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Abstract. The input selection problem is approached in a mixed data set framework. Due to
the mixed variable types, a stochastic optimization algorithm is required. The proposed tech-
nique exploits Simulated Annealing to provide a wrapper-type method, for which experimental
evaluation of the quality of variable subsets is a part of the optimization process. Estimation of
variable relevance is also provided, based on statistics about the history of each variable in the
subsets. The method is demonstrated on a medical diagnosis problem having mixed variables,
and comparative experimental results are presented.

1 Introduction

High dimensional data sets often contain redundant subsets of inputs (attributes). The input
selection problem concerns the search for small relevant subsets of inputs. Input selection
procedures (10) can alleviate the curse of dimensionality problem (2) arising in the usual
situation of data sets characterized by high dimensionality and low cardinality. Moreover,
they can improve the knowledge on the problem, e.g., in bioinformatics problems such as
gene expression data from DNA microarrays they allow gene selection (i.e. to find the most
relevant genes expresses in relation to a pathology), while, with sets of text documents, they
can find the most relevant key words.

Input selection algorithms can be broadly divided into two categories (3; 13): filters and
wrappers. Filters evaluate the relevance of each input (subset) using the data set alone, while
wrappers invoke a learning algorithm to evaluate the quality of each input (subset). Both
approaches, filters and wrappers, usually involve combinatorial searches (often only local)
through the space of possible input subsets. Wrappers are usually more computationally de-
manding, but they can be superior in accuracy when compared with filters.

The strategy for variable selection, and the underlying assumptions about the input vari-
ables themselves, is also a design choice. Variables can be selected as a subset with aggregate
discriminative power (22; 17), or ranked for their individual relevance (24; 9). In the latter
case variables are assumed to be weakly correlated, so that their individual importance can
be unambiguously assessed. In the former case, it is assumed that all possible interaction pat-
terns can occur, and this forces a much more complex search space. However, ranks can also
be used as an indication to evaluate a subset selection process, in an in-between approach.

The definition of relevance itself can be subject to variations (13), and the goal of the
procedure can also be different, with some approaches aiming at comprehensive set (find all
significant variables (11; 15; 17)) and others at explanatory sets (this is generally the case with
all input selection tasks, where one wants to identify the most important inputs only, as, e.g.,



in (8)). Again, an in-between approach is possible (24) when an explicit cost function includes
both performance and complexity (number of variables) terms. In this case, a continuum of
possible balances is provided by the relative weighting of these terms.

To summarize, the input selection problem is here stated as the problem of selecting small
subsets of input variables with good explanatory properties improving the knowledge on the
problem, and possibly achieving high discriminating power.

These hypotheses form the basis of the method we are presenting in this paper, which
is based on optimizing the combination of performance and complexity costs. We propose
a wrapper approach to input selection in classification that is able to select small subsets
of inputs for data sets containing either numerical and categorical data. The combinatorial
search is performed using the Simulated Annealing (SA) method (12) which is a global search
method technique derived from Statistical Mechanics and is based on the Metropolis algo-
rithm (16). In principle, any learning algorithms can be chosen depending on the learning task
and the type of data base. For dealing with mixed-type variables, we adopt a classification
tree.

In the next section, we present the Simulated Annealing technique and describe how we
applied it to input selection problem. In Sect. 3, some measures of the input relevance are
illustrated. The experimental validation of the proposed input selection method and some
heuristics for its speeding-up are shown in Sect. 4. Sect. 5 concerns the discussion and con-
clusions.

2 SA for gene selection

Simulated Annealing (SA) technique (12) is a global search method technique derived from
Statistical Mechanics. SA is based on the Metropolis algorithm (16) proposed to simulate the
behavior and small fluctuations of a system of atoms starting from an initial configuration,
by the generation of a sequence of iterations. In the Metropolis algorithm each iteration is
composed by a random perturbation of the actual configuration and the computation of the
corresponding energy variation (∆E). If ∆E < 0 the transition is unconditionally accepted,
otherwise the transition is accepted with probability given by the Boltzmann distribution:

P(∆E) = e−∆E/KT (1)

where K is the Boltzmann constant and T the temperature.
In SA this approach is generalized to the solution of general optimization problems (12;

18) by using an ad hoc selected cost function (generalized energy) instead of the physical
energy. SA works as a probabilistic hill-climbing procedure searching for the global optimum
of the cost function (21). The temperature T takes the role of a control parameter of the search
area (while K is usually set to 1), and is gradually lowered until no further improvements of
the cost function are noticed. SA can work in very high-dimensional searches, given enough
computational resources.

