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Abstract

Kernel density estimation is a popular and widely used non-parametric method
for data-driven density estimation. Its appeal lies in its simplicity and ease
of implementation, as well as its strong asymptotic results regarding its con-
vergence to the true data distribution. However, a major difficulty is the
setting of the bandwidth, particularly in high dimensions and with limited
amount of data. An approximate Bayesian method is proposed, based on
the Expectation-Propagation algorithm with a likelihood obtained from a
leave-one-out cross validation approach. The proposed method yields an it-
erative procedure to approximate the posterior distribution of the inverse
bandwidth. The approximate posterior can be used to estimate the model
evidence for selecting the structure of the bandwidth and approach online
learning. Extensive experimental validation shows that the proposed method
is competitive in terms of performance with state-of-the-art plug-in methods.

Keywords: kernel density estimation, Bayesian inference, expectation
propagation, multivariate analysis

1. Introduction

The estimation of a probability density function from a data set is an
important statistical problem as it can provide useful insights on the prop-
erties of the system from which data are observed, and can form the basis
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for supervised and unsupervised learning steps. Non-parametric approaches
make no assumption about the form of the density to be estimated, and the
aim is to obtain an empirical estimate from the data which can provably con-
verge (in a suitable sense) to the true data generating density in the limit of
infinite sample size. A popular and widely used technique for non-parametric
density estimation is Kernel Density Estimation (KDE) (Silverman, 1986).
In KDE a base (also known as kernel) function K(x|λ) parametrized by a
shape parameter λ is selected, and the density is estimated as a superposition
of kernel functions centered at the data points:

p̂(x) =
1

n

n
∑

j=1

K(x − xj|λ), (1)

where X = {x1, . . . ,xn} is a set of observed data points in R
d. The kernel

function is a proper density function, thus guaranteeing that the estimate is
an acceptable probability density. A common choice for the kernel function
is the Gaussian kernel,

K(x|λ) =

(

λ

2π

)d/2

exp

(

−
λ

2
‖x‖2

)

.

In this case, the parameter λ is the precision of the Gaussian kernel and is the
inverse of the square of the so called bandwidth σ, namely λ = 1/σ2. It can be
shown that the KDE estimate of a probability density function converges, in
terms of integrated squared error, to the true density in the limit of infinite
data, while simultaneously shrinking the bandwidth (Silverman, 1986).

In practical situations, when the amount of data is finite, the bandwidth is
a parameter that needs to be properly tuned to guarantee a good performance
(Jones, 1991; Hazelton and Turlach, 2007). Several approaches have been
proposed to estimate it (Cao et al., 1994; Jones et al., 1996; Silverman, 1986).
The quality of a bandwidth selector is usually evaluated on the basis of the
Integrated Square Error (ISE)

ISE =

∫

Rd

[p(x) − p̂(x)]2 dx (2)

or its expectation (MISE). The direct optimization of any of these functions,
or an asymptotic expansion of the MISE, requires some knowledge about the
true density, that is usually unknown. Many bandwidth selectors are there-
fore designed to optimize them by plugging in some estimates of the missing
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characteristics of the true density (Loader, 1999; Sheather and Jones, 1991;
Terrell, 1990; Duong and Hazelton, 2005; Chiu, 1991; Hall, 1982; Jones and
Henderson, 2009). Some probabilistic approaches based on a maximum like-
lihood (ML) approach have been proposed, where the probability of the data
itself under the KDE estimate (1) is used as the likelihood. To deal with
the unbounded likelihood when σ approaches zero, cross-validated or penal-
ized forms of the likelihood have been considered (Silverman, 1986; Zhang
et al., 2006). In Zhang et al. (2006, 2009), the cross-validated likelihood is
used along with a prior on the bandwidth to sample from its posterior dis-
tribution using Markov chain Monte Carlo (MCMC) methods. It is worth
noting that this approach allows to deal with multivariate data in the same
way it does with univariate data, as it is a likelihood-based approach. Other
Bayesian approaches can be found in Brewer (2000), where an approach to
Bayesian local smoothing for univariate data is considered; in particular, the
bandwidth is locally adjusted to reflect the local density of the data. Also,
Gangopadhyay and Cheung (2002) and de Lima and Atuncar (2011) provide
closed form expressions for posterior densities over the bandwidth for uni-
variate and multivariate data respectively, but the likelihood used in these
approaches is not the probability of the observed data given the bandwidth.
Note that in the particular case of censored data the inference of the band-
width can be done in closed form (Kulasekera and Padgett, 2006). Also,
recent advances in multivariate KDE can be found in Tran et al. (2006);
Duong et al. (2008).

In this paper, we propose an approximate Bayesian approach to the esti-
mation of the bandwidth for KDE, where the kernel function is the Gaussian
density. We place a prior distribution on the kernel precision (inverse band-
width), and obtain a joint likelihood by combining the prior with an approx-
imate likelihood obtained from leave-one-out cross-validation (van der Laan
et al., 2004; Zhang et al., 2006). This yields a posterior distribution over the
inverse bandwidth up to a proportionality constant. We propose a method
to approximate the posterior that directly interprets the joint likelihood as
a cavity distribution, leading to a simple application of the Expectation-
Propagation (EP) algorithm (Minka, 2001; Opper and Winther, 2000).

The motivation for a Bayesian approach is that it has many useful prop-
erties. In particular, obtaining a posterior distribution over the bandwidth
allows to quantify the uncertainty on the estimate of the bandwidth, thus
allowing to consider different scenarios when analyzing data. If KDE is em-
ployed as the first step of a supervised/unsupervised learning problem, such
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as, e.g., Filippone et al. (2010); Rinaldo and Wasserman (2010), then a dis-
tribution of decision functions can be obtained. Also, online learning can
be approached quite naturally, as the posterior can be used as a prior when
new data are observed. Finally, this provides a principled way to select the
covariance structure for the bandwidth, namely full, diagonal, or isotropic, as
the model evidence can be used to estimate Bayes factors (Kass and Raftery,
1995).

