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ABSTRACT

In this paper we proposed a method to face clustering
problems due to small cardinality and high dimensionality that
are typical of many genomic data. We use an embedding space
where each data point is represented by a vector containing
memberships to fuzzy sets centered on a set of probes selected
from the data base. The proposed approach leads to signifi-
cant improvements with respect the application of clustering
algorithms in the original space and in the distance embedding
space

I. INTRODUCTION

Often genomic data, such as those of gene expression
obtained from DNA microarrays, are characterized by small
cardinality and high dimensionality. Clustering methods pro-
vide an useful tool to explore those data, but the crude
application of classical clustering algorithms leads to poor
results. In fact, many clustering approaches suffer from being
applied in high-dimensional spaces, as clustering algorithms
often seek for areas where data is especially dense. However it
is often the case that the cardinality of the data sets available is
not only small with respect to the size of the data space, which
would lead to insufficient sampling of the space: sometimes
it is even less than the number of variables. This means that
the data span only a subspace within the data space. In these
conditions, it is not easy to define the concept of volumetric
density.

A further problem is again related to distances in high
space dimensionality. when space dimensionality is high or
even moderate (as low as 10-15), the distance of a point
to its farthest neighbor and to its nearest neighbor tend to
become equal [3], [1]. Therefore the evaluation of distances,
and the concept of “nearest neighbor” itself, become less and
less meaningful with growing dimension. Defining clusters on
the basis of distance requires that distances can be estimated.
For instance, one of the most common methods, c-means
(CM) clustering, is based on iteratively computing distances
and cluster averages. Increasing the data space dimensionality
may introduce a large number of suboptimal solutions (local
minima), and the nearest-neighbor criterion which is the basis
of the method may even become useless. This problem is
not avoided even when CM is modified in the direction of

incorporating fuzzy concepts, e.g. as for the FCM (Fuzzy c-
Means) algorithm [5], [2].

II. REPRESENTATIONS IN EMBEDDING SPACES

A notable complexity reduction in the presence of large-
dimensional data sets can be provided by representations in an
embedding space based on mutual distances between points.
If the cardinality of the data set is small compared to the input
space dimensionality, then the matrix of mutual distances or
other pairwise pattern evaluation methods such as kernels [10]
may be used to represent data sets in a more compact way.
Pȩkalska and Duin [9] have developed a set of methods based
on representing each pattern according to a set of similarity
measurements with respect to other patterns in the data set.

Following this approach, the data matrix is replaced by
a pairwise dissimilarity matrix D. Let X be a data set of
cardinality n.

X = {x1, x2, . . . , xn} (1)

We start by computing the dissimilarity matrix D:

dik = d(xi, xk) ∀i, k (2)

according to an assigned dissimilarity measure d(x, y) be-
tween points x and y (e.g., using Euclidean distance).

Applications of projection into dissimilarity embedding
spaces to clustering are reported in [6], [8].

As pointed out in [9], the dissimilarity measure should be a
metric, since metrics preserve the reverse of the compactness
hypothesis [9]: ”objects that are similar in their representation
are also similar in reality and belong, thereby, to the same
class”. Often non-metric distances are used as well.

Let we consider now the Euclidean distance as the dissim-
ilarity measure. In case of a data set with points in general
position and dimensionality of the original data set N there is
the upper bound of N +1 probes (or support data) that we can
use in order to build the dissimilarity matrix. This upper bound
is often un-realistic (as in the case of genomic data), but for
data having some structure we only require that the dimension
of the embedding space is large enough to preserve the reverse
of the compactness hypothesis.

Note that, if the embedding dimension n is lower than
N + 1, some points could have an ambiguous representation



and, moreover, clustering will be affected by the high metrical
contribution of farthest points.

III. MEMBERSHIP EMBEDDING SPACE

In order to avoid the problems highlighted in the previous
sections, we propose a different kind of embedding based on
the space of memberships to fuzzy sets centered on the probes.

Following this approach in the embedding space a point will
be represented by a vector containing only few non-null com-
ponents (depending on the width of the membership function),
in correspondence of the closer probes in the original feature
space.

In our experiments, the memberships of fuzzy sets centered
on the probes were modeled using the following normalized
function:

νik =
exp

[

−βd2
i,k

]

∑

l exp
[

−βd2
i,l

] (3)

Probes were extracted at random (using an uniform pdf)
from the data set without replacement.

Note that, using this membership function, the parameter
β regulates the spread of the membership function and can
be related to the average distance between the data points. Its
value must be selected in order to improve the overall result
(model selection).

In the Membership Embedding Space each data point xi is
represented as a row of νik:

xi = (νi1, νi2, . . . , νin) (4)

IV. FUZZY C-MEANS ALGORITHM

Let we consider the following fuzzy C-Means Functional:

Jm(U, Y ) =

n
∑

i=1

c
∑

k=1

(uik)mEk(xi) (5)

where

• X = {x1, x2, . . . , xn} is a data set containing n unla-
beled sample points;

• Y = {y1, y2, . . . , yc} is the set of the centers of clusters;
• Ek(xi) is a dissimilarity measure (distance or cost)

between data point xi and the center yk of a specific
cluster k (e.g., Ek(xi) = ‖xi − yk‖

2);
• U = [uik] is the c×n fuzzy c-partition matrix, containing

the membership values of all samples to all clusters;
• m ∈ (1,∞) is the fuzziness control parameter.

