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Exploratory analysis of genomic data sets using unsupervised clustering techniques

is often affected by problems due to the small cardinality and high dimensionality
of the data set. A way to alleviate those problems lies in performing clustering
in an embedding space where each data point is represented by a vector of its
memberships to fuzzy sets characterized by a set of probes selected from the data
set. This approach has been demonstrated to lead to significant improvements
with respect the application of clustering algorithms in the original space and in

the distance embedding space. In this paper we propose a constructive technique
based on Simulated Annealing able to select sets of probes of small cardinality and

supporting high quality clustering solutions.

1. Introduction

Clustering methods provide an useful tool to explore genomic data sets, but

often the crude application of classical clustering algorithms leads to poor

results. Actually, many clustering approaches suffer from being applied in

high-dimensional spaces, as clustering algorithms often seek for areas where

data is especially dense. However, sometimes the cardinality of the data

sets available is even less than the number of variables. This means that

the data span only a subspace within the data space. In these conditions,

it is not easy to define the concept of volumetric density.

Moreover, when space dimensionality is high or even moderate (as low

as 10-15), the distance of a point to its farthest neighbor and to its nearest

neighbor tend to become equal3,1. Therefore the evaluation of distances,

∗Work funded by the MIUR grant code 2004062740

1



April 13, 2006 10:58 Proceedings Trim Size: 9in x 6in cibb06

2

and the concept of “nearest neighbor” itself, become less and less meaning-

ful with growing dimension.

Defining clusters on the basis of distance requires that distances can be

estimated. For instance, one of the most common methods, c-means (CM)

clustering, is based on iteratively computing distances and cluster averages.

Increasing the data space dimensionality may introduce a large number

of suboptimal solutions (local minima), and the nearest-neighbor criterion

which is the basis of the method may even become useless. This problem

is not avoided even when CM is modified in the direction of incorporating

fuzzy concepts, e.g. as for the FCM (Fuzzy c-Means) algorithm5,2.

If the cardinality of the data set is small compared to the input space

dimensionality, then the matrix of mutual distances or other pairwise pat-

tern evaluation methods such as kernels13 may be used to represent data

sets in a more compact way. Pȩkalska and Duin12 have developed a set of

methods based on representing each pattern according to a set of similar-

ity measurements with respect to other patterns in the data set. In this

framework the data set is embedded in a lower dimensional space called

embedding space, in which, in the presence of large-dimensional data sets,

a notable complexity reduction is achieved.

Following this approach, the data matrix is replaced by a pairwise dis-

similarity matrix D. Let X = {x1, x2, . . . , xn} be a data set of cardinality

n. We start by computing the dissimilarity matrix D:

dik = d(xi, xk) ∀i, k (1)

according to an assigned dissimilarity measure d(x, y) between points x and

y (e.g., using Euclidean distance). Applications of projection into dissimi-

larity embedding spaces to clustering are reported in7,10.

As pointed out in12, the dissimilarity measure should be a metric, since

metrics preserve the reverse of the compactness hypothesis: ”objects that

are similar in their representation are also similar in reality and belong,

thereby, to the same class”. Often non-metric distances are used as well.

In the following, we will adopt the Euclidean distance as the dissimilarity

measure.

In case of a data set with dimensionality N there is the upper bound

of N + 1 probes (or support data)12 that we can use in order to build the

dissimilarity matrix. In the case of genomic data this upper bound is often

un-realistic, since the cardinality is much lower than the dimensionality.

However, for data having some structure, it is not necessary to reach this
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upper bound for good representation. We only require that the dimension

of the embedding space is large enough to preserve the reverse of the com-

pactness hypothesis. On the other hand, if the embedding dimension n is

lower than N +1, some points could have an ambiguous representation and,

moreover, clustering could be affected by the high metrical contribution of

farthest points.

In order to avoid those problems, in6 we proposed a different kind of

embedding based on the space of memberships to fuzzy sets centered on

the probes, that we will call Membership Embedding Space (MES) .

Following this approach, a point in the embedding space will be rep-

resented by a vector containing only few non-null components (depending

on the width of the membership function), in correspondence of the closer

probes in the original feature space.