In this paper we apply SA to the input selection problem with the aim of aggregating an
ideally minimal subset of inputs with strong discriminative power. The approach we adopted
is to constrain the search space to subsets of variables, and to evaluate a compound cost func-
tion combining performance and complexity scores, as previously indicated. The method is
described in the following, whereas in Tab. 1 a step-by-step outline of the proposed Simulated
Annealing Input Selection (SAIS) algorithm is presented.



Table 1. Simulated Annealing Input Selection (SAIS) algorithm.

1. Initialize the parameters;
2. Initialize the binary mask g and the temperature T ;
3. Train and test the classifier and evaluate the generalized system energy E;
4. do
5. Initialize f = 0 (number of iterations), h=0 (number of success);

(a) do
(b) Increment the number of iterations f ;
(c) Perturb the binary mask g;
(d) Train and test the classifier and evaluate the generalized system energy E;
(e) Generate a random number rnd in the interval [0,1];
(f) if rnd < P(∆E) then

i. Accept the new binary mask g;
ii. Increment the number of success h;

(g) endif
(h) loop while h ≤ hmin and f ≤ fmax;

6. update T = αT ;
7. loop while h > 0;
8. end.

Let d be the dimensionality of the input space and g = (g1,g2, . . . ,gd) be a binary mask
representing the system state (configuration), where each bit gi (with i = 1, . . . ,d) corresponds
to either selection (gi = 1) or deselection (gi = 0) of an input. The number of bits of g set to 1
is denoted by s (i.e., s ≡ |g| =

∑d
i=1 gi) .

At Steps 1, 3, and 5, the classifier is trained in the sub-space of selected inputs as de-
fined by the vector mask g and the Classification Error ε is evaluated using a cross-validation
technique (k-fold cross-validation (23)). The generalized energy E is defined as a linear com-
bination of ε and of the number of selected inputs s:

E = ε+λ s (2)

Note that the introduction of the number of selected inputs s in the computation of E penalizes
situations in which the number of selected inputs is too high. The trade-off between size of
input space and accuracy is controlled by the parameter λ (penalization coefficient). If λ = 0
we favor solutions with low classification error ε, without taking the dimensionality of the
input space into account, while high values of λ can led to solutions with few input variables,
but with a large classification error.

Moreover, due to the redundancy of groups of input variables (14) and to curse of dimen-
sionality problem (2), often a good tuning of the penalization coefficient can allow us to find
a very small input space supporting a small classification error.

As suggested in (18), at Step 2 the initial temperature T is obtained as the mean variation
of generalized energy (∆E) over an assigned number p of random initializations of g. The
vector mask g is initialized by randomly setting s0 bits to 1 and leaving the remaining d− s0

to 0.
A perturbation or move (Step 5c) is obtained in the following way: w bits of g set to 1

are switched to 0, and v bits of g set to 0 are switched to 1, where the values of w and v are
extracted with uniform distributions, respectively in the (integer) intervals [wmin,wmax] and
[vmin,vmax].

In the experiment described in this paper, the w bits of g set to 1 to be switched to 0 and
the v bits of g set to 0 to be switched to 1, at the move step of SAIS (Step5c), are selected
using a uniform distribution in the (integer) interval [1, s], i.e., with probability

pi =
1
s

(Uniform Selection), (3)



Table 2. Parameters of SAIS algorithm and their values selected for the experiments presented in Sect.s 4 and 5.