Although these are main reasons why one would consider a Bayesian ap-
proach, most of these aspects have been overlooked in previous studies on
KDE (Zhang et al., 2006, 2009). One of the contributions of this paper is
to study, through extensive experiments, how the Bayesian approach can be
used to select the structure of the bandwidth in multivariate KDE and per-
form online learning. The main contribution is to present an approximate
method to infer the bandwidth. In general, it can be argued that approxi-
mate methods could lead to very poor approximations of the posterior distri-
bution, especially in cases of multimodalities or inadequate assumptions on
the approximating distribution. MCMC methods would therefore seem to
be more flexible. However, especially in multivariate cases, the application
of MCMC methods can be rather challenging. Designing efficient MCMC
methods for sampling multivariate variables, ensuring good independence
between samples and with a reasonable computational cost requires some
fine tuning. For example, in the Metropolis-Hastings method (Metropolis
et al., 1953; Hastings, 1970) it is required to specify the parameters of a
proposal distribution, or in Hamiltonian-based Monte Carlo methods (Neal,
1993) the mass matrix. Also, assessing the convergence of MCMC methods
or deal with multimodal posterior densities usually involves the running of
multiple chains, as discussed, e.g., in Gelman and Rubin (1992); Kass et al.
(1998); Calderhead and Girolami (2009). Clearly, these considerations imply
a computational overhead that has to be accounted for in the design of an
inference method. In the inference of the bandwidth in KDE, we found that
the proposed approximate method yields a posterior density that is very close
to the true one. Given the speed of the deterministic approximation scheme
compared to MCMC methods, we propose it as an efficient alternative to in-
fer the bandwidth in multivariate KDE. The advantages of the deterministic
approximation through EP are that convergence can be monitored during
the optimization and that the model evidence is readily available at the end
of the algorithm. MCMC estimates of the model evidence, instead, could be
rather challenging as discussed e.g., in Friel and Pettitt (2008) and Skilling
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(2006).
The paper is organized as follows. In Section 2 we introduce the ideas

underlying the Bayesian approach to multivariate KDE with a full preci-
sion matrix, and in Section 3 we present the approximation of the posterior
based on EP. In Section 4 we illustrate how to extend our method to online
learning scenarios, while in Section 5 we give some details of implementation
along with a discussion on the use of simpler structure for the precision ma-
trix. Section 6 reports an extensive experimental comparison showing the
performance of the proposed method, and Section 7 concludes the paper.
In Appendix A, we detail the derivation of the special cases of diagonal and
isotropic precision matrices.

2. Bayesian KDE

We consider multivariate Gaussian kernels

K(x|Λ) =
|Λ|1/2

(2π)d/2
exp

(

−
1

2
xTΛx

)

,

where Λ is the precision matrix (inverse bandwidth) capturing the correla-
tions among dimensions. The estimated pdf in x ∈ R

d is therefore

p̂(x) =
1

n

n
∑

j=1

K(x − xj|Λ) =
1

n

n
∑

j=1

N (x|xj,Λ) , (3)

where N (x|xj,Λ) denotes a normal distribution with mean xj and precision
matrix Λ. Assuming i.i.d. data, one can define the log-likelihood:

L = log[p(X|Λ,MX)] =
n
∑

i=1

log

[

n
∑

j=1

N (xi|xj,Λ)

]

+ const.,

where MX denotes the fact that the model is based on placing kernels at the
data points in X. It can be easily seen, however, that L is unbounded in Λ,
achieving infinite value when the determinant of Λ goes to infinity.

In order to overcome this limitation, while retaining a ML approach, it has
been proposed to maximize a cross-validated type of likelihood (Silverman,
1986)

Lcv = log[p(X|Λ,MX)] =
n
∑

i=1

log

[

n
∑

j 6=i,j=1

N (xi|xj,Λ)

]

+ const.. (4)
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Provided xj 6= xi ∀i, j, Lcv is a well behaved function of Λ and will be used
in the remainder of this paper as the likelihood in the inference problem.
Note that the definition in (4) does not define a proper joint probability
distribution over X, as it is a mixture of degenerate distributions. In the
case of ties instead, namely when xj = xi for some i 6= j, it is possible
to use ideas from Żychaluk and Patil (2008), where theoretical studies are
reported on the asymptotics of estimates of the bandwidth based on the
cross-validation method for minimizing the ISE (Hall, 1982).

To cast the problem in a Bayesian framework, we need to place a prior
over the precision matrix Λ. To exploit conjugacy with the Gaussian kernel,
we will use a Wishart prior

p (Λ) =W(Λ|Λ0, ν0)

∝|Λ|
ν0
2
− d+1

2 exp

(

−
1

2
Tr(Λ−1

0 Λ)

)

.
(5)

In absence of prior knowledge about the bandwidth to use, we can use an

uninformative improper Wishart prior p (Λ) = |Λ|−
d+1
2 or a reasonably flat

Wishart prior, for instance, by setting ν0 = d+ 1 and Λ0 = βI with large β.
The posterior is then

p(Λ|X,MX) ∝ p(X|Λ,MX)p(Λ),

and the so called model evidence is

p(X|MX) =

∫

p(X|Λ,MX)p(Λ)dΛ.

The model evidence gives the probability of the observed data given the
model assumption only, as the parameters are integrated out, and can there-
fore be used for model selection. Given the complex analytical form of the
likelihood, exact inference of Λ is intractable. In the next section we will
show an approximation method based on EP.

The approximate inference process leads to a deterministic approximation
of the posterior distribution over Λ and therefore allows to estimate the model
evidence. Model comparison can be done using the so called Bayes factor

(Kass and Raftery, 1995) that is computed as the ratio between the evidence
for the two models to compare. In Bayesian KDE, we can use this idea to
compare different multivariate structures of the bandwidth, thus having a
principled way of choosing whether simpler structures can be used in place
of more complicated ones.
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3. Expectation Propagation Estimation of the Bandwidth

3.1. Expectation Propagation

We briefly review here the EP algorithm (Minka, 2001; Opper and Winther,
2000); for more details see e.g. Bishop (2007). Consider a data modeling
problem, where the observed data is denoted by X and the set of model
parameters is θ ∈ Θ. EP aims at finding an approximation q(θ) to the pos-
terior p(θ|X) by minimizing of the Kullback-Leibler divergence between the
posterior and the approximating distribution:

KL[p(θ|X)||q(θ)] =

∫

Θ

log

(

p(θ|X)

q(θ)

)

p(θ|X)dθ.

It can be easily shown that this is equivalent to matching the moments be-
tween the two distributions.