In our experiments, the memberships of fuzzy sets centered on the

probes were modeled using the following normalized function:

νik =
exp

[

−βd2

i,k

]

∑

l exp
[

−βd2

i,l

] (2)

where i = 1, . . . , n and k = 1, . . . , s. Note that the parameter β regulates

the spread of the membership function and it is related to the average

distance between the data points. For large values of β the memberships

tends more rapidly to zero than for little β. In the MES each data point

xi is represented as a row of νik.

In this paper, we propose a constructive method to obtain the set of

probes leading to optimal clustering in the MES using Simulated Annealing.

2. Simulated Annealing for Probe Selection

The proposed method for probe selection makes use of the Simulated An-

nealing (SA) technique9 that is a global search method technique derived

by Statistical Mechanics. SA is based on the work by Metropolis et al.11

aimed to simulate the behavior and small fluctuations of a system of atoms

starting from an initial configuration, by the generation of a sequence of

iterations. In the Metropolis algorithm each iteration is composed by a ran-

dom perturbation of the actual configuration and the computation of the

corresponding energy variation (∆E). If ∆E < 0 the transition is uncon-

ditionally accepted, otherwise the transition is accepted with probability

given by the Boltzmann distribution:
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P (∆E) = exp

(

−∆E

KT

)

(3)

where K is the Boltzmann constant and T the temperature.

In SA this approach is generalized to the solution of general optimization

problems9 by using an ad hoc selected cost function (generalized energy),

instead of the physical energy. SA works as a probabilistic hill-climbing

procedure searching for the global optimum of the cost function. The tem-

perature T takes the role of a control parameter of the search area (while K

is usually set to 1), and is gradually lowered until no further improvements

of the cost function are noticed. SA can work in very high-dimensional

searches, given enough computational resources.

(1) Initialize parameters (see list in Tab. 1);

(2) Initialize the binary mask g at random;

(3) Perform clustering and evaluate the generalized system energy E;

(4) do

(5) Initialize f = 0 (number of iterations), h=0 (number of success);

(a) do

(b) Increment number of iterations f ;
(c) Perturb mask g;

(d) Perform clustering and evaluate the generalized system energy E;
(e) Generate a random number rnd in the interval [0,1];

(f) if rnd < P (∆E) then

i. Accept the new g mask;
ii. Increment number of success h;

(g) endif

(h) loop until h ≤ hmin and f ≤ fmax;

(6) update T = αT ;

(7) loop until h > 0;

(8) end.

Figure 1. Simulated Annealing Probe Selection (SA-PS) Algorithm.

In Fig. 1 the proposed Simulated Annealing Probe Selection (SA-PS)

algorithm is shown. In our approach the state of the system is represented

by a binary mask g = (g1, g2, . . . , gn), where each bit gi (with i = 1, . . . , n)

corresponds to the selection (gi = 1) / deselection (gi = 0) of a probe. The

initialization of the vector mask g (Step 2) is done by generating s0 integer
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numbers with uniform distribution in the interval [1, n] and setting the

corresponding bits to 1 of g and the remaining ones to 0. At each step only

s probes are selected from the original set of n patterns. A perturbation or

move is done in the following way: (1) Chose randomly w ∈ [wmin, wmax]

and v ∈ [vmin, vmax]; (2) w bits of g set to 1 are switched to 0; (3) v bits of

g set to 0 are switched to 1.

The values wmin, wmax, vmin, vmax can be used to reduce or to increase

the variability of each perturbation.

Once a set of probes is selected, it is possible to represent each pattern

in the Membership Embedding Space (MES) and to perform clustering.

In the experiments reported in the remainder of this paper, we performed

clustering using the FCM algorithm2, but many other clustering algorithms

can be employed.

The generalized energy E is computed as a linear combination between

an assigned clustering quality measure ε and the number of selected probes

s:

E = ε + λs (4)

The clustering quality measure ε can be a function of either the cost function

associated to the clustering algorithm, a clustering validation index, or, in

the case of labeled data sets, the Representation Error (RE). RE is the

count of data points in each cluster disagreeing with the majority label in

that cluster, summed over all clusters and expressed as a percentage.