Symbol Meaning Values
s0 Number of inputs initially selected 5
p Number of initializations of g for 10000

estimating the initial value of T
[wmin,wmax] Interval for w [1, s]
[vmin,vmax] Interval for v [1,d− s]
λ Penalization coefficient 10−4, 10−2

fmax Maximum number of iterations 100
for each T

hmin Minimum number of successes 30
for each T

α Cooling parameter 0.9
γ Aging constant 0.98

and, similarly, the v bits of g set to 0 to be switched to 1, are selected using an uniform
distribution in the interval [1,d− s], i.e., with probability

pi =
1

d− s
(Uniform Selection). (4)

In Tab. 2, the list of the parameters to be initialized at Step 1 is presented together with
the values selected for the experiment that we will describe in Sect. 4. Namely, s0 and p are
used at Step 2 for the initialization of g and T ; [wmin,wmax] and [vmin,vmax] constrain the size
of move (Step 5c); λ is used for computing the Generalization Energy E (Steps 3 and 5d);
fmax, hmin, α are used for the SA scheduling (Steps 5 and 6); γ is used for estimating the input
relevances (see Sect. 3).

As already stated, the SAIS algorithm aims to find a small subset of variables, with high
discriminant capability, by exploiting the redundancy of subsets of variables and penalizing
solutions with high input dimensionality. To this aim s0 should be selected of the order of the
estimated input dimensionality, while intervals [wmin,wmax] and [vmin,vmax], regulating the
variability of perturbation, can be changed during the algorithm to favor solutions with small
input space.

SAIS is a computationally intensive algorithm, but it is able to work with both numerical
and categorical inputs. It is also worth noting that, due to the random nature of SA, each time
we run the SAIS algorithm we can find a new subset of s inputs from the original d.

3 Evaluating input relevance

As noticed in Sect. 1, many definitions of input relevance have been presented in the litera-
ture, with different meaning, motivation, and depending on the numerical or categorical type
of inputs (13; 11; 15; 17; 8; 24). Here we present some new definitions that apply both to
numerical and categorical variables.

SA is an algorithm implementing a stochastic time-varying dynamical system where the
state vector evolves in the direction of the minima of the generalized energy function. In our
case during the evolution of the SAIS algorithm, the bits set in the state vector g will be
related to the more relevant inputs with increasing probability.

The inputs which are more relevant for classification should appear soon in the set of bits
of g set to 1 and will be as more frequent as the temperature decreases. In order to estimate
the relevance of inputs, we can include in SAIS an aging algorithm. To this end, we can define
a vector r = (r1,r2, . . . ,rd). At Step 1 of the SAIS algorithm, we set ri = 0 ∀i. Every time a



Table 3. Inputs selected in each run of the SAIS algorithm on Cleve data set using as penalization parameter λ = 10−2 in the
generalized energy. For each run we show also ε (classification error) and m (number of misclassified instances).

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
ε; m 0.18; 55 0.18; 55 0.18; 54 0.18; 55 0.18; 55 0.15; 45 0.18; 55 0.18; 54 0.18; 55 0.18; 55
Input 1 ncol ncol ncol ncol ncol ncol ncol ncol ncol thal
Input 2 thal chest ches thal thal thal thal chest chest ncol
Input 3 chest thal induced chest chest induced chest induced thal chest
Input 4 – – oldpeak – – Sex – oldpeak – –
Input 5 – – – – – Age – – – –
Input 6 – – – – – bps – – – –

Table 4. Inputs selected in each run of the SAIS algorithm on Cleve data set using as penalization parameter λ = 10−4 in the
generalized energy. For each run we show also ε (classification error) and m (number of misclassified instances).

Run 11 Run 12 Run 13 Run 14 Run 15 Run 16 Run 17 Run 18 Run 19 Run 20
ε; m 0.16; 48 0.15; 44 0.14; 42 0.17; 50 0.16; 49 0.14; 42 0.15; 44 0.15; 45 0.14; 42 0.15; 44
Input 1 ncol ncol ncol ncol ncol ncol ncol ncol ncol ncol
Input 2 induced thal Age induced induced induced thal thal induced thal
Input 3 Sex Sex induced Sex thal Sex induced induced thal induced
Input 4 bps induced thal bps ecg thal Sex ecg Sex Sex
Input 5 thal Age Sex slope Sex Age ecg fbs Age ecg
Input 6 Age bps bps – oldpeak bps Age Sex bps bps
Input 7 chol ecg – – Age – bps bps – Age
Input 8 – – – – bps – – Age – –

perturbation is accepted according to the Boltzmann distribution (Step 5.f), we update r as
follows:

r = γr+g (5)

where γ is the aging constant chosen in the (real) interval [0,1].
At the end of the SAIS the vector r measures how long each input has been selected in

the last few successful moves of the algorithm. We give to vector r an interpretation as vector
of input relevances (aged relevance).

