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Abstract—Kernel methods have revolutionized the fields of
pattern recognition and machine learning. The importance of
achieving a sound quantification of uncertainty in predictions by
characterizing the posterior distribution over kernel parameters
exactly has been demonstrated in several applications. This
paper focuses on Markov chain Monte Carlo (MCMC) based
inference of covariance (kernel) parameters for Gaussian pross
classifiers. Recently, the exact-approximate MCMC approach has
been proposed as a practical way to efficiently infer covariance
parameters in Gaussian process classifiers exactly. In this ap-
proach, an unbiased estimate of the marginal likelihood obtained
by importance sampling replaces the actual marginal likelihood
in the Hastings ratio. This paper presents the application of
annealed importance sampling to obtain a low-variance unbiased
estimate of the marginal likelihood. This paper empirically
demonstrates that annealed importance sampling reduces the
variance of the estimate of the marginal likelihood exponentially
in the number of data compared to importance sampling, while
the computational cost scales only polynomially. The results
on real data demonstrate that employing annealed importance
sampling in the exact-approximate MCMC approach represents
a step forward in the development of fully automated exact
inference engines for Gaussian process classifiers.

I. INTRODUCTION

Kernel methods have revolutionized the fields of patter
recognition and machine learningl [1]. Gaussian procesg (G
classifiers represent an important class of probabilistimél

machines|[2]. Being probabilistic models based on a covar

ance (kernel) function, they inherit all the desirable mivde

properties of other popular kernel machines, such as th

Support Vector Machine, but have the advantage that they gi
a handle to an objective function, so called marginal |thadid,
that can be optimized with respect to kernel parameters. In

Bayesian sense, it is also possible to infer such paramete

thus making it possible to fully account for their uncertgin

when making predictions. The importance of achieving a doun

guantification of uncertainty in predictions by characie
the posterior distribution over covariance parameterstéxa

has been extensively discussed and demonstrated in several

applications|[3], [[4], [[5], [6], and constitutes the focuktbe
present work.

offered by Markov chain Monte Carlo methods (MCMC) [4],
[Bl, [9]. Despite offering a general inference framework,
employing MCMC in GP models is challenging due to the
coupling of latent variables and covariance parameterghwhi
makes convergence to their joint posterior distributioowsl

To date, most approaches to deal with this issue rely on an
alternate sampling of latent variables and parametersdbase
on a set of auxiliary variables obtained by reparametaozat
techniques [10],[11]/112]. Other approaches attempt itatlyp
samplef and 6 based on approximations to the posterior
over latent variables, and have been proposed in the spatial
modeling literature in the case of sparse inverse GP covari-
ances [[1B],[[14]. Despite these efforts, a satisfactory why
efficiently sampling the parametefisfor general GP models is
still missing, as demonstrated in a recent comparativeyg&jd

Recently, the Exact-Approximate (EA) MCMC approach
has been proposed as a practical way to efficiently infer co-
variance parameters in Gaussian process classifiersefictl
In this approach, an unbiased estimate of the marginal like-
lihood obtained by Importance Sampling (IS) replaces the
actual marginal likelihood in the Hastings ratio. While the
sampling of covariance parameters using EA MCMC improves
on previous approaches for inferring covariance paramgeter
large variance in the estimate of the marginal likelihood ca

&egatively impact the efficiency of the EA MCMC approach,

making convergence slow and efficiency low. [n [3], IS was

based on an importance distribution obtained by Gaussian

approximations to the posterior of latent variables [2B][1

\kle]. For certain values of the covariance parameters, the

osterior over latent variables can be strongly non-Gaussi
and the approximation can be poor, thus leading to a large
variance in the IS estimate of the marginal likelihood|[15].
Fhis effect is exacerbated by the the dimensionality of the

'Broblem [17], as the variance IS estimates grows exporigntia
with it. In the case of GP classification, estimating the riraaly

likelihood entails an integration in as many dimensionshas t
number of data, so this effect might be problematic in thecas
of large data sets.