The clustering problem can be formulated as the minimiza-
tion of Jm with respect to Y , under the normalization

c
∑

k=1

uik = 1. (6)

The Fuzzy C-Means (FCM) algorithm proposed by
Bezdek [2] starts with random initialization of the fuzzy c-
partition matrix U (or of the centroids yk) and then iterates

until convergence the following Eq.s 7 and 8:

yk =

∑n

i=1(uik)mxi
∑n

i=1(uik)m
for all k, (7)

uik =











(

∑c

l=1
Ek(xi)
El(xi)

)
2

1−m

if Ek(xi) > 0 ∀k, i;

1 if Ek(xi) = 0 and uil = 0 ∀ l 6= k

(8)

It is worth to underline that if one chooses m = 1 the fuzzy
C-Means Functional Jm (Eq. (5)) reduces to the expectation
of the C-Means global error (that we shall denote as < E >):

< E >=

n
∑

i=1

c
∑

k=1

uikEk(xi), (9)

and the FCM becomes the classic crisp C-Means algorithm
[4].

V. EXPERIMENTAL SETUP

The method was tested on the publicly available Leukemia
data by Golub et al. [7]. The Leukemia problem consists
in characterizing two forms of acute leukemia, Acute Lym-
phoblastic Leukemia (ALL) and Acute Mieloid Leukemia
(AML). The original work proposed both a supervised classifi-
cation task (“class prediction”) and an unsupervised character-
ization task (“class discovery”). Here we obviously focus on
the latter, but we exploit the diagnostic information on the type
of leukemia to assess the goodness of the clustering obtained.

The training data set contains 38 samples for which the
expression level of 7129 genes has been measured with the
DNA microarray technique (the interesting human genes are
6817, and the other are controls required by the technique).
These expression levels have been scaled by a factor of 100.
Of these samples, 27 are cases of ALL and 11 are cases of
AML. Moreover, it is known that the ALL class is in reality
composed of two different diseases, since they are originated
from different cell lineages (either T-lineage or B-lineage). In
the data set, ALL cases are the first 27 objects and AML cases
are the last 11. Therefore, in the presented results, the object
identifier can also indicate the class (ALL if id ≤ 27, AML if
larger).

We have performed an extended experimentation comparing
the following approaches:

1) FCM on the original data set (RD);
2) FCM in the Distance Embedding Space (DES) with

different probe/data ratios;
3) FCM in the Membership Embedding Space (MES) with

different probe/data ratios.

Each experiment corresponds to 1000 independent trials,
each of them using a different random initialization of the
membership in the FCM algorithm.

In all trials, the number of clusters was set to 3, and the
fuzziness parameter m of FCM was set to 2.
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Fig. 1. Error rate for the tested methods.

VI. RESULTS

In Fig. 1 we show the error rate versus the probe/data ratio
averaged over 1000 independent trials for each experimental
point.

The first approach (standard FCM on original data) obtains
a mean error rate of 17.2%.

The projection into the distance embedding space (second
approach) leads to worse results than the previous one: the
error rate is more than 25.0% for all probe/data ratios in the
range [.1, 1.0].

The last approach, projecting the data set into the member-
ship embedding space, leads to better results.

Moreover, increasing the parameter β from 10−8 to 10−6

we obtain for increasing probe/data ratios (from .8 to .4) the
shift of the optimal error ratio.

The average distance between the data points is 106.
A reasonable choice is then to take β = 10−8 that is about

one hundred times the inverse of the average distance between
the data points.

The membership vectors (the rows of the νik matrix) have
a number of non null components related to the spread of
the membership function. The minimum of the error rate is
achieved for situations for which we have a good compromise
between the number of probes and the width of the member-
ship function.

A comparison of the best mean error rate for the tested
methods is reported in Tab. I.

Finally we made model selection on the value of the
fuzziness m calculating the mean error over 1000 trials.

In fig. 2 we can see that the best value for the m parameter
of FCM algorithm is m = 1.8 for which we obtain an error
rate equal to 8.8%. We can see that for m > 2 we obtain a
rapid increasing in the error rate. So increasing the fuzziness
when the membership function are wider (for low values of
β), leads to worse situation in terms of local minima for FCM.
On the other hand for low values of m, FCM tends to behave
like C-Means algorithm and in this case performs worse than
FCM.

VII. CONCLUSIONS

Clustering methods provide an useful tool to explore ge-
nomic data, but often they get poor results due to small
cardinality and high dimensionality of data sets.

In this paper we proposed a method to face those clustering
problems using an embedding space where each data point is
represented by a vector containing memberships to fuzzy sets
centered on a set of probes selected from the data base.

We tested out approach on the data by Golub et al [7].
The proposed approach leads to significant improvements with



Method β Mean error rate probe/data ratio
RD - 17.2 /
DES - 24.9 0.1
MES 10

−6 11.1 0.4
MES 5 · 10−7 10.9 0.5
MES 10

−7 9.5 0.7
MES 10

−8 9.1 0.8

TABLE I

COMPARISON OF THE BEST MEAN ERROR RATE FOR THE TESTED METHODS: FCM ON ROW DATA (RD), FCM ON THE DISTANCE EMBEDDING SPACE

(DES), FCM ON THE MEMBERSHIP EMBEDDING SPACE (MES)
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Fig. 2. The behavior of the best error rate (achieved with β = 10
−8, probe/data ratio = 0.8) vs the fuzziness parameter m.

respect the application of clustering algorithms in the original
space and in the distance embedding space.
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