), we adopt a fully Bayesian
approach. Unlike repeated sampling schemes, the Bayesian framework is
particularly appealing in a disclosure limitation context, where the sample
to be released is unique and fixed. It also allows us to account for uncer-
tainty about population frequencies, which thus represents an additional
source of variability of risk estimators. In this respect, our work is very dif-
ferent from previous works based on log-linear models, including the one
by Rinott and Shlomo (2007b), as we provide unconditional variances and
credible intervals for sample disclosure risk measures.

Emphasizing the random effects component of the model, we will refer to
it as a nonparametric log-linear model, its parametric counterpart being a
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log-linear model with random effects modeled parametrically; fixed effects
are always assigned a parametric prior, so no further distinctions are neces-
sary1. Our nonparametric log-linear models are special cases of the family of
hierarchical DPs (Teh et al., 2006) which also include some elements of the
class of mixed membership models (which in turn include grade of member-
ship models, Erosheva, Fienberg and Joutard, 2007) such as latent Dirichlet
allocation models (Blei, Ng and Jordan, 2003).

The proposed nonparametric formulation has two major advantages. First,
it may be interpreted as the nonparametric extension of some of the para-
metric models proposed in the literature (see Section 2). Second, and most
importantly, in many applications to real data, two of which are presented
in Section 4, we observed roughly equivalent global risk estimates under
nonparametric log-linear models with main effects only (say, nonparametric
independence models) compared to all two-way interactions log-linear mod-
els with and without random effects. Quoting Manrique-Vallier and Reiter
(2012, p. 1390), the latter “have been found to produce reasonable re-
sults in many cases (Fienberg and Makov, 1998; Elamir and Skinner, 2006;
Skinner and Shlomo, 2008), and so represent a default modeling position”.
Consequently, our main finding is that our nonparametric independence
models can be used as default models thereby avoiding the severe difficul-
ties associated with complex log-linear model estimation in the presence of
sparse tables (see, for instance, Fienberg and Rinaldo, 2012.) These difficul-
ties arise from certain patterns of sampling zeroes which make the model
non-identifiable and result in non-existent maximum likelihood estimators
(MLE). This fact has long been known (Haberman, 1974), but recent re-
search shows that nonexistent MLEs are likely to arise even in small tables,
in the presence of positive margins and in frequently used models such as
the all-two-way interactions model. “Under a nonexistent MLE, the model is
not identifiable, the asymptotic standard errors are not well defined and the
number of degrees of freedom becomes meaningless” (Fienberg and Rinaldo,
2012, p. 997). Moreover, common statistical packages are inadequate to cope
with this problem, as detailed in Fienberg and Rinaldo (2007). The issue of
nonexistence of MLE is also important in Bayesian analysis of contingency
tables, but in our nonparametric models it is defused in two ways. First, the
only fixed effects to be estimated are the main effects. This is a substantial
simplification of the log-linear model significantly reducing the severity of
the problem. Second, the vague prior we assign to fixed effects replaces the

1 The reason for such and related abuses of terminology is that often in the course of
the paper we think of random effects conditionally on fixed effects and vice versa. This is
also why we refer to independence in the sequel.
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information content lacking in the data with the information contained in the
prior about all cells. This obviates the need for ad hoc additions of small pos-
itive quantities to cells containing sampling zeroes (Fienberg and Rinaldo,
2007, p. 3437; Fienberg and Rinaldo, 2012, p. 1012), which is potentially
severely misleading.

Recently, under the assumption that there are no structural zeroes in the
contingency table, Manrique-Vallier and Reiter (2012) employ a Bayesian
version of grade of membership model for disclosure risk estimation, also
discussing the model choice. This is a very challenging problem in complex
log-linear models only addressed in Skinner and Shlomo (2008); another ap-
proach is Bayesian model averaging, pursued by Forster and Webb (2007) on
decomposable graphical models. In a subsequent paper, Manrique-Vallier and Reiter
(2013) propose a truncated latent class model (LCM) for managing struc-
tural zeroes thereby removing a traditional limitation of Bayesian latent
structure models.

The paper is organized as follows: in Section 2 we define our model and in-
terpret it in light of the existing literature; in Section 3 we describe in details
our estimation method. In Section 4 we compare parametric and nonpara-
metric models based on a sample extracted from the population defined by
the Italian National Social Security Administration (2004), benchmarking
risk estimates against the true values of global risks. The same compari-
son is also provided through a random sample from public use microdata
from the state of California (IPUMS, Ruggles et al. 2010). In Section 5
we discuss comparisons between our nonparametric models and the LCMs
of Manrique-Vallier and Reiter (2013), showing that both rely on the same
basic assumptions, although implemented in different ways, which leads to
different models, with relative merits over each other. We also discuss some
computational aspects, suggesting use of the Empirical Bayesian version of
our model for very large tables to reduce the computational burden. Finally,
in Section 6, we provide some final comments.