Generally, the direct computation of the moments of the posterior is in-
tractable, and an iterative procedure for matching the moments is necessary.
In the case of i.i.d. data, the posterior distribution over the parameters
factorizes as

p(θ|X) =
1

Z

n
∏

i=0

fi(θ),

where f0(θ) is the prior and fi(θ) is the likelihood of the i-th observation.
Let the approximating distribution q(θ) factorize as a product of tractable
distributions:

q(θ) =
1

Z̃

n
∏

i=0

f̃i(θ).

The goal is to optimize

KL

[

1

Z

n
∏

i=0

fi(θ)

∥

∥

∥

∥

∥

1

Z̃

n
∏

i=0

f̃i(θ)

]

with respect to the approximating distributions f̃i. In order to do that, we
start from the so called cavity distribution, where we remove the j-th factor
from q(θ)

q\j(θ) ∝
n
∏

i6=j,i=0

f̃i(θ),
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and match the moments of the normalized version of fj(θ)q
\j(θ) and qnew(θ).

Once we have a revised version of qnew(θ), we can obtain the updated version
of f̃j(θ) as

f̃ ′
j(θ) ∝

qnew(θ)

q\j(θ)
.

Starting from an initialization of the factors f̃i(θ), we can update them in turn
until convergence (Minka, 2001). In many occasions, EP has been used to ap-
proximate the posterior using a Gaussian distribution (Opper and Winther,
2000). In our problem, since the bandwidth is constrained to be positive
definite, such an approximation would not be acceptable. Therefore, we will
model the factors as Wishart distributions.

Matching the moments of Wishart distributions would require matching
the normalization constant, the mean, and the expectation of log |Λ|. The
resulting equation for log |Λ|, however, cannot be solved analytically and
requires an iterative optimization method. For simplicity, we will therefore
pursue an approximation of the moment of second order (variance) based on
the squared Frobenius norm

‖Λ‖2
F = Tr(ΛΛT) =

∑

ij

(Λij)
2.

3.2. EP approximation of the posterior of the bandwidth of the kernel

In this section, we present the application of the EP framework for the ap-
proximation of the posterior distribution over the precision. In order to keep
the notation uncluttered, we define the unnormalized Wishart distribution
as

W̃(Λ|Λi, νi) = |Λ|
νi
2
− d+1

2 exp

[

−
1

2
Tr(Λ−1

i Λ)

]

.

The normalized Wishart distribution, instead, is defined as

W(Λ|Λi, νi) = BW(Λi, νi)W̃(Λ|Λi, νi),

with

BW(Λi, νi)
−1 = 2

νid

2 |Λi|
νi
2 π

d(d−1)
4

d
∏

i=1

Γ

(

νi + 1 − i

2

)

.

The true posterior is

p(Λ|X,MX) ∝
n
∏

i=0

fi(Λ),
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where f0(Λ) = W(Λ|Λ0, ν0) denotes the prior, and the components fj(Λ)
read:

fj(Λ) = p(xj|Λ,MX) =
1

n− 1

n
∑

r 6=j,r=1

N (xj|xr,Λ).

We propose to approximate the posterior over Λ as

q(Λ) =
n
∏

i=0

f̃i(Λ).

We consider an approximating form in which the factors are proportional to
an unnormalized Wishart distribution

f̃i(Λ) = γiW̃(Λ|Λi, νi),

with f̃0(Λ) = f0(Λ). With this choice, it can be easily verified that

q(Λ) =

(

n
∏

i=0

γi

)

W̃

(

Λ

∣

∣

∣

∣

∣

(
n
∑

i=0

Λ−1
i )−1,

n
∑

i=0

νi − (d+ 1)n

)

.

The cavity distribution, when we remove the j-th component from q(Λ) is

q\j(Λ) =
n
∏

i6=j,i=0

f̃i(Λ)

=

(

n
∏

i6=j,i=0

γi

)

W̃

(

Λ

∣

∣

∣

∣

∣

(
n
∑

i6=j,i=0

Λ−1
i )−1,

n
∑

i6=j,i=0

νi − (d+ 1)(n− 1)

)

.

(6)

Let’s define the following quantities:

(Ur)
−1 =

n
∑

i6=j,i=0

Λ−1
i + (xr − xj)(xr − xj)

T, (7)

α =
n
∑

i6=j,i=0

νi − (d+ 1)(n− 1) + 1, (8)

ψ =

(

n
∏

i6=j,i=0

γi

)

1

(n− 1)(2π)d/2
, (9)
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zr = BW(Ur, α)−1. (10)

With the above definitions, we see that

fj(Λ)q\j(Λ) = ψ

n
∑

r 6=j,r=1

zrW(Λ|Ur, α). (11)

Now we have to match the moments of

q(Λ|Λnew, νnew) = γnewBW(Λnew, νnew)−1W(Λ|Λnew, νnew)

with those of fj(Λ)q\j(Λ). The normalization constant of (11) is

E0 =

∫

fj(Λ)q\j(Λ)dΛ = ψ

n
∑

r 6=j,r=1

zr. (12)

The mean and the variance of fj(Λ)q\j(Λ) can be computed noticing that
the resulting density is a weighted sum of Wishart

fj(Λ)q\j(Λ) ∝
n
∑

r 6=j,r=1

wrW̃(Λ|Ur, α),

where the weights are

wr =
zr

∑n
s 6=r,s=1 zs

.

Therefore, the expectation results in

E1 = Efj(Λ)q\j(Λ)[Λ] = α
n
∑

r 6=j,r=1

wrUr. (13)

The variance of Λ can be easily computed, given that

Efj(Λ)q\j(Λ)[Λ
2
lk] =

n
∑

r 6=j,r=1

wr

{

(α+ α2)(Ur)
2
lk + α(Ur)ll(Ur)kk

}

.