We also introduce the concepts of voted relevance and of soft-voted relevance defined as
the sums of the input masks g and of vectors r obtained at the ends of an assigned number m
of SAIS runs, i.e., as, respectively,

∑
j g j and

∑
j r j (with j = 1,2, ...,m).

It is worth noting that none of those relevance notions are exploited for making decisions
in the SAIS algorithm.

4 Experimental validation of SAIS

We report here an experimental validation of SAIS performed on the Cleve mixed data set
which is modified from the Detrano’s heart disease data set which contains 76 clinic attributes
for each patient. Cleve data set is composed by 303 instances (patients) with six categorical
and eight numerical inputs3. SAIS algorithm has been implemented in R (20) under the Linux
operating system.

We focus on the problem of finding a set of features able to distinguish between health
and disease.

We chose this data base, as it has been well studied in the literature and can allow us to
make a deeply comparison on a mixed data set of the performances of SAIS with those of
previously studied models.

3 http://www.ics.uci.edu/ mlearn/databases/heart-disease/cleve.mod.
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Figure 1. SAIS on the Cleve data set. Classification error ε and Number of selected inputs s versus the iteration number for
Run 1.

In all the runs of SAIS on the Cleve data set, the classification error ε has been evaluated
using 10-fold cross-validation. In Tab.s 3 and 4 we show the results of 20 independent runs of
SAIS using the assumptions in Tab. 2 and a RPART classification tree (4; 19) as a classifier.
The classification tree has been employed here as it is able to handle both numerical and
categorical inputs.

In the runs of SAIS shown in Tab. 3 we chose a penalization coefficient λ = 10−2, while
in those of Tab. 4 we used λ = 10−4. In both tables the inputs selected are ranked following
the valuation of their aged relevance.

Using the value of the penalization coefficient λ= 10−2, we obtained solutions with higher
classification error ε and few selected inputs. With λ= 10−4, we obtained solutions with better
accuracy and higher dimension of the selected input space. In the former case the first inputs,
ranked using both soft voted and voted relevances, were: ncol (number of vessels colored),
thal (norm, fixed, rever), chest (chest pain type, namely: angina, abnang, notang, asympt),
and induced (exercise induced angina). In the latter case the first inputs, ranked using voted
relevance, were: sex, induced, ncol, and ecg (resting ecg, namely: norm, abn, hyper); while,
ranking according to soft voted relevance, the first inputs were: ncol, chest, induced, and thal.

In Fig. 1(a) and Fig. 1(b) the behavior of the classification error ε and the number of
selected inputs are plotted versus the iteration number of the algorithm in run number 11.
Each iteration corresponds to a different value of temperature T (i.e. Step 5 and Step 6 in
Tab. 1).

5 Discussion and Conclusions

In this paper we have described SAIS, a variable subset selection method of the wrapper
type, based on Simulated Annealing (12), and therefore implementing a global search strat-
egy. SAIS can work either with numerical or categorical inputs depending on the associated
learning machine. The output of the SAIS algorithm is a relevant subset of inputs, where rele-
vance is experimentally assessed by using a supervised classifier during the evaluation phase



of the algorithm. In addition we provided some estimates of individual relevances of inputs
within the output subset.

On the Cleve mixed data set, the proposed input selection method finds minimal subsets of
features with good accuracy in classification and giving new insights on the medical problem.
Moreover, in (7) SAIS has been tested on two bioinformatics data sets, namely on the 7129-
dimensional Leukemia data set by Golub et al. (8) and on the 2000-dimensional Colon data
set by Alon et al. (1). On both data sets it finds solutions characterized by a small number
of selected genes and by good discriminant capability (null classification error on Leukemia
data set).

The results can be obtained semi-automatically with few parameter selection iterations,
and the method performs classification and input selection and ranking jointly.

SAIS can employ each kind of learning machine, included clustering algorithms. In (6),
e.g., we run SAIS method associated to Fuzzy c-means on a Leukemia data base obtaining
minimal sets of inputs able to perform unsupervised clustering with null representation error.
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