2. Log-linear models for disclosure risk estimation. Let fk and
Fk denote the sample and population frequencies in the k-th cell, respec-
tively, and let K be the total number of cells in the contingency table of
the key variables. Our goal is to estimate global risks of re-identification, or
disclosure risks, defined as

(1) τ1 =
K
∑

k=1

I(fk = 1, Fk = 1) =
K
∑

k=1

I(fk = 1)τ1,k,
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i.e. the number of sample uniques which are also population uniques, and

(2) τ2 =
K
∑

k=1

I(fk = 1)
1

Fk

=
K
∑

k=1

I(fk = 1)τ2,k,

i.e. the expected number of correct guesses if each sample unique is matched
with an individual randomly chosen from the corresponding population cell
(see, e.g., Rinott and Shlomo, 2006). Usually these measures are approxi-
mated by their expectations E(τi|f1, ..., fK), i = 1, 2, namely, under the
assumption of cell independence,

(3) τ∗1 =
K
∑

k=1

I(fk = 1)Pr{Fk = 1|fk = 1} =
K
∑

k=1

I(fk = 1)τ∗1,k

(4) τ∗2 =
K
∑

k=1

I(fk = 1)E(1/Fk|fk = 1) =
K
∑

k=1

I(fk = 1)τ∗2,k,

and estimated by using parametric models, which are often elaborations of
the Poisson model. Assuming

(5) Fk ∼ Poisson(λk) and fk ∼ Poisson(πλk)

independently for k = 1, . . . ,K, with π being the (known) sampling fraction,
the terms in (3) and (4) can be expressed in closed form,

(6) τ∗1,k = e−(1−π)λk τ∗2,k = (1− e−(1−π)λk)/((1− π)λk).

In a relevant part of the literature the Poisson assumption is integrated
by log-linear modeling of cell means and, as mentioned in Section 1, the all
two-way interactions model without random effects, has been recognized
as a useful default model by many authors (Fienberg and Makov, 1998;
Elamir and Skinner, 2006; Skinner and Shlomo, 2008); recent articles, how-
ever, show that inference in this model is not trivial with sparse tables. Even
if the parameters of interest are the cell means λk, and the Iterative Pro-
portional Fitting (IPF) is guaranteed to converge to the extended MLE by
construction, the rate of convergence, with the noticeable exception of de-
composable graphical models, can be very slow when the MLE is not defined.
In conclusion: “The behavior of IPF when the MLE does not exist has not
been carefully studied to date” (Fienberg and Rinaldo, 2007, p.3438). The
previous facts, along with the nature of the problem, motivate our attempt
to address it in a Bayesian nonparametric framework by introducing DP
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random effects. The assumption of a DP prior gives the modeling flexibility
of accommodating any possible clustering of cells in the contingency table of
the key variables, and implies that all possible clusters of cells are considered,
with cells in the same cluster receiving the same random effect. A practical
consequence is that the huge number of patterns of dependence among cells
automatically created by the DP prior may reduce the number of high-order
terms required in the log-linear model to achieve a satisfactory performance
of risk estimators (see, e.g., Dorazio et al., 2008). Aiming at exploring this
idea in real data applications, we build on work by Skinner and Holmes
(1998) and related papers, such as Elamir and Skinner (2006) and Carlson
(2002). Before describing our proposal, we briefly review the above refer-
ences. Assuming (5), Skinner and Holmes model the parameters λk through
a log-linear model with mixed effects:

(7) λk = eµk , µk = w′
kβ + φk

where wk is a q×1 design vector depending on the values of the key variables
in cell k, β is a q×1 parameter vector (typically main effects and low-order
interactions of the key variables), and φk is a random effect accounting for
cell specific deviations. Finally, φk iid ∼ N (0, σ2). Formula (7) can be re-
expressed using multiplicative random effects as λk = ew

′

k
βeφk = ξk ωk,

whence λk|(β, σ
2) ∼ Lognormal(w′

kβ, σ
2), independently for k = 1, . . . ,K.

Skinner and Holmes (1998) estimate τ∗1 of formula (3) by a two-stage pro-
cedure: in the first stage, the association among cells is exploited to estimate
the hyperparameters β and σ2 of the Lognormal prior; in the second (and
completely separate) stage, estimates of τ∗1,k are obtained cell by cell, inde-

pendently. When the preliminary estimate of σ2 is positive, this procedure
leads to empirical Bayes estimates of the τ∗1,k’s in (6), otherwise the ran-
dom effects φks are removed, and plug-in estimates of the τ∗1,k’s are derived

by using ML estimates ξ̂k = ew
′

k
β̂. In the same framework, but focusing

on estimation of τ∗2,k in (6), Elamir and Skinner (2006) assume independent
Gamma priors in place of Lognormals on λk’s, and find that the addition of
parametric random effects does not improve risk estimates; as a consequence,
they suggest to adopt plug-in estimates. Conjugate Gamma priors guaran-
tee computational advantages as do the Inverse Gaussian distributions (IG)
described in Carlson (2002).

Our proposal is as follows: we keep the mixed-effects log-linear structure
(7), but remove the assumption of normality. We model the distribution
function G of the random effects as unknown and a priori distributed accord-
ing to a DP D with base probability measure G0 and total mass parameter
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m (Ferguson, 1973),

(8) φk|G ∼ iid G, G ∼ D(m,G0),

Since E(G) = G0 and m controls the variance of the process, in practice
G0 specifies one’s “best guess” about an underlying model of the varia-
tion in φ, and m specifies the extent to which G0 holds. Within the class
of models just defined, we consider three specifications of G0 that lead
to three different direct generalizations of the existing literature, namely,
Skinner and Holmes (1998), when G0 = N(α, σ2); Carlson (2002), when
G0 = IG(α, σ2); Elamir and Skinner (2006), when G0 = LG(a, b), where
LG denotes the distribution of a log transformation of a Gamma(a, b) vari-
ate ω, with f(ω; a, b) = ba/Γ(a)ωa−1e−bω. The hyperparameters in the base
measure G0 can be fixed, which is how we proceed, or be given a prior
distribution. While in the corresponding parametric approaches a fixed dis-
tribution G = G0 is selected and its hyperparameters are estimated, we
take the opposite perspective, that is, we assume a random G while holding
the hyperparameters of its mean distribution G0 fixed, and chosen so as to
obtain a vague specification.