Therefore,

E2 = var(Λ) =
n
∑

r 6=j,r=1

wr

{

(α+ α2)‖Ur‖
2
F + α [Tr(Ur)]

2}− ‖E1‖
2
F. (14)
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Matching the moments results in:

γnewBW(Λnew, νnew)−1 = E0,

νnewΛnew = E1,

νnew‖Λnew‖
2
F + νnew [Tr(Λnew)]2 = E2,

that can be solved with respect to νnew, Λnew, and γnew, obtaining:

νnew =
‖E1‖

2
F + [Tr(E1)]

2

E2

, (15)

Λnew =
E1

νnew

, (16)

γnew = E0BW(Λnew, νnew). (17)

The updated version of f̃j(Λ) is the ratio between q(Λ|Λnew, νnew) and q\j(Λ),
resulting in

f̃ ′
j(Λ) = γ′jW̃(Λ|Λ′

j, ν
′
j),

where
γ′j =

γnew
∏n

i6=j,i=0 γi

, (18)

(

Λ′
j

)−1
= Λ−1

new − (
n
∑

i6=j,i=0

Λ−1
i )−1, (19)

ν ′j = νnew −
n
∑

i6=j,i=0

νi + n(d+ 1). (20)

When the moment matching procedure satisfies a predefined convergence
criterion, the resulting approximating posterior is

q(Λ) = γ W̃(Λ|Λ, ν),

that allows to obtain the approximate model evidence as

evidence = γ BW(Λ, ν)−1.
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4. Online Bayesian KDE

Online learning arises quite naturally in Bayesian inference. In our case,
let’s assume that the posterior over the precision, after having observed a
data set X = {x1, . . . ,xn}, has been approximated using EP. This means
that we have an approximation to p(Λ|X,MX) based on a model MX where
X is the set of centers of the kernels. When we observe new data, and we
want to include them in the inference of the bandwidth, we need to extend the
model to account for the new centers of the kernels. In particular, the final
goal will be to approximate p(Λ|X,Y,MX∪Y ) starting from p(Λ|X,MX).

Let’s analyze the following expression of the posterior:

p(Λ|X,Y,MX∪Y ) ∝ p(Y |Λ,MX∪Y )p(X|Λ,MX∪Y )p(Λ).

We immediately see that this expression is based on a different model with
respect to

p(Λ|X,MX) ∝ p(X|Λ,MX)p(Λ).

Therefore, the posterior p(Λ|X,MX) cannot be used directly as a prior for
the second stage of inference. This problem, however, can be easily solved in
the following way. First we need to extend the model from MX to MX∪Y .
This can be done by approximating again p(Λ|MX∪Y ) as a product of n+ 1
factors

p(X|Λ,MX∪Y )p(Λ) ≃
n
∏

i=0

g̃i(Λ),

where each factor is approximated by

g̃j(Λ) =
1

n+m− 1

(

(n− 1)f̃j(Λ) +
n
∑

r=1

N (xj|yr,Λ)

)

,

and g̃0(Λ) is the prior. This approximation does not require operations among
vectors in X, that were used to obtain the factors f̃j(Λ). In practice, the
first approximation stage yields

(n− 1)f̃j(Λ) ≃
n
∑

r 6=j,r=1

N (xj|xr,Λ).

At the end of this stage, we have p(X|Λ,MX∪Y )p(Λ) as an unnormalized
Wishart. Now we just need to include p(Y |Λ,MX∪Y ) to obtain the updated
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posterior. Given that

p(Y |Λ,MX∪Y ) =
1

n+m− 1

(

n
∑

r=1

N (yj|xr,Λ) +
n
∑

r 6=j,r=1

N (yj|yr,Λ)

)

,

again we do not need to perform operations among vectors in X. Now the
approximation to p(Λ|MX∪Y ) will be a product of n+m+ 1 factors:

q(Λ|MX∪Y ) =
n+m
∏

i=0

f̃i(Λ) =
n
∏

i=0

g̃i(Λ)
m
∏

i=1

h̃i(Λ).

The first product is the Wishart obtained when we extended the model, so
the final posterior is a product of m + 1 factors. Again, we can employ an
EP scheme to iteratively update the factors, obtaining an approximation to
the posterior p(Λ|X,Y,MX∪Y ).

5. Simpler structures of precision matrix and implementation de-

tails

In this section we provide more details on how to implement the proposed
method and we discuss how to reduce its complexity by considering simpler
structures of precision matrix, namely diagonal and isotropic. The detailed
derivation of these two special cases can be found in the appendix.

5.1. Implementation Notes

The presented method involves several matrix inversions. We can avoid
them by working with the covariances Σi rather than the precisions Λi. In
particular the computation of the matrices Ur can be now simplified by using
the Sherman-Morrison formula:

(Ur)
−1 =

n
∑

i6=j,i=0

Σi + (xr − xj)(xr − xj)
T.

Defining

Q =

(

n
∑

i6=j,i=0

Σi

)−1

, a = xr − xj,

we obtain

Ur = Q−
QaaTQ

1 + aTQa
. (21)
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We report the pseudo-code of the proposed algorithm in Tab. 2; note
that we actually work with the logarithm of the normalization constants of
the Wishart distributions and the evidence by using standard log-sum and
log-diff operations in order to avoid numerical underflows.

5.2. Reduced forms for precision matrix and complexity analysis

The inference of the full precision matrix can be computationally inten-
sive. The reason is that each main iteration involves a loop of n iterations (for
the refinement of the n factors) each of which has time complexity in O(nd3).
This complexity is dominated by the the computation of the normalization
constants of the Wishart distributions with scale matrices Ur that involves
the computation of |Ur| that has time complexity in O(d3). We notice that
the complexity does not change even if we precompute and store the vectors
a in (21). In terms of spatial complexity, the dominant part is related to
storing the matrices Λi and Ur that requires O(nd2).

As we have discussed in Section 4, the online version where m new data
point have to be included in the inference of the precision, does not require
operations among the n data points used in the first part of the inference
stage. We recall that the online version comprises two steps. In the first
step we need to extend the model to include the new m data points; one
main iteration of this step, involves a loop over n factors and requires the
computation of m determinants |Ur|. Therefore, a whole iteration of the
first step has time complexity O(nmd3). One main iteration of the second
step, contains a loop of m factors only (as the other n are merged in one
unnormalized Wishart), and again will be dominated by the computation of
the determinants of |Ur|, yielding a time complexity in O(m2d3). For the
space complexity, we can repeat the same considerations as in the offline
case, accounting for the fact that we need to store the updated version of the
n matrices Λi computed in the first stage, leading to O((n+m)d2).

Due to the cubic scaling of the time complexity with respect to d, it might
be useful to consider simpler forms of precision matrices, such as diagonal
or isotropic. In particular, their respective forms are Λ = Iλ with λ =
(λ1, . . . , λd), and Λ = λI. In these cases, we place a Gamma prior over the
precisions for each component λk for the diagonal precision, or a Gamma
prior over the precision λ.