This paper presents the application of Annealed Impor-
tance Sampling (AIS)_[17] to obtain a low-variance unbiased

i . _estimate of the marginal likelihofld This paper empirically
The formulation of GP classifiers, and that of GP models injemonstrates that AIS reduces the variance in the estinfiate o

general, makes use of a set of latent variables that are @ssumye marginal likelihood for GP classification exponentith

to be distributed according to a GP prior whose covariancghe number of data compared to IS, while the computational
is parameterized by a set of parameters. In order to reliabl,st scales only polynomially with the number of data. Ripal
quantify uncertainty in GP models, it is necessary to infefyq versions of EA MCMC approaches, employing AIS and IS

all unobserved quantities, namely covariance parametas a

latent variables. For general GP models and for generaélern

1The code to reproduce all the results in this paper can bedftiene:

an all-purpose solution to do so up to a given precision [7] ishttp:/iwww.dcs.gla.ac.ukimaurizio/pages/codea mcmc ais]


http://www.dcs.gla.ac.uk/~maurizio/pages/code_ea_mcmc_ais/

respectively, are compared on five real data sets. The semult integrated out of the model. Crucially, such an integration
these data demonstrate that employing AIS in the EA MCMCaccounts for the uncertainty in latent variables and cavage
approach represents a step forward in the developmentlpf ful parameters based on their posterior distribufiofi 8]y).

automated exact Bayesian inference engines for GP classifie . .
y g In order to compute the predictive distribution in &f]. 2, a

The remainder of this paper is organized as follows.standard way to proceed is to approximate it using a Monte
Sectiong Il andTll review GP models and their fully BayesianCarlo estimate:
treatment using the EA MCMC approach. Secfioh IV presents | X
AIS to obtain an unbiased estimate of the marginal likelthoo ot / ONPION! 3
in GP models that can be used in the EA MCMC approach. P(ysly) = N Zl Py FP(LIET, 6700 dfe, - ()
Section[Y reports results on synthetic and real data, and ’

section V] reports the conclusions. provided that samples from the posterjdif, 8|y) are avail-
able. Note that in the case of GP classification, the remginin
Il. BAYESIAN INFERENCE FORGP QLASSIFICATION integral has a closed form solutionl [2].
Let X = {x1,...,%,} be a set ofn input data where As it is not possible to directly draw samples from
x; € RY, and lety = {y1,...,y.} be a set of associated p(f,0]y), alternative ways to characterize it have been pro-

observed binary responsgs € {—1,+1}. GP classification Posed. A popular way to do so employs deterministic ap-
models are a class of hierarchical models where lalgels Proximations to integrate out latent variables|[15].1[165it
are modeled as being independently distributed according tthere is no way to quantify the error introduced by these ap-
a Bernoulli distribution. The probability of class1 for an ~ Proximation. Also, quadrature is usually employed to indtg
input x; is based on a latent variablg and is defined Out covariance parameters, thus limiting the applicabidit

as p(y; = +1|fi) = ®(f;), where ® is the cumulative GP models to problems with few covariance parameiers [5].
distribution function of the standard normal distributiso that ~ Such limitations might not be acceptable in some pattern
p(y|f) =17, ®(v:f;). Latent variableg = {f1,..., f,} are recognition applications, so we propose Markov chain Monte

assumed to be distributed according to a GP prior, where a GParlo (MCMC) based inference as a general framework for
is a set of random variables characterized by the fact that arfackling inference problems exactly in GP models. The idea
finite subset of them is jointly Gaussian. GPs are specifieginderpinning MCMC methods for GP models is to set up a
by a mean function and a covariance function; for the sakdlarkov chain withp(f, 8|y) as invariant distribution.

of simplicity, in the remainder of this paper we will employ
zero mean GPs. The covariance functigix, x'|0) gives the
covariance between latent variables at inpatand x’ and it

is assumed to be parameterized by a set of param@tdrsis
specification results in a multivariate Gaussian prior aber
latent variablesp(f|0) = N (£]0, K) with K defined as an
n x n matrix with entriesk;; = k(x;,x;|0).