The estimation of risk measures under the proposed model is discussed in
Section 3. Here we analyze the implications of our nonparametric specifica-
tion of random effects and the advantages over the parametric counterparts
of our model. The clustering induced by the DP prior on the random effects
can be seen from a Polya-urn scheme representation of the joint distribution
of realizations from D(m,G0). Blackwell and MacQueen (1973) provide this
as the product of successive conditional distributions:

(9) φi|φ1, . . . , φi−1,M ∼
m

m+ i− 1
G0(φi) +

1

m+ i− 1

i−1
∑

k=1

δ(φk = φi),

with δ(·) denoting the Dirac delta function. The above representation shows
that clusters in the K cells of the population contingency table are induced
by the existence of a positive probability that a newly generated φi coincides
with a previous one. It also shows that m, the mass or precision parameter
of the DP, affects the expected number of clusters.

Therefore, under the previous assumptions, the likelihood function turns
out to be a sum of terms where all possible partitions (clusterings) C of
the K cells into c nonempty clusters are considered (see, e.g., Lo, 1984; Liu,
1996),

(10)
K
∑

c=1

∑

C:|C|=c

Γ(m)

Γ(m+K)
mc

c
∏

j=1

Γ(nj)

∫

p(f(j)|β, φj)dG0(φj),
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where f = f1, . . . , fK and nj (1 ≤ nj ≤ K) denotes the number of cells in
the j-th cluster,

(11)
Γ(m)

Γ(m+K)
mc

c
∏

j=1

Γ(nj) = Pr{n1, . . . , nc|C, c},

and finally

(12) p(f(j)|β, φj) =
∏

k∈cluster j

1

fk!
eπfk(w

′

k
β+φj)e−e

π(w′

k
β+φj)

.

In the likelihood, starting from the latter formula, we notice that the same
random effect is assigned to all cells belonging to the same cluster, i.e. to f(j),
that Pr{n1, . . . , nc|C, c} is the multivariate Ewens distribution (MED) of K
distinguishable objects, or cells {1, . . . ,K} (see Takemura, 1999; Johnson, Kotz and Balakrishnan,
2004, chap. 41), and that the number of clusters in each partition ranges
from 1 to K. We stress that the total number of terms in the likelihood (10)
is the Bell number, BK , which is a combinatorial quantity assuming large
values even for moderate K; just to fix ideas, when K = 10, BK = 115, 975.
The parametric counterparts of our nonparametric random effects models
correspond to just one term (namely, c = K) in the likelihood and conse-
quently, even for moderate values of K, our model implies a huge number
of additional patterns of dependence among cells.

The above considerations show that the intrinsic characteristics of DP ran-
dom effects set them apart from parametric random effects for their potential
to improve upon the fixed effects component of the log-linear model. Indeed,
the fixed effects included in the log-linear model imply specific patterns of
dependence among cells. For instance, an independence model implies that
inference on a given cell depends on all cells sharing a value of a key variable
with it, since the sufficient statistics are given by the marginal counts. The
addition of independent parametric random effects, N(α, σ2), IG(α, σ2) or
LG(a, b), allows for departures from the Poisson log-linear model such as
overdispersion, but does not significantly affect the way one can learn about
a given cell from other cells. In contrast, the inclusion of DP random effects
implies that, in addition to the above mentioned fixed effects patterns, the
model encompasses all other nonempty subsets of the K cells. For each given
partition, a possible relation of dependence among cells in the same subset
is explicitly evaluated. In other words, to learn about a given cell, additional
information is borrowed from cells belonging to the same subset, for each
subset to which the cell can be assigned in the context of all possible parti-
tions in nonempty subsets of theK cells. This suggests both the potential for
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the proposed model to improve the risk estimates and the associated com-
putational complexity. Furthermore, the results under our nonparametric
models can be interpreted as averages over mixed effects log-linear models
with different clusterizations of parametric random effects.

3. Inference. In this Section we describe how to estimate not only τ∗1
and τ∗2 in (3) and (4), as most of the literature based on log-linear mod-
els does, but also τ1 and τ2 and their terms τ1k and τ2k in (1) and (2), in a
fully Bayesian way. This approach is inspired by Manrique-Vallier and Reiter
(2012) and Manrique-Vallier and Reiter (2013); see also Fienberg and Makov
(1998). In order to keep the notation uncluttered, let θ denote the set of
all model parameters conditioning λ1, . . . , λK for each of the models an-
alyzed in this article. The posterior distribution over θ is not available
in closed form for any of the models considered here. We employ Markov
Chain Monte Carlo (MCMC) techniques (Neal, 1993) to obtain samples from
p(θ|f1, . . . , fK); in particular, we propose to use a Gibbs sampler where we
sample one group of parameters at a time, namely β|rest, φ|rest, and m|rest.
The proposed Gibbs sampler steps are briefly discussed next.

Sampling β – Given the form of the Poisson likelihood, it is not possi-
ble to sample β using an exact Gibbs step, and so called Metropolis within
Gibbs samplers need to be employed, whereby a proposal is accepted or
rejected according to a Metropolis ratio (Roberts and Rosenthal, 2009). Re-
cent work shows that it is possible to efficiently sample from the posterior
distribution of parameters of linear models using so called manifold MCMC

methods. Briefly, such samplers exploit the curvature of the log-likelihood
log[p(f1, . . . , fK |β, rest)] by constructing a proposal mechanism on the ba-
sis of the Fisher Information matrix (see Girolami and Calderhead, 2011,
for further details). In this work we adopt Simplified Manifold Metropo-
lis Adjusted Langevin Algorithm (SMMALA) to sample β as previously
done in Filippone, Mira and Girolami (2011), which simulates a diffusion
on the statistical manifold characterizing p(f1, . . . , fK |β, rest). Define M to
be the metric tensor obtained as the Fisher Information of the model plus
the negative Hessian of the prior, and ǫ to be a discretization parameter.
SMMALA is essentially a Metropolis-Hastings sampler, with a position de-
pendent proposal akin to the Newton method in optimization, p(β′|β) =