In the diagonal case, the time complexity of one iteration of the main
loop is linear in the number of dimensions d, and is quadratic in n, leading
to O(n2d). The size of the largest objects is in O(nd), as they are n × d
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Table 1: Time and Space complexity for one iteration (main loop) of the three versions of
the approximate Bayesian KDE.

Covariance Time complexity Space complexity
Full O(n2d3) O(nd2)
Full online O((n+m)md3) O((n+m)d2)
Diagonal O(n2d) O(nd)
Diagonal online O((n+m)md) O((n+m)d)
Isotropic O(n2d) O(n)
Isotropic online O((n+m)md) O(n+m)

matrices. With the same considerations as in the full case, the online version
has time complexity in O((n+m)md) and space complexity in O((n+m)d).

In the isotropic case, in each iteration of the main loop we have to com-
pute the distances between a data point and all the other n; this has time
complexity in O(nd). Therefore, one of the main iterations will have a time
complexity in O(n2d). The space complexity will be in O(n), as we will only
need to allocate the vectors of size n. It is interesting to notice that precom-
puting the distances (time complexity in O(n2d), space complexity in O(n2))
will reduce the computational complexity in each main iteration to O(n2).
Time and space complexities for the online versions follow straightforwardly
as O((n+m)md) and O(n+m) respectively.

The complexity of one iteration for the three versions of the algorithm are
summarized in Tab. 1. After extensive trials and evaluations, we noticed that
a number of iterations in the order of tenths or sometimes less are needed for
the proposed method to converge.

5.3. Initialization and Convergence

Denoting the parameters of the initializing posterior over Λ with γpost,
Λpost, and νpost, in the case when we want to assign the same initial value to
the Λi as well as to the νi, we get

n
∑

i=0

Λ−1
i = (Λpost)

−1 ⇒ Λ−1
i =

Λ−1
post

n
−

Λ−1
0

n
,

n
∑

i=0

νi − (d+ 1)n = νpost ⇒ νi =
νpost

n
−
ν0

n
+ d+ 1,
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n
∑

i=0

log(γi) = log(γpost) ⇒ log(γi) =
log(γpost)

n
−

log(γ0)

n
.

In the experiments, we noticed that the initialization is usually not critical, in
the sense that many different strategies lead to the same approximation. The
former equations can be straightforwardly extended in the cases of diagonal
and isotropic matrices.

As far as the convergence is concerned, we can monitor the change in
the parameters of the approximating distribution. When these parameters
change less than a threshold, we stop the iterations. In our experiments,
we monitored the number of degrees of freedom, leading to the following
convergence criterion:

|νnew − νold| < ε,

with ε = 10−3.
We note here that Q in (21) is not positive semidefinite in general. In

this case, the matrices Ur can have negative determinant and the whole
procedure would fail to converge. This happens when few data are provided
with respect to the dimensionality of the problem; in practice this means that
the approximation using a unimodal Wishart is not suitable. We can fix this
issue by increasing the diagonal elements of Q. In practice, we compute the
smallest eigenvalue of Q, and if it is negative, we subtract it to the diagonal of
Q. Given the form assumed by Q, we can view this operation as an increase
in the prior covariance Σ0. When this happens, usually the model evidence
penalizes the choice of this model.

6. Experimental Validation

In this section we present an extensive validation of our method. First
we show the quality of the approximation of the posterior over the precision,
and how the model evidence can be used to select the structure of precision
matrix in multivariate cases. We then report a study on sampling techniques,
comparing their running time with the proposed method. We also study
the quality of the approximation in online and offline learning scenarios by
comparing their approximate posteriors against the true one in a univariate
problem. Finally, we show the performance in terms of ISE when we select
the inverse of the expectation of the precision as the bandwidth, comparing
it with state of the art methods for selecting the bandwidth, to demonstrate
that the proposed method is competitive with the advantage of allowing
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Table 2: Pseudo-code of the approximate Bayesian KDE algorithm.

1. set the maximum number of iterations maxit and the convergence pa-
rameter ε

2. set the parameters ν0 and Λ0 of the prior

3. initialize the values of log(γi), νi, and Σi as explained in Section 5

4. for i in 1 : maxit

(a) for j in 1 : n

i. compute Ur for r = 1, . . . , n using (21)
ii. compute α, log(ψ), log(zr) for r = 1, . . . , n, using (8), (9),

and (10)
iii. compute log(E0), E1, E2, using (12), (13), and (14)
iv. compute log(γnew), νnew, Σnew, using (15), (16), and (17)
v. compute log(γ′j), ν

′
j, Σ′

j, using (18), (19), and (20)

(b) if convergence criterion is satisfied then exit the loop

online learning and model selection. All the algorithms have been run on a
quad-core 2.66GHz Intel workstation with 8GB of RAM.

6.1. Quality of the posterior approximation

In this section, we report two illustrative examples to show the approxi-
mation of the posterior over the precision in two synthetic cases; the first is
a univariate problem, and the second one is bivariate.

6.1.1. Illustrative examples - Univariate and bivariate cases

We considered a data set of 50 data points sampled from the univariate
distribution in the left panel of Fig. 1. This problem has been studied in
Marron and Wand (1992) where it is referred to the “asymmetric claw”. We
numerically computed the actual posterior distribution as the multiplication
of the prior (we chose a rather flat prior with a0 = 1, b0 = 0.01) and the
likelihood, normalized to integrate to one (black curve in the left panel of
Fig. 2). In the same figure, we show the approximation obtained by EP in
red. The approximation of the posterior is quite accurate in capturing its
expectation, variance, and log evidence. In the left panel of Fig. 3 we show
in red the pdf when we selected the expectation of the precision, and in black
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Figure 1: Left: the “asymmetric claw” density function - Right: a bivariate pdf.

dashed lines the 5th and 95th percentiles of the pdfs values when sampling
the precision from the posterior.

We considered the synthetic distribution in the right panel of Fig. 1, that
is a mixture of three Gaussians (Duong and Hazelton, 2005). We sampled 200
data points from it and we ran our method to approximate the precision. We
chose a diagonal structure for the precision matrix as it is easy to visualize
the resulting posterior, and we chose a rather flat prior with parameters
a0k = 1, b0k = 0.01. Again, we numerically computed the actual posterior as
the multiplication of the likelihood and the prior, normalized to integrate to
one (black curve in the right panel of Fig. 2). In the same figure, we show the
posterior approximation in red. As in the multivariate case, we see that the
approximation captures the main characteristics of the posterior. In Fig. 3
we show in red the pdf when we selected the expectation of the approximate
posterior over the precision in the two synthetic cases.