To date, most MCMC approaches applied to GP models
alternate updates of latent variables and covariance gdeas
All these approaches, however, face the complexity of havin
to decouple latent variables and covariance parameteissavh
posterior dependence makes convergence to the postesior di
tribution slow. Reparameterization techniques are a popul
way to attempt to decouple the two groups of variables [10],
A GP can be viewed as a prior over functions and it is[11], [12]. Also, jointly samplingf and@ has been attempted
appealing in situations where it is difficult to specify agar in [13], [14], and it is based on approximations to the paster
metric form for the function mapping into the probabilities ~ over latent variables. Despite these efforts, a satisfactay
of class labels. The covariance plays the role of the kemel iof sampling the paramete for general GP models is still
kernel machines, and in the remainder of this paper it will bemissing, as demonstrated in a recent comparative siudy [8].

assumed to be the Radial Basis Function (RBF) covariance At this point it is useful to notice that samples from

the posterior distribution of latent variables and covar@&a
(1) parameters can be obtained by alternating the sampling from
p(f]0,y) and p(@|y). Obtaining samples from(0|y) is ob-

There can be one length-scale parameterfor each feature, Viously difficult, as it requires the marginal likelihogdy|6);
which is a suitable modelling assumption for Automatic Rel-EXcept for the case of a Gaussian likelihood, evaluating the

evance Determination (ARD) [18], or there can be one global@rginal likelihood entails an integration which cannot be
length-scale parameter such thatr; = ... = 7, = 7. The computed analytically|2]. In the next section we will foonrs

parameter represents the variance of the marginal distributiont’® EA MCMC approach as a practical way of dealing with

of each latent variable. A complete specification of a fully this problem.
Bayesian GP classifier requires a prigp) over 6. Obtaining samples fronp(f|y, #), instead, can be done
When predicting the labej, for a new input datax,, it efficiently using Elliptical Slice Sampling (ElI-SS) [1HII-SS

is necessary to estimate or infer all unobserved quaniities defines a transition operatd(f’|f), and is a variant of Slice
the model, namel§ and 8. An appealing way of calculating Sampling [20] adapted to the sampling of latent variables in

d

1 X; — X, %
k(x;,%x;]|0) = o exp [_22(723)

T

r=1

predictive distributions is as follows: GP models. Ell-SS begins by randomly choosing a threshold
1 for log[p(y/|f)]
p(y:ly) = /p(y*lf*)p(f*lf,@)p(f,0|y)df*dfd9~ (2) u~U[0,1] 5 =Iloglp(y|f)] + log[u] (4)

In the last expression predictions are no longer condiioneand by drawing a set of latent variablesfrom the prior
on latent variables and covariance parameters, as they aré(0, K). Then, a combination of and z is sought, such



that the log-likelihood of the resulting combination isgar data sets, especially when the posterior distribution dker
than the thresholg. Such a combination is defined by meanslatent variables is very different from being Gaussian.sTiki

of sine and cosine of an auxiliary variable which makes because the variance of the IS estimate grows exponentially
the resulting combination spanning a domain of points that i with the dimensionality of the integral [17]. Due to the non-
an ellipse in the latent variable space. The search proeadur Gaussianity of the posterior over latent variables, Ganssi
based on slice sampling enstarting from the interval0, 27]. approximations are bound to lead to poor estimates of the
Due to the fact that EIl-SS does not require any tuning and itnarginal likelihood when the integration involves sevéagtnt

has been shown to be very efficient for several GP models [8)ariables. The aim of this paper is to present a methodology
it is the operator that will be used in the remainder of thiggga based on AIS[[17] which is capable of mitigating this effect.
to sample latent variables. However, note that latent besa

can also be ef‘ficiently Sampled by means of a variant of Hybrld 1IV. MARGINAL LIKELIHOOD ESTIMATION WITH