N(β′|µ, ǫ2M−1), with µ = β + ǫ2

2 M
−1∇β log[p(f1, . . . , fK |β, rest)]. Gradi-

ent and metric tensor can be computed in linear time in the number of cells
K and in cubic time in the size of β; therefore the method scales well to large
data sets but it may be computationally intensive for highly parameterized
models.
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Sampling φ – An extensive treatment of MCMC for DP models can be
found in Neal (2000), where we refer the reader for full details. Drawing sam-
ples from the posterior distribution over the random effects entails allocating
cells to an unknown number of clusters and drawing a value for the random
effect for each cluster. The way in which these steps are carried out depends
on whether it is possible to exploit conjugacy of the base measure, that is,
whether the integral

∫

p(fk|β, φ)dG0(φ) can be evaluated analytically1.
In the applications presented in Section 4, we choose a LG distribution for

G0 so that ω = eφ is given a Gamma base measure. In this case we can exploit
conjugacy with the Poisson likelihood; a similar argument applies when φ
is given the IG distribution, for which the integral above is analytically
tractable. When conjugacy holds, a simple and efficient algorithm can be
constructed to draw samples from the full conditional distribution over the
random effects, which is referred to as Algorithm 3 in Neal (2000). First, the
allocation of cells to clusters is updated for one cell at a time, integrating
out analytically the dependency from the actual value that the random
effects can take, and allowing the total number of clusters to vary across
iterations. Second, the value of the random effect pertaining to each cluster
can be drawn directly from a known distribution (which is a Gamma in
the extension of Elamir and Skinner 2006), again due to the fact that the
likelihood and the DP base measure form a conjugate pair. The sampling of
φ has a computational cost that scales linearly with the number of cells.

Instead, when we extend the model proposed by Skinner and Holmes
(1998), the Normal distribution does not enjoy the above mentioned con-
jugacy property; for this reason, sampling schemes for non-conjugate base
measures described, e.g., in Neal (2000), must be employed, and these usu-
ally lead to less efficient MCMC sampling schemes.

Sampling m – In the literature, it has often been reported that inference
in models involving DPs is heavily affected by the mass parameter m, and
that setting it by means of Maximum Likelihood is bound to yield poor
results (see, e.g., Liu, 1996). Rather than fixing this parameter, we propose to
draw samples from its posterior distribution and to account for uncertainty
about it when inferring risk measures. By selecting a Gamma prior over m,
it is possible to employ the approach of Escobar and West (1994) to draw
samples from the posterior distribution over m|rest directly.

MCMC estimates – Once H samples from the posterior distribution
over θ are available, it is possible to obtain Monte Carlo estimates of per-cell

1Note that here p(fk|β, φ) represents the likelihood based on a single datum, i.e. one
of the terms in the product (12).
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risks by referring to (6):

τ̂∗1,k =
1

H

H
∑

h=1

Pr{Fk = 1|fk = 1,θ(h)}; τ̂∗2,k =
1

H

H
∑

h=1

E

(

1

Fk

∣

∣

∣

∣

fk = 1,θ(h)
)

,

which in turn lead to global risk estimates τ̂∗i =
∑K

k=1 τ̂
∗
i,k, i = 1, 2.

Fully Bayesian estimates of τi, i = 1, 2, instead, require taking into ac-
count a further source of variability induced by the randomness of the un-
observed F1, . . . , FK . In particular, observing that the terms τi,k in τi, are
τi,k = τi,k(fk, λk, Fk) (i = 1, 2) where F1, . . . , FK are unknown random quan-
tities, with Fk|λk ∼ Poisson(λk), k = 1, . . . ,K, we consider values of λk’s
drawn from their joint posterior distribution and then values of F1, . . . , FK

drawn from the corresponding Poisson distributions. This allows us to de-
rive a sample of τi,k, i = 1, 2, from which it is possible to characterize
the posterior distribution of global and cell-specific risk values by standard
Monte Carlo techniques. Accounting for randomness of both groups of un-
observed parameters (λk’s and Fk’s) has two important implications. First,
since a posteriori the λk’s are dependent on each other, we avoid the unre-
alistic assumption underlying the second stage of the estimation procedure
of Skinner and Holmes (1998), where the cell risks are treated as if they
were independent. Second, since the uncertainty on the Fk’s is also explic-
itly considered, we obtain risk estimates whose variability depends on the
variability of the Fk’s as well as the variability of the λk’s and the associa-
tion between λk’s. This means, for instance, that our posterior variance of

τ1, V ar(τ1|f1, . . . , fK) = V ar
(

∑K
k I(fk = 1)I(Fk = 1|fk = 1)|f1, . . . , fK

)

,

cannot be expressed in the form (Rinott and Shlomo, 2007b)

(13)
K
∑

k

I(fk = 1)Pr{Fk = 1|fk = 1}(1− Pr{Fk = 1|fk = 1})

because of the covariances of the λk’s. Moreover, our variances, and the
corresponding standard deviations (s.d.), provided in Table 1, are derived
from the posterior distributions of τi, i = 1, 2, rather than by plug-in.