6.1.2. Model selection for choosing the structure of the precision matrix

We considered the bivariate pdfs in the first row of Fig. 4, so that it is
easier to interpret the results. We ran the approximate version of Bayesian
KDE using the three forms of precision matrix, we computed their respective
model evidence, and we used them to compute the Bayes factors to compare
the models. When models M1 and M2 were compared, we chose model
M1 when the ratio of its evidence over the evidence of M2 was larger than
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Figure 2: Approximation of the posterior distribution over the precision. Left: univariate
case - Right: bivariate case

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

p(
x)

x1

x 2

 0.02 

 0.04 

 0.06 

 0.08 

−4 −2 0 2 4

−
4

−
2

0
2

4

 0.02 

 0.04 

 0.04 

 0.06 

Figure 3: KDE densities when we select the precision as the expectation of the approxi-
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Figure 4: First row: Three bivariate densities - Second row: Counts of how many times
the three different models were selected in the three cases above.

3, that is a common rule for preferring a model over another (Kass and
Raftery, 1995). We report a study of model selection for the distributions
shown in Fig. 4, where we sampled 100 times a set of n = 100 data points
from them. We ran the three algorithms considering the same flat prior,
that is ν0 = d+ 1, Σ0 = 2I/10 for the Wishart, and a0 = 1, b0 = 0.1 for the
Gamma. We counted the model with the largest evidence as well as those
whose evidence is within a factor of 1/3 with respect to it. The results are
reported in the second row of Fig. 4.

We can see that for the first pdf, on average, the isotropic precision is
preferred as the problem is isotropic. In the second case, instead, the pdf
is elongated along one of the axes, so a diagonal precision is selected more
ofter than the isotropic and the full ones. Finally, the third case shows that
a full covariance matrix is preferred by the Bayes factor when data have
correlations between dimensions.
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6.1.3. Comparison with sampling techniques

We compare our method with the one proposed in (Zhang et al., 2006),
where Metropolis-Hastings sampling is used to sample from the posterior.
In the case of a full precision matrix, the Authors consider the Cholesky
decomposition

Λ = LLT,

where L is lower triangular. Using this factorization, the prior used in their
experiment for the nonzero elements of L was

p(lij) =
1

1 + ρl2ij
,

with ρ controlling the flatness of the prior. The likelihood is the cross-
validated one in (4). As in Zhang et al. (2006), in all our experiments, we
set ρ = 1, the number of burn-in samples to 5000, and the total number of
samples to 25000. The parameters of the proposal were selected to keep the
acceptance rate between 20% and 30%; this, of course, required few trials run
that we have not accounted for in the comparison of running time, although
they represent a cost in the whole inference process.

We studied the running time of EP and sampling methods in two cases.
The first was the bivariate density in Fig. 1, and the second was a mixture
of two Gaussians in 4 dimensions centered at (0, 0, 0, 0) and (1, 1, 1, 1) with
identity covariance matrices. The ratio of running times for EP against sam-
pling is reported in Tab. 3, where the algorithms have been run 10 times
for each value of n. To ensure fair comparison, all the algorithms have been
implemented in R (R Development Core Team, 2006). We can see how the
approximation is considerably faster than sampling. As a check, we also
compared the performance in terms of likelihood of unseen data, finding that
they were comparable (results not shown). In the case of a full covariance, in
high dimensions and with a limited amount of data, we noticed that sampling
techniques were superior in terms of performance, given that the approxima-
tion of the posterior is not adequate. In these cases, a simpler covariance
structure was favoured by Bayes factors. For the sake of brevity, we do not
report comparisons in the case of simpler covariance structures; we just point
out that the approximation is again considerably faster than sampling.

6.1.4. Online vs offline

We now show the quality of the approximation in an online scenario. We
considered the univariate density in Fig. 1, from which we sampled 500 data
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n = 200 n = 500 n = 1000
d = 2 0.10 0.15 0.16
d = 4 0.20 0.19 0.31

Table 3: Ratio between running times of the approximation method vs sampling. As a
frame of reference, sampling in the case of d = 4 and n = 1000 took a couple of hours,
and for d = 2 and n = 500 about 6 minutes.
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Figure 5: Expectation and standard deviation of the posterior over the precision and log
evidence of the model - First row: offline vs true - Second row: online (m = 5) vs true -
Third row: online (m = 50) vs true.
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points that we used to run the offline version of our method. In order to
compare the inference results with online learning, we ran the offline version
on half data only and then we ran two online versions adding m = 5 and
m = 50 data points at a time respectively. We compared the mean, variance,
and log evidence of the true posterior against those of the approximations
obtained by the offline and online versions (Fig. 5). We can see that the offline
version is extremely accurate in capturing the moments of the posterior.
The online versions do not differ very much from each other, and show an
underestimation of the standard deviation; this is reasonable, given that the
online version builds the solution upon an approximate form of the posterior
obtained over the first batch of data. The evidence is still captured extremely
well, while the expectation of the posterior is slightly underestimated on
average.

6.2. Performance comparison

6.2.1. Synthetic data sets
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Figure 6: log(ISE) vs n over 100 repetitions for the univariate and bivariate data sets

In order to evaluate the performance of the proposed method, we carried
out a study of the ISE in (2) with respect to the size of the data sampled
from the true distribution. In particular, we sampled n data points from
the true distribution and we estimated/inferred the bandwidth using several
methods. Then, we computed the ISE score corresponding to the different
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estimates of the density functions. We repeated this procedure for different
values of n and 100 times for each value of n.

We compared EP with the following methods for bandwidth estimation:
Silverman (1986) rule of thumb (RT), which is 1.06 min(sd(x), IQR/1.34)n−1/5

with IQR denoting the interquartile range; the plug-in (hpi) method of Wand
and Jones (1994); least-squares cross-validation (hlscv) of Bowman (1984);
and smoothed cross-validation (hscv) of Jones et al. (1991). In the multi-
variate case, RT corresponds to selecting a bandwidth for each covariate to

be σi

[

4
(d+2)n

]1/(d+4)

, where σi is the estimated standard deviation of the i-th

covariate. The multivariate versions of hpi, hlscv, and hscv will be denoted
as Hpi, Hlscv, and Hscv; Duong and Hazelton (2005) presented descriptions
of these methods and implementations can be found in the R package ks.