Monte Carlo [[8]. ANNEALED IMPORTANCE SAMPLING

AlS is an extension of IS where the weights in Ehy. 7 are
computed based on a sequence of distributions going from

For the sake of simplicity, this work will focus on the one that is easy to sample from to the posterior distribution
Metropolis-Hastings (MH) algorithn{ [9][21] to obtain sam of interest. Following the derivation in_[17], defing(f) as
ples from the posterior distribution over covariance patars. the unnormalized density of a distribution which is easy to
In order to do so, we would need to iterate the proposal osample from; in the next section we will study two of such
a new set of paramete®’ from 7(0'|6) and evaluate the distributions. Also, define

Hastings ratio 90(f) = p(y|f)p(£]0) o p(£]6,y). 9)

/ / !
p(y|07)p(6') 7r(0l0 ) (5)  AIS defines a sequence of intermediate unnormalized distrib
p(y|60)p(6) =(6'0) tions
- i 1-5;

to accept or rejecd’. As previously discussed, the marginal 9;(£) = go(£)" g4 (f) (10)
likelihood p(y|8) = [ p(y|f)p(f|@)df cannot be computed \ith 1 = 3, > ... > 3, = 0. The AIS sampling procedure
analytically, except for the case of a Gaussian likelihood. begins by drawing one sampfg_; from g, (f). After that, for

The EA approach in[]3] builds upon a remarkable theoZ =5~ 1,...,1,a neV‘ff'é—l is obtained from; by iterating a
retical result [[22], [[23] stating that it is possible to plag transnlon.oper_atofﬂ(f_ If) that Ieave; the normalized version
unbiased estimate of the marginal likelihopdy|@) in the  Of gi(f) invariant. Finally, computing the average of the

IIl. EXACT-APPROXIMATE INFERENCE FORGP MODELS

2:

Hastings ratio following weights
_ p(yl@)p(e') x(6]6 () _ gs—1(fs—1) gs—a(fs—2)  g1(f1) go(fo)
= Z;(()’}J|0§§EH)) WEO!|9§ 6) Al 9s(fs—1) gs—1(fs—2)  g2(f1) g1(fo) (11)

and still obtain an MCMC algorithm sampling from the correct %:Iloer:gfar?tg Lcj)?bl?fs)egn%stm(l?)te V\?;iéﬂeiéﬁgg d(i)a]:tg]e ri‘glrdn;agimg

posterior distributionp(8|y). In [3] an unbiased estimate of . 90 9gs\L), iy Yy ylela :

the marginal likelihood was obtained as follows. First, anunpiased estimate of(y|6). For numerical reasons, it is safe
i " 7 to implement the calculations using logarithm transfoiore.

approximation of the posterior over latent variablég|y, 0), ; o
say (f|@), was obtained by means of approximate methodsAlso, note that although the annealing strategy is inhérent

such as for example the Laplace Approximation (LA) OrSerlal, the computations with respect to multiple impartan

: . ; samples can be parallelized. We now analyze two ways of im-
Expectation Propagation. Second, based ¢6f6), it was lementing AIS for GP models, which are visually illusthte
proposed to get an unbiased estimate of the marginal lixetih P 9 ' y

p(y|@) using IS. In particular, this was achieved by drawingIn fig. .
Nimp samplest® from the approximating distribution(f|). , ,
Defining A. Annealing from the prior
Wl — p(y[£)p(£?]6) @ When annealing from the priog,(f) = N(f]0, K) and
I5 q(f()]0) ’ go(f) = N(£|0, K)p(y|f). Therefore
the marginal likelihoody(y|@) was approximated by g;(£) = N ([0, K) [p(y|£))? . (12)
Nimp @ Employing ElI-SS as a transition operator fofor the interme-
p(y|0) ~ N Z W - (8)  diate unnormalized distributiong () is straightforward, as the
P log-likelihood is simply scaled by;. Annealing from the prior