As mentioned in Section 1, the issue of nonexistence of MLE (due to
data being not fully informative about model parameters) is also important
in Bayesian analysis of log-linear models. The vague prior we specify in
Section 4 for the fixed effects replaces the information content lacking in the
data with the information contained in the prior. This prior is especially
useful to estimate the all two-way interactions model that we consider for
comparison, as it makes the posterior information matrix of β not rank
deficient. This is the way we can avoid ad hoc additions of small positive
quantities to cells containing sampling zeroes.
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4. Applications. To evaluate the performance of the proposed ap-
proach in practical settings, we apply our nonparametric risk estimators
to two tables with different sizes and degrees of sparsity. We consider data
from the 5% public use microdata sample of the U.S. 2000 Census for the
state of California (IPUMS, Ruggles et al. 2010), treating the set of indi-
viduals aged 21 and older as the population. We also use data from the
7% microdata sample of the Italian National Social Security Administra-
tion, 2004 (source: Work Histories Italian Panel, WHIP), treated here as the
population. In both cases we draw random samples with fraction π = 0.05.
The key variables considered for the WHIP data are sex (2), age (12), area
of origin (11), region of work (20), economic sector (4), wages guarantee
fund (2), working position (4), leading to a table of 844, 800 cells, of which
5017 (0.59%) nonempty. The California table comprises the following key
variables: number of children (10), age (10), sex (2), marital status (6),
race (5), employment status (3), education (5), for a total of 90, 000 cells,
of which 4707 (5.2%) nonempty. These variables are a subset of those speci-
fied in Manrique-Vallier and Reiter (2012), that we follow for categorization
of the key variables and selection of the reference population; the latter ex-
cludes the presence of impossible, or otherwise predetermined, combinations,
i.e. structural zeroes. The expected cell probabilities (λk) in cells containing
structural zeroes are assigned a degenerate prior; loosely speaking, this has
to be interpreted as a “conventional” way to state that all such cells have
to be ignored in the fitting of the model so that they cannot bias estimates
in the remaining “non-structural zero” cells.

In the applications we focus on one of the nonparametric models presented
in Section 2, namely the extension of the model proposed by Elamir and Skinner
(2006). We examine several choices of the log-linear component describing
the fixed effects; in particular, we investigate a model with no fixed effects,
referred to as the overall mean model (O), the main effects, or independence
model (I) and the all two-way interactions model (II). For comparison we fit
both the parametric (P) and non parametric (NP) random effects versions
of the above mentioned models. For simplicity, hereafter, the above models
will be identified by labels denoting the selected modeling options, so, for
instance, (NP+I) is the nonparametric model with main effects only, and
(P+II) and (II) are the all two-ways interactions models with and without
parametric random effects, respectively.

Under the parametric specification P, the random effects φ are modeled
by a LG(a, b) prior, whereas under the nonparametric specification NP, the
random effects are assumed to follow a distribution drawn from a DP, whose
base measure is LG(a, b). In both cases, the hyperparameters (a, b) are fixed
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so that this is a vague prior: a = 1, b = 0.1 (b is the rate parameter). Since
we drop from β the overall effect β0 to overcome identifiability issues, β0 is
incorporated into the mean of the random effects. Therefore the assumption
of Elamir and Skinner (2006), who take the mean of the Gamma distribu-
tion of the multiplicative random effects ω to be 1 is compatible with ours:
by fixing a 6= b, i.e. a prior mean that differs from 1, we simply allow for an
overall effect. For the components of β we assume independent and reason-
ably vague Gaussian priors N(0, 10). Finally, we take a Gamma(1, 0.1) prior
on m. All models are estimated by the fully Bayesian method described in
Section 32 , with the exception of one nonparametric independence model,
where the prior on the fixed effects is taken to be degenerate at the MLE of
ξ, ξ̂ML. We label the corresponding approach by (NP+I) Emp, to indicate
that we rely on empirical Bayes estimation, in the presence of DP random
effects. Note that the California table is free of structural zeroes, so that
the log-linear model with main effects only is in fact an independence, i.e.
decomposable, model, and ξ̂ML exists since all observed unidimensional mar-
gins are positive. This is not the case for the large WHIP table where the
main effects model represents a quasi-independence model. Here we simply
use the ξ̂ obtained by IPF (for which the R routine converged within 15
iterations with a tolerance of 10−8), assuming it is the extended MLE.

In the implementation of the MCMC sampling, convergence of the chains
was checked using the Gelman and Rubin’s potential scale reduction factor
(R̂; Gelman and Rubin, 1992), by running 10 parallel chains and assessing
that chains had converged when R̂ < 1.1 for all the parameters. According
to this criterion, all chains converged within five thousands iterations that
were then discarded before running the chains for a further 10, 000 iterations
that were used to evaluate the risk scores.

We note here that, for the (P+II) model, the K × q design matrix as-
sociated with the log-linear model component is very large (q > 103 and
K ∼ 106), which caused some difficulties when running the adopted sam-
pling scheme. Indeed, each update of β requires evaluating and factorizing
a q × q matrix, leading to running times that are beyond usability (weeks).
This is the main reason why we considered a subset of the variables in
the California table analyzed in Manrique-Vallier and Reiter (2012). For the
parametric models, that are introduced for comparison, we therefore tested
an alternative where we approximated the posterior distribution over β by
a Gaussian. In particular, we carried out a Laplace Approximation, where
the approximating Gaussian has mean equal to the mode of the posterior
distribution and the inverse covariance is equal to the negative Hessian of

2Suitably modified when estimating the models (P+I) and (P+II).
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Table 1

Estimated values of τ1 and τ2 by means of τ̂1 and τ̂2 (top panel) and τ̂∗

1 and τ̂∗

2 (bottom
panel) for the California and WHIP tables. Posterior standard deviations in parentheses.