We considered the synthetic distributions in Fig. 1. The results are shown
in the plots in Fig. 6. We can see that the performance of the proposed
method in terms of ISE is comparable to the best among the comparing
methods. Note also that none of the considered bandwidth selectors is su-
perior to the others in general, while the proposed method achieves an ISE
that is often comparable to the best among the methods considered in the
comparison.

6.2.2. Real data sets

We applied the proposed methods to three real data set(s): Old Faithful,
Unicef, and Earthquake. In cases of ties, we simply added a uniform random
contribution of the order of the least significant digits to resolve them.

Old Faithful data set. This is a one dimensional data set containing 107
eruption lengths of Old Faithful geyser in Yellowstone National Park.

Unicef data set. The Unicef data set has two covariates: the number of
deaths of children under 5 years of age per 1000 live births, and the average
life expectancy (in years) at birth for 73 countries having gross national
income less than $1000 per annum per capita.

Earthquake data set. This data set contains 510 measurements of three co-
variates of an earthquake beneath the Mt. St. Helens volcano. The three
covariates are respectively: longitude (in degrees), latitude, and depth (in
km). We centered these data and scaled each covariate to have unit vari-
ance.
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Figure 7: Average test log-likelihood on real data sets - Left: Old Faithful - Right: Unicef
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Figure 8: Average test log-likelihood on the Earthquake data sets

In order to evaluate the performance of the proposed method in real
scenarios, we report a comparative study on its generalization capabilities.
In particular, we sampled a subset of size n from the data set and we used it
to estimate the density function. We used such an estimate to compute the
average log-likelihood of the remaining data; this is a reasonable measure of
the generalization capabilities of the procedure, as it provides an estimate
of the goodness of the fit to unseen data. We repeated this procedure for
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different values of n and 100 times for each value of n. The results are shown
in Figs. 7 and 8. We selected a full precision in the Unicef data and a diagonal
precision for the Earthquake data. In fact, we could have used the estimated
Bayes factors to select the most likely covariance structure at each iteration;
since the comparing methods do not provide this feature, we preferred to
choose one particular structure only and report the corresponding results. In
the case of the earthquake data, Hlscv was not converging to any solution
in some cases, and we do not report it in the plot.

The proposed method performs quite well in terms of generalization. Es-
pecially in the earthquake data set, the method is significantly better than
the plug-in ones. Interestingly, the rule of thumb works quite well too. In the
other two data sets, the performance is comparable to the other methods.

In general, considering all the experimentations presented in the last two
sections, we see that the performance is at least as good as that of the
comparing methods. We remark, however, that the proposed method is not
based on the optimization of any sort of performance measure, but simply
on the Bayesian principle.

7. Conclusions

We presented an approximate Bayesian approach to the selection of the
bandwidth in KDE. The method is based on a cross-validated likelihood,
and computes an approximation to the intractable posterior over the band-
width. The approximation is carried out by the EP algorithm, which is based
on matching the moments with appropriate approximating distributions. In
our case we selected the Wishart distribution for the approximations, given
its suitability for modeling distributions over positive definite matrices. We
demonstrate that the proposed method is competitive in terms of accuracy
with existing approaches and we extensively studied the results of the in-
ference process. In particular, we showed how it is possible to choose the
structure of covariance to use, and how to infer the bandwidth by updating
the posterior distribution inferred from a former batch of data. Our approach
is closely related to the sampling-based approach of Zhang et al. (2006), but
exploits the typical speed of deterministic approximate methods, while still
retaining an excellent approximation to the posterior distribution.

On a more general note, it is interesting to notice the similarity between
KDE and non-parametric Bayesian approaches to density estimation. In par-
ticular, Dirichlet Process Mixture Models (DPMMs) (Ferguson, 1973) have
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received considerable attention in the machine learning community as they
present a flexible method for clustering and density estimation. In DPMMs,
the marginal data density (i.e. having marginalized the latent cluster mem-
bership variables) is also represented as a mixture of a (potentially infinite)
number of Gaussians. However, unlike KDE, the number of Gaussian com-
ponents inferred from a finite sample is in general not equal to the number
of data points; also, we are not aware of L2 convergence properties for DP-
MMs. In terms of inference, although an EP approach has been proposed for
DPMMs (Minka and Ghahramani, 2003), block Gibbs sampling remains the
most widely adopted choice within this context.

Appendix A. Special Cases for Expectation Propagation

Appendix A.1. Diagonal Precision Matrix

The unnormalized Gamma distribution is defined as

G̃(λ|a, b) = λa−1 exp(−bλ),

and the Gamma distribution

G(λ|a, b) = BG(a, b)G̃(λ|a, b),

where

BG(a, b) =
ba

Γ(a)
.

We consider a diagonal form for the precision Λ, where diag(Λ) = λ. The fac-
tors for the approximation of the posterior factorize between the covariates,
and are defined as

f̃i(λ) = γi

d
∏

k=1

G̃(λk|aik, bik),

which gives

q(λ) =

(

n
∏

i=0

γi

)

d
∏

k=1

G̃

(

λk

∣

∣

∣

∣

∣

n
∑

i=0

aik − n,
n
∑

i=0

bik

)

.

The true posterior is

p(λ|X) ∝
n
∏

i=0

fi(λ),

27



where f0(λ) =
∏d

k=1 G(λk|a0k, b0k) denotes the prior, and the components
fj(λ) are

fj(λ) = p(xj|λ,MX) =
1

n− 1

n
∑

r 6=j,r=1

N (xj|xr,Λ),

with Λ diagonal and diag(Λ) = λ.
When we remove the j-th component from q(λ), we obtain

q\j(λ) =
n
∏

i6=j,i=0

f̃i(λ) =

(

n
∏

i6=j,i=0

γi

)

d
∏

k=1

G̃

(

λk

∣

∣

∣

∣

∣

n
∑

i6=j,i=0

aik − n+ 1,
n
∑

i6=j,i=0

bik

)

.

Let’s define:

αk =
n
∑

i6=j,i=0

aik − n+ 1 +
1

2
,

βrk =
n
∑

i6=j,i=0

bik +
1

2
(xrk − xjk)

2,

ψ =

(

n
∏

i6=j,i=0

γi

)

1

(n− 1)(2π)d/2
,

zr =
d
∏

k=1

BG(αk, βrk)
−1.