was proposed iri [15] where it was reported that a sequence of
8000 annealed distributions was employed. This is because the
prior and the posterior look very much different (see fig. 1)
In the experiments shown inl[3] this estimate was suitableand the only way to ensure a smooth transition from the prior
for the problems that were tackled, especially when aceuratto the posterior is by using several intermediate distidnst
approximations based on Expectation Propagation were. usetihis is problematic from a computational perspective, & th
However, there is a potential limitation of IS when large calculation of the marginal likelihood has to be done at each
dimensional integrals are involved, namely in the casergiela iteration of the EA approach to sample from the posterior

Such an estimate is unbiased and the clogditf) is to
p(y|f)p(f|@) the lower the variance of the estimalte[17].



Annealing from the prior
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Fig. 1.

lllustration of the annealing strategies studiedhis work. The figure was generated as follows. The input dateomprises two data points in two

dimensions withx; = (—1, —1) andx2 = (1, 1), and corresponding labeis= (1, 1). The covariance is the one in €q. 1 with= 15 and7 = exp(—1). The
leftmost plots show the multiplication of the GP prior (grey)athe likelihood (light blue) resulting in the posteriosttibution over the two latent variables
(blue). The first row of the figure shows the annealing prooeditom the GP prior to the posterior. The leftmost plot in teeand row shows prior, likelihood
and posterior as before, along with the Gaussian approximafiven by the LA algorithm (red). The remaining plots in tleeand row show the annealing
procedure from the approximating Gaussian distributiorht® fosterior. In both cases, we definegd = exp(—;/2), thus assuming a geometric spacing for
the B's. Three samples drawn frogy (f) and propagated using operat@g(f’|f) (one iteration of Ell-SS) have also been added to the plots.

distribution overd. We therefore propose an alternative startingand b are shape and rate parameters respectively. Following
distribution g4(f) that leads to a reduction in the number the recommendations in [17]_[26k = /n intermediate

of intermediate distributions while obtaining estimatéste

distributions were defined based on a geometric spacing of

marginal likelihood that are accurate enough to ensure goothe §'s. In particular, this was implemented by settin® — 1

sampling efficiency when used in the EA MCMC approach.

B. Annealing from an approximating distribution

uniformly spaced values dbg[5] betweenog[1] andlog[0.2],
5/2 uniformly spaced values betwegs[0.2] andlog [10~6],
and finally 35 = 0. In AIS, the transitionsT;(f'|f) involved
one iteration of EIl-SS.

Several Gaussian-based approximation schemes to inte-

grate out latent variables have been proposed for GP mock
els [24], [25]. When an approximation to the posterior over

latent variables is available, it might be reasonable tstront
the sequence of intermediate distributions in AIS starfiog

Synthetic data

The aim of this section is to highlight the potential inef-
ficiency in employing IS to obtain an unbiased estimate of

it rather than the prior. When annealing from an approx-the marginal likelihood and to demonstrate the effectigsne

imating Gaussian distribution, the intermediate distitdis
are betweeng,(f) = ¢(f|0) N(f|p,X) and go(f)
N (£|0, K)p(y|f). In order to employ EIl-SS as a transition
operatorT;(f’|f), it is useful to write the unnormalized inter-
mediate distributions as

N(£]0, K)p(y|£)]7

9; (f) = N(f“'l’? E) N(f‘IJJ 2)

(13)

of AIS in dealing with this problem. In particular, this can
be problematic in large dimensions, namely when analyz-
ing large amounts of data. In order to show this effect,
we generated data sets with an increasing number of data
n = 10,50, 100, 500, 1000 in two dimensions with a balanced
class distribution. Data were generated drawing inputorsct
uniformly in the unit square and a latent function from a GP
with covariance in ed.J1 witr = 20 and a global- = 0.255.