California WHIP
τ1 = 211 τ2 = 499.8 τ1 = 915 τ2 = 1948.1

Model τ̂1 τ̂2 τ̂1 τ̂2

(P+O) 0.0 (0.1) 170.5 (1.4) 1180.7 (33.2) 3322.2 (24.8)

(P+I) 255.4 (10.4) 518.8 (7.6) 1184.9 (23.7) 2289.9 (17.1)

(P+II) 253.9 (11.1) 537.5 (8.6) 958.4 (22.4) 1996.2 (17.5)

(NP+O) 700.0 (232.1) 910.0 (198.8) 2397.8 (459.5) 3042.6 (405.1)

(NP+I) 217.0 (12.2) 503.7 (10.9) 1010.4 (29.8) 2083.4 (28.3)

(NP+I) Emp 241.8 (12.3) 528.8 (10.8) 970.2 (32.7) 2046.0 (32.4)

τ̂∗

1 τ̂∗

2 τ̂∗

1 τ̂∗

2

(P+O) 0.0 (0.0) 170.6 (0.7) 1180.6 (10.8) 3322.1 (10.8)

(P+I) 255.3 (3.3) 518.8 (4.0) 1184.9 (9.4) 2290.0 (9.7)

(P+II) 254.0 (4.7) 537.6 (5.5) 958.5 (10.7) 1996.3 (11.9)

(NP+O) 700.1 (231.8) 910.1 (198.7)) 2397.8 (458.8) 3042.6 (404.9)

(NP+I) 217.0 (7.5) 503.7 (8.7) 1010.3 (21.9) 2083.4 (24.9)

(NP+I) Emp 241.7 (7.4) 528.7 (8.5) 970.2 (26.0) 2046.0 (29.6)

II 250.4 (–) 536.7 (–) 946.8 (–) 1992.4 (–)

the logarithm of the posterior density at the mode (Tierney and Kadane,
1986). Computationally, this procedure has the following advantages. First,
the mode finding procedure can be implemented in a way that it does not re-
quire factorization or storage of large matrices, e.g., by feeding log-posterior
and its gradient to standard optimization routines. Second, once the mode
is located, drawing samples from the approximate posterior over β requires
that the q × q covariance matrix is computed and factorized only once. In-
terestingly, in cases where we could run the sampling from the posterior
over β, we noticed that the risks obtained by the approximate method were
strikingly close to one another. For this reason, the results that we report
for the (P+I) and the (P+II) models refer to the approximate method.

Table 1 reports true and estimated values of τ1 and τ2 (s.d. in parentheses)
for six models formed by combining different modeling options as described
above. In addition, risks obtained under the default log-linear model (II)
without random effects, and fitted by the IPF are included for reference.
First of all, the very small difference in the results under the (II) and (P+II)
models confirms the findings in Elamir and Skinner (2006). Moreover, simi-
lar to what Manrique-Vallier and Reiter (2012, p.1389) have observed under
their GoM models, point estimates τ̂∗1 and τ̂∗2 are nearly identical to τ̂1 and
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τ̂2 with smaller posterior standard deviations since the former do not take
into account the variability of Fks. The 2.5th, 5th, 50th, 95th and 97.5th
percentiles of the posterior distribution of τi, i = 1, 2, under a subset of the
models reported in Table 1, are presented in Figure 1 where models appear
in order of complexity of the log-linear specification and the solid vertical
lines represent the true risk values.
Inspection of Table 1, and related Figure 1, confirms that the parametric
all two-way interactions model (P+II) outperforms the (P+I) model in the
large table, which is in line with what reported in the literature. If, how-
ever, we include nonparametric models in the analysis, new and interesting
findings are as follows.

1. The potential of the DP prior for capturing association not modeled
by the fixed effects can be noticed by comparing the results under the two
models that, conditionally on the random effects, rely on the exchangeability
assumption, namely the parametric no fixed effects log-linear model (P+O)
and its nonparametric counterpart (NP+O). The latter is the model used
in Dorazio et al. (2008).

2. When risks are estimated by nonparametric models, the tendency of
risk estimates to decrease as the complexity of the model increases shown in
Skinner and Shlomo (2008, Table 1, going, in particular, from I to II), can
be observed in both California and WHIP tables at a lower level, i.e. going
from the (NP+O) model to the (NP+I) and (NP+I) Emp models.

3. The performance of the nonparametric independence model, (NP+I) Emp,
is roughly comparable to that of the parametric all two-way interactions
model, (P+II). This means that the DP prior is able to capture the es-
sential features of heterogeneity without the need for additional terms (in-
teractions) in the vector of fixed effects. Considering, moreover, the good
performance of the (NP+I) model in the California table, we are induced
to conclude that, in the presence of DP random effects, the number of fixed
effects required to obtain reasonable global risk estimates is lower than in
the parametric case, and less sensitive to the size of the table K. This is in
line with finding 2.

4. Although we do not specifically address the challenging problem of
model choice, our approach may contribute to lessen its scale and complexity.
Indeed, the (NP+I) Emp model can be taken as the initial model in a forward
model selection procedure. The significant reduction of the space of adjacent
models that need to be examined at each step would mitigate the difficulties
associated with model choice. This point will be explored in future work.

By comparing parametric and nonparametric independence models, (P+I),
(NP+I) and (NP+I) Emp, Figure 1 allows us to see how strongly DP ran-
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Fig 1. Quantiles of the posterior distributions of τ1 (first column) and τ2 (second column)
under a subset of parametric and nonparametric models considered. First (second) row
refers to the California (WHIP) table. Gray squares: 5th, 95th percentiles; black squares:
2.5th, 97.5th percentiles; stars: median of the posterior distributions. Vertical segments
represent the true risks.

dom effects integrate into a log-linear model with main effects only and
contribute to improve global risk estimates even for the large WHIP table
for which the fit of the parametric independence model is particularly poor.

To appreciate the role played by the clustering mechanism induced by the
DP, Figure 2 provides a representation of the posterior distribution of the
number of clusters under the proposed (NP+I) and (NP+I) Emp models.
There is a striking difference between the distribution of the number of
clusters for the California and WHIP tables. The fact that in the California
table the number of clusters is large seems to reflect the ability of the (NP+I)
model to perform extremely well in the estimation of risk. In the case of the
WHIP table, the introduction of the DP distributed random effects, although
significantly improving on the estimation of risk with respect to the (P+I)
model, does not completely account for the lack of fit.