Note that the introduction of the number of selected probes s in the com-

putation of E penalizes situations in which the number of selected probes is

high. This choice of E leads to the minimization of the cardinality of the set

of probes able to achieve a good clustering quality measure. The balance

between these two terms is controlled by λ (regularization coefficient).

3. Experimental setup

The method was tested on the publicly available Leukemia data by Golub

et al.8. The Leukemia problem consists in characterizing two forms of

acute leukemia, Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid

Leukemia (AML). The original work proposed both a supervised classifi-

cation task (“class prediction”) and an unsupervised characterization task

(“class discovery”). Here we obviously focus on the latter, but we exploit

the diagnostic information on the type of leukemia to assess the goodness

of the clustering obtained.
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Table 1. Choice of parameters.

Meaning Symbol V alue

Number of random perturbations of g used to p 10000

estimate the initial value of T

Number of probes to be initially selected s0 3

Cooling parameter α 0.9

Membership width parameter β 10−6

Maximum number of iteration at each T fmax 2000

Minimum number of success for each T hmin 200

Regularization coefficient λ 10−2

Minimum number of bits to be switched wmin, vmin 1,1

Maximum number of bits to be switched wmax, vmax s, 5

Number of clusters c 3

FCM fuzziness parameter m 2

FCM trials r 10

The training data set contains 38 samples for which the expression level

of 7129 genes has been measured with the DNA microarray technique (the

interesting human genes are 6817, and the other are controls required by

the technique). These expression levels have been scaled by a factor of 100.

Of these samples, 27 are cases of ALL and 11 are cases of AML. Moreover, it

is known that the ALL class is in reality composed of two different diseases,

since they are originated from different cell lineages (either T-lineage or B-

lineage). In the data set, ALL cases are the first 27 objects and AML cases

are the last 11. Therefore, in the presented results, the object identifier can

also indicate the class (ALL if id ≤ 27, AML if larger).

In6 we presented an extended experimentation using the FCM

algorithm2 and comparing the following approaches: (1) FCM on the orig-

inal data set (RD); (2) FCM in the Distance Embedding Space (DES) with

different probe/data ratios; (3) FCM in the Membership Embedding Space

(MES) with different probe/data ratios. For each experiment we made 1000

independent trials, each of them using a different random initialization of

the membership in the FCM algorithm. In all trials probes were extracted

at random (using an uniform pdf) from the data set without replacement,

the number of clusters was set to 3, and the fuzziness parameter m of

FCM was set to 2. The last approach (3), projecting the data set into the

membership embedding space, lead to better results. Moreover, increasing

the parameter β from 10−8 to 10−6 we obtained for increasing probe/data

ratios (from .8 to .4) a shift of the optimal error ratio.
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Figure 2. RE (a) and number of probes selected (b) during a run of the SA-PS algo-
rithm.

Starting from those previous results, we ran the SA-PS algorithm in the

MES with the assumptions shown in Tab. 1. The value of the parameter β

used in the experiments (β = 10−6) was about the reciprocal of the mean

distance between patterns. As a clustering quality measure we used the

Representation Error (RE) evaluated as the best value obtained on r = 10

independent trials of FCM.

Each independent run of the SA-PS algorithm finds a different small

subset of probes leading to a clustering Representation Error equal 0. In

Fig. 2, the Representation Error and the number of selected bits of g are

plotted versus the iteration number during a run of the SA-PS algorithm,

where each iteration corresponds to a different value of temperature T . In

this case, at iterations 31, 33, 34 and 35 we obtained 4 different sets of 3

probes giving clustering RE equal 0.

4. Conclusions

Exploratory analysis of genomic data sets using unsupervised clustering

techniques, are often affected by problems due to the small cardinality and

high dimensionality of the data set. A way to alleviate those problems

lies in performing clustering in an embedding space where each data point

is represented by a vector of its memberships to fuzzy sets centered on a

set of probes selected from the data set. In previous work, this approach

has been demonstrated to lead to significant improvements with respect the
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application of clustering algorithms in the original space and in the distance

embedding space.

In this paper we have presented a constructive technique based on Simu-

lated Annealing able to select sets of probes for clustering in the embedding

space of fuzzy memberships. The application of the proposed probe selec-

tion algorithm combined with FCM to the Leukemia data by Golub et al8

leads to high quality clustering solutions.
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