In this way, the model can be interpreted as having a prioihis combination of covariance parameters leads to a sirong
N (f|u, ¥) and a likelihood given by the term in square brack-non-Gaussian posterior distribution over the latent \deis

ets; applying Ell-SS to this formulation is straightfondar

V. EXPERIMENTAL RESULTS

making IS perform poorly when is large.

In order to obtain a measure of variability of the IS and AIS
estimators of the marginal likelihood, we analyze the statd

The first part of this section, compares the behavior ofdeviation of the estimator dbg[p(y|6)]

IS and AIS in the case of synthetic data. The second part
of this section, reports an analysis of IS and AIS when

r = st dev {logo [F(y10)]} (14)

employed in the EA MCMC approach applied to real data.ln the experimentsy was estimated based &0 repetitions;
In all experiments, the approximation was based on thdig.[2 shows the distribution aof based or60 draws of6 from
Laplace Approximation (LA) algorithm. Also, we imposed the posteriorp(f|y) obtained from a preliminary run of an

Gamma priors on the paramete@(cla = 1.1,b = 0.1)
and Ga(r;la = 1,b = 1) for the ARD covariance and
Ga(r|a = 1,b = 1/+/d) for the isotropic covariance, where

MCMC algorithm. Ideally, a perfect estimator of the margina
likelihood would yield a degenerate distribution of over
posterior samples & at zero. In practice, the distribution of



; - In order to tune the MH proposal, we ran a preliminary
s | @ NS hom pror U | } MCMC algorithm for 2000 iterations. This was initialized
o f from the prior and the marginal likelihood in the Hastings
6] ; % H 1 ratio was obtained by the LA algorithm. The proposal was
N 5 i then adapted to obtain an acceptance rate betw@égnand
: | ‘ 30%. This set up was useful in order to avoid problems
H H in tuning the proposal mechanism when a noisy version of
- Q T ? : the marginal likelihood is used, which may lead to a poor
B = S = acceptance rate independently of the proposal mechanism.
. o . o o Tab.[] reports the average acceptance rate when switching to
n an unbiased version of the marginal likelihood obtained ®y |
or AIS for different values ofNVi,, after the adaptive phase.
Fig. 2.  This figure shows a measure of the quality of the IS an8 Al The average acceptance rate was computed basebbGin

(annealing from the prior and from an approximating distiifou obtained iterations, collected after discardir’fg)o iterations, and over
by the LA algorithm) estimators of the marginal likelihood. Thexplot 5 paraIIeI chains

summarizes the distribution of in eq.[I4 for50 values of@ drawn from
p(8ly). The results are variable across data sets and the type of
covariance, but the general trend is that employing AIS in
the EA MCMC approach improves on the acceptance rate
indicates the variability (across posterior sample§)sfiround compared to IS. In a few cases, it is striking to see how
an average value of the standard deviation of the estimditor @eplacing an approximate marginal likelihood with an usbi
the logarithm of the marginal likelihood. The represetati estimate in the Hastings ratio does not affect the acceptanc
in log,, is helpful to get an idea of the order of magnitude rate, thus confirming the merits of the EA MCMC approach.
of such a variability. For instance, a distribution ofacross In general, however, EA MCMC is affected by the use of
posterior samples o8 concentrated aroun@ would mean an estimate of the marginal likelihood. In cases where this
that, on average, the estimates of the marginal likelihg@hs happens, AIS consistently offers a way to reduce the vagianc
roughly two orders of magnitude. of the estimate of the marginal likelihood compared to 1] an
this improves on the acceptance rate.