For the the California table we also explored the frequentist properties
of our approach through a simulation study comprising 100 samples, where
we evaluated the frequentist coverage of the credible intervals based on the
2.5th and 97.5th percentiles of the posterior distribution of τi, i = 1, 2. We
observed that, under the (NP+I) model, all of them include the true value
of τ1 and 76 include the true value of τ2.
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Fig 2. Posterior distribution of the number of clusters for the California and WHIP tables
when using the (NP+I) and (NP+I) Emp models.

In the rest of this Section we explore the behavior of per-cell risk estimates,
by using for simplicity τ̂∗1,k and τ̂∗2,k. In Figure 3, for a subset of the models
presented in Table 1, and proceeding as in Figure 4 of Forster and Webb
(2007), we plot the proportion of population uniques against the average
value of τ̂∗1,k, for cells categorized into 10 equal-width intervals according to
the values of τ̂∗1,k. Visual assessment of the relative proximity to the diagonal
gives an idea of how accurately each model can predict population unique
cells. Similarly, in Figure 4, as in Elamir and Skinner (2006), we plot the
mean of 1/Fk against the mean of the estimated risk τ̂∗2,k after grouping
cells into 10 intervals according to the values of τ̂∗2,k.

In Figure 5 we compare per-cell risk estimates τ̂∗i,k and true risks (bold
lines) for i = 1, 2, respectively. We consider estimates from the Califor-
nia table for which the (NP+I) model outperforms the parametric model
(P+II) and the parametric independence model (P+I). Cells containing sam-
ple uniques are arranged in increasing order of the true per-cell risk; in turn,
for each level of the true per-cell risk, estimates are arranged in decreasing
order of population cell size and increasing order of estimated risk. This
allows us to observe overestimates and underestimates in all cells under the
two models under examination. By drawing cutoff points (not included) in
first two plots of the Figure, we can also visualize the corresponding false
positive and false negative cells. We can conclude that the (NP+I) model
improves risk estimates τ̂1,k in cells with intermediate population frequen-
cies, while in cells with extreme (very large or 1) population frequencies,
the (P+II) model tends to produce better results at the cell level; however,
this is not sufficient for the (P+II) model to outperform the (NP+I) model
in the estimation of the global risk. This fact is even more apparent when
inspecting the last two plots in Figure 5. The results just analyzed indi-
cate that, compared to the all two way parametric random effects log-linear
model, the proposed approach does not produce uniformly better per-cell
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Fig 3. Proportion of population uniques plotted against the average estimated risk τ̂∗

1,k, for
cells categorized into 10 equal-width intervals according to the values of τ̂∗

1,k. The size of
the plotting points depends on the number of cells in each interval. First line: California
table; second line: WHIP table.
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1,k (first two plots) and τ̂∗

2,k (last two plots) for
sample unique cells under the (P+II) and (NP+I) models for the California table. Bold
lines represent the true risks.

risk estimates. While in this paper we have mainly focused on measures of
global risk, the specific problem of per cell risk estimation could be tackled
in a different way, that we plan to explore in future work.

5. Computational aspects and comparison with other approaches.

In this Section we discuss computational costs and applicability to large ta-
bles of our proposal, in comparison with other approaches in the recent
literature related to our problem.

As already discussed, in large and sparse tables maximum likelihood esti-
mation of standard log-linear models -(II) in particular, in our application-
and model search becomes highly challenging, as the parameter space quickly
explodes and a number of parameters may result to be unidentifiable due to
sparsity. Assigning a prior to these parameters and carrying out Maximum-
A-Posteriori (MAP) estimation instead of Maximum Likelihood, allowed us
to somewhat work around this problem. However, locating the mode of the
posterior distribution of the parameters requires employing iterative search
algorithms that are computationally intensive and potentially slow to con-
verge.

Vice versa, the computational performance of our nonparametric indepen-
dence models depends on the interplay of two different elements, namely:
(i) estimation of the parametric fixed effects β; (ii) estimation of the non-
parametric random effects. As to (i), it is the number of main effects that
determines the computational scale of the problem, that, albeit cubic in the
size of β, remains much smaller than the table size. Nonetheless, when the
size of β is very large, storing of information matrices might be challeng-
ing; in that case we suggest use of the Empirical Bayesian version of the
nonparametric independence model. This approach, akin to the estimation
strategy of Skinner and Holmes (1998), is an appealing alternative, since it
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relies on IPF that converges in at most two steps in decomposable models.
(ii) is related to the allocation of random effects; the proposed nonpara-

metric methods scale linearly with the number of cells, which makes our
proposal suitable for applications to large tables. Although it is not possible
to provide any guarantees on convergence speed of the MCMC approach to
the posterior distribution over the parameters, in all tables that we studied
in this work, we found that convergence of the chains was reached after few
thousands of iterations.