With the definitions above, we see that

fj(λ)q\j(λ) = ψ
n
∑

r 6=j,r=1

zr

d
∏

k=1

G(λk|αk, βkr)

Now we have to match the moments of

q(Λ|anew, bnew) = γnew

d
∏

k=1

BG((ak)new, (bk)new)−1G(λk|(ak)new, (bk)new)

with those of fj(Λ)q\j(λ). The normalization constant is:

E0 =

∫

fj(λ)q\j(λ)dλ = ψ

n
∑

r 6=j,r=1

zr
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For the mean and the variance we notice that the resulting density is a
weighted sum of products of Gamma across the covariates

fj(λ)q\j(λ) ∝
n
∑

r 6=j,r=1

wr

d
∏

k=1

G(λk|αk, βkr),

where the weights are

wr =
zr

∑n
s 6=r,s=1 zs

.

Therefore, the expected value and the variance are

E1k = Efj(λ)q\j(λ)[λk] =
n
∑

r 6=j,r=1

wr
αk

βrk

,

E2k = Efj(λ)q\j(λ)[λ
2
k] − E2

1k =
n
∑

r 6=j,r=1

wr

[

αk

(βrk)2
+

(

αk

βrk

)2
]

− E2
1k.

For the updated version qnew(λ) we have

E0 =

∫

qnew(λ)dλ = γnew

d
∏

k=1

BG((ak)new, (bk)new)−1,

E1k = Eqnew(λ)[λk] =
(ak)new

(bk)new

,

E2k = varqnew(λ)[λk] =
(ak)new

((bk)new)2
.

This allows to compute γnew, (ak)new, and (bk)new

(ak)new =
E2

1k

vk

, (bk)new =
E1k

vk

, γnew = E0

d
∏

k=1

BG((ak)new, (bk)new).

The updated version of f̃j(Λ) is the ratio between qnew(λ) and q\j(λ), result-
ing in

f̃ ′
j(λ) = γ′j

d
∏

k=1

G̃(λ|a′jk, b
′
jk),
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with
γ′jk =

γnew
∏n

i6=j,i=0 γi

,

a′jk = (ak)
new + n−

n
∑

i6=j,i=0

aik,

b′jk = (bk)
new −

n
∑

i6=j,i=0

bik.

After the convergence criterion is satisfied, the resulting approximating
posterior is

q(λ) = γ
d
∏

k=1

G̃(λk|ak, bk),

that allows to obtain the approximate model evidence as

evidence = γ

d
∏

k=1

BG(ak, bk)
−1.

Appendix A.2. Isotropic Precision Matrix

The proposed approximation of the posterior over the precision λ, in the
case of a precision matrix Λ = λI is

q(λ) =
n
∏

i=0

f̃i(λ),

where the factors in the approximation are defined as

f̃i(λ) = γiG̃(λ|ai, bi)

and therefore

q(λ) =

(

n
∏

i=0

γi

)

G̃

(

λ

∣

∣

∣

∣

∣

n
∑

i=0

ai − n,
n
∑

i=0

bi

)

.

The true posterior is

p(λ|X) ∝
n
∏

i=0

fi(λ),
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where f0(λ) = G(λ|a0, b0) denotes the prior, and the components fj(λ) are

fj(λ) = p(xj|λ,MX) =
1

n− 1

n
∑

r 6=j,r=1

N (xj|xr, λI).

When we remove the j-th component from q(λ), we obtain

q\j(λ) =
n
∏

i6=j,i=0

f̃i(λ) =

(

n
∏

i6=j,i=0

γi

)

G̃

(

λ

∣

∣

∣

∣

∣

n
∑

i6=j,i=0

ai − n+ 1,
n
∑

i6=j,i=0

bi

)

.

Let’s define the following quantities:

α =
n
∑

i6=j,i=0

ai − n+ 1 +
d

2
,

βr =
n
∑

i6=j,i=0

bi +
1

2
‖xr − xj‖

2,

ψ =

(

n
∏

i6=j,i=0

γi

)

1

(n− 1)(2π)d/2
,

zr = BG(α, βr)
−1.

With the definitions above, we see that

fj(λ)q\j(λ) = ψ

n
∑

r 6=j,r=1

zrG(λ|α, βr).

Now we have to match the moments of

q(λ|anew, bnew) = γnewBG(anew, bnew)−1G(λ|anew, bnew)

with those of fj(λ)q\j(λ). The normalization constant of fj(λ)q\j(λ) is

E0 =

∫

fj(λ)q\j(λ)dλ = ψ
n
∑

r 6=j,r=1

zr
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For the mean and the variance, we notice that the resulting density is a
weighted sum of Gamma

fj(λ)q\j(λ) ∝
n
∑

r 6=j,r=1

wrG(λ|α, βr)

with weights

wr =
zr

∑n
s 6=r,s=1 zs

.

Therefore

E1 = Efj(λ)q\j(λ)[λ] =
n
∑

r 6=j,r=1

wr
α

βr

,

E2 = Efj(λ)q\j(λ)[λ
2] − E2

1 =
n
∑

r 6=j,r=1

wr

[

α

(βr)2
+

(

α

βr

)2
]

− E2
1 .

For the updated version qnew(λ) we have

E0 =

∫

qnew(λ)dλ = γnewBG(anew, bnew)−1,

E1 = Eqnew(λ)[λ] =
anew

bnew

,

E2 = varqnew(λ)[λ] =
anew

(bnew)2
.

This allows to compute γnew, anew, and bnew as

anew =
E2

1

E2

, bnew =
E1

E2

, γnew = E0BG(anew, bnew).

The updated version of f̃j(λ) is the ratio between qnew(λ) and q\j(λ), resulting
in

f̃ ′
j(λ) = γ′jG̃(λ|a′j, b

′
j),

where
γ′j =

γnew
∏n

i6=j,i=0 γi

,

a′j = anew + n−
n
∑

i6=j,i=0

ai,
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b′j = bnew −
n
∑

i6=j,i=0

bi.

After the convergence criterion is satisfied, the resulting approximating
posterior is

q(λ) = γ G̃(λ|a, b),

that allows to obtain the approximate model evidence as

evidence = γ BG(a, b)−1.
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