By using a log-linear representation of the latent class model (LCM), our
(NP+I) model and the LCM recently applied by Manrique-Vallier and Reiter
(2013) can be shown to rely on the same basic assumptions, i.e. indepen-
dence of the key variables conditionally on an unobserved variable S, and
a prior for such unobserved variable S somewhat related to the Dirichlet
process (see also Si and Reiter, 2013). The latter assumption, however, is
applied at the level of individuals (through an individual latent class Z
whose prior is a finite stick breaking process) in the LCM, while it is applied
at the level of cells (via the cell-specific DP random effect φ) in the (NP+I)
model. This implies different allocations to clusters and different sampling
schemes in the two cases. Practical consequences are that as the sample
size increases, the (NP+I) model does not require any additional compu-
tational costs, while it scales as discussed above with the number of cells.
Vice versa, the LCM scales easily with the number of cells, as emphasized
in Manrique-Vallier and Reiter (2013), but has to sustain a non negligible
computational cost as the sample size increases. This may be an advantage
of our method, as in the practice of Statistical Institutes the sample sizes are
often much larger than those considered in the literature based on LCMs.
Note that while in our applications the sampling fraction is higher than
what could commonly be used in practice, the absolute size (n = 57, 547;
n = 40, 122 for the California and WHIP data, respectively) is the same
order of magnitude of many surveys on individuals conducted, for instance,
by the Italian National Statistical Institute. A second practical issue relates
to structural zeroes, which are at the level of cells, are very simply man-
aged in our nonparametric approach (by a degenerate prior on those cells),
while they require a specific technique in the LCM, i.e. the one introduced
by Manrique-Vallier and Reiter (2013). This also means that our approach
has the same advantages mentioned by Manrique-Vallier and Reiter (2013),
such as applicability to variables with skip patterns, or when certain com-
binations have been effectively eliminated from the sample by design.

In conclusion, (NP+I) and LC models are built on the same basic ingredi-
ents though implemented in different ways, thereby producing the different
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advantages and disadvantages - in terms of scalability, structural zeroes and
applicability - just summarized.

The actual computational times associated with our proposal clearly de-
pend on the size of the table to be analyzed. Recent developments on
Bayesian LCMs show that they can deal with extremely large tables, in the
order of 1040 as illustrated by Si and Reiter (2013) for a multiple imputation
problem. Being able to treat extremely large tables in short computational
times is undoubtedly important. Although “Big Data” issues are likely to
have an impact in the context of disclosure risk estimation (in terms of dis-
closure scenario and type and number of key variables), we deem that tables
of the above size may be less common than in other related fields. Indeed
when the number of cells is much higher than the population size, the aver-
age population cell size N/K, whatever the sample, is very low. Under such
circumstances Statistical Institutes may judge releasing information on the
key variables at that level of detail too risky and may prefer to recode/merge
the key variables and/or decrease their detail before proceeding to assess the
risk formally through a suitable statistical model.

6. Final comments. In this article we investigated the role of ran-
dom effects in log-linear models for disclosure risk estimation. We show in
theory and through real data applications that modeling the random ef-
fects nonparametrically does improve upon the log-linear model, because it
allows to simplify to a large extent the structure of fixed effects required
to achieve good risk estimates. Therefore, the utility of our nonparamet-
ric approach increases with the size and the degree of sparsity of the table,
since problems with non-estimable parameters in fixed effects log-linear mod-
els increase disproportionately with the number of terms included. Quot-
ing Fienberg and Rinaldo (2007), “the number of possible patterns of zero
counts invalidating the MLE exhibits an exploding behavior as the number
of classifying variables or categories grows”.

Unlike parametric random effects models, for each cell our nonparametric
models combine learning from two types of neighborhoods, one driven by the
fixed effects, and the other driven by the data and implied by the clustering
of the random effects.

Interestingly, in the applications the empirical Bayesian version of our
(NP+I) model emerges as the nonparametric equivalent of the parametric
model (P+II), indicated in the literature as the default approach in risk
estimation. This evidence is found in tables with rather different structures
and dimensions. Moreover, in the analysis of the California data set the
(NP+I) model greatly improves the performance of the parametric model
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in terms of global risk estimation.
The striking impact of the inclusion of DP random effects in the (P+I)

model indicates that enlarging the simple (NP+I) Emp model by adding a
few interaction terms can be expected to produce satisfactory results. Even
if we do not address the issue of model selection, the previous remark opens
the door to a model search approach that takes our (NP+I) Emp model as
the starting point, thus lessening the scale and complexity of the problem,
since the space of adjacent models to be examined is significantly reduced.

We emphasize that the previous ones are general results, i.e. a reduction
in the number of fixed effects in the presence of DP random effects - with the
mentioned benefits in terms of estimability in sparse tables and simplifica-
tion of model search- can be expected in different applications of log-linear
models, not only in disclosure risk estimation.

Having adopted a fully Bayesian approach allowed us to account for all
sources of uncertainty (about λk’s, Fk’s) in the estimation of risk. In (P+I)
and (P+II) models, this is an advantage compared to the empirical Bayes
procedure by Elamir and Skinner (2006, Sect. 3.3), even though we can ex-
pect numerical agreement between their estimates because of the vague pri-
ors adopted for the fixed effects. As to our (NP+I) Emp model, which repli-
cates in a nonparametric context the estimation strategy of Skinner and
Holmes (1998), although it neglects the variability of the fixed effects, it
incorporates other sources of uncertainty, such as the population frequen-
cies. Although our approach generalizes existing models mentioned in Sec-
tion 2, there are important differences from the previous literature, including
Rinott and Shlomo (2007b), as our risk estimates are endowed with uncon-
ditional (posterior) variances and we can also produce credible intervals, i.e.
posterior probability intervals.

As regards the assumptions underlying our Bayesian models, all of them
are explicit and more flexible than the ones underlying a log-linear model
without random effects. Indeed, we have selected vague priors and modeled
the random effects nonparametrically, which is a further relaxation of the
hypotheses.

While in this paper we have mainly focused on measures of global risk, the
applications indicate that, compared to the all two way parametric random
effects log-linear model, the proposed approach does not produce uniformly
better per-cell risk estimates even when the global risk estimates under the
(NP+I) model outperform those obtained under the (P+II) model. The
specific problem of per cell risk estimation could be tackled in a different
way, that we plan to explore in future work.
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