]
T+
\

w

Fig.[2 shows the distribution of for AIS when annealing
from the prior and from an approximating distribution, ajon
with the distribution ofr for IS as in [3]. In all methods we VI.. CONCLUSIONS

set Nimp = 4. The results confirm that annealing from the  Thjs paper presented the application of annealed impor-
prior offers much poorer estimates of the marginal likelitio  tance sampling to obtain an unbiased estimate of the margina
compared to annealing from an approximating distributionjkelihood in Gaussian process classifiers. Annealed impor
and will not be considered further. Figl 2 also reveals thance sampling for Gaussian process classifiers was psyiou
_ablllty of AIS to reliably estimate the marginal likelihood proposed in [[15] where the sequence of distributions was
in GP classification, even in the case of large valuesiof constructed from the prior to the posterior over latent -vari
Furthermore, the reduction in variance of the estimate ef th gples. Given the difference between these two distribation
marginal likelihood compared to IS is exponentiakinWhen  the annealing strategy requires the use of several intérmed
comparing the computational cost of running IS and AIS,ate distributions, thus making this methodology impragdtic
instead, we notice that AlS increases it by a factor whichrhjs paper studied the possibility to construct a sequetiice o
scales only polynomially with. This is because, assuming gistributions from an approximating distribution rathéam
that the covarianc&’ is already factorized, in AIS drawing the the prior, and empirically demonstrated that, compared to
initial importance samples, iterating EIl-SS, and compyithe  jmportance sampling, this reduces the variance of the agim
weights wars costsO(n?) operations; this needs to be done of the marginal likelihood exponentially in the number ofala

as many times as the number of intermediate distributigns Crucially, this reduction comes at a cost that is only polyied

which in our case meanS(y/n) times. In IS, estimating the i the number of data. Also, annealed importance sampling ca
marginal likelihood requires the sampling of the imporenc pe easily parallelized.

samples and computing the weightss, which costsO(n?) o _ _
operations. The motivation for studying this problem was to plug the

unbiased estimate of the marginal likelihood in the Hasting
ratio in order to obtain an MCMC approach sampling from
the correct posterior distribution over covariance patanse
This section reports an analysis of the EA MCMC approachlThe results on real data show that employing importance
applied to five UCI data sets [27] when the marginal likelitoo sampling within the exact-approximate MCMC approach can
is estimated using AIS and IS. The Glass data setis mubscla be satisfactory in many cases. However, in general, antheale
and we turned it into a two class data set by considering themportance sampling leads to a lower variance estimator of
data labelled as “window glass” as one class and data labellehe marginal likelihood, and the resulting exact-appratien
as “non-window glass” as the other class. In all data setdlCMC approach significantly improves on the average ac-
features were normalized to have zero mean and unit standacgptance rate. These results suggest a promising direction
deviation. All experiments were repeated varying the numberesearch towards the development of MCMC methods where
of importance sampled,,, = 1, 10, and employing isotropic the likelihood is estimated in an unbiased fashion, but the
and ARD RBF covariance functions as in &g. 1. acceptance rate is as if the the exact likelihood were known

B. Real data



TABLE I. COMPARISON BETWEEN THE AVERAGE ACCEPTANCE RATE OBTAINED BY fiE EA MCMC APPROACH USINGIS AND AIS ON FIVE DATA
SETS THE NUMBER IN PARENTHESES REPRESENTS THE STANDARD DEVIATIOSF THE AVERAGE ACCEPTANCE RATE ACROSS FIVE PARALLEL CHAINS

Isotropic covariance

Glass Thyroid Breast Pima Banknote
n=214,d=9 n =215,d=5 n =682,d=9 n =768, d=8 n=1372,d =4
Nimp IS AIS IS AIS 1S AIS IS AIS IS AIS
1 2.8(1.6) 5.2(1.9) 1.1(1.0) 3.2(2.3) 17.9(2.4) 28.0(2.7) 24.8(1.4) 29.3(2.6) 1.1(0.6) 3.2(3.9)
10 10.4(3.1) 11.4(5.3) 4.1(3.8) 6.4(3.9) 30.5(4.1) 36.4(3.5) 30.8(2.6) 30.8(1.7) 4.7(1.0) 9.2(5.6)
ARD covariance
Glass Thyroid Breast Pima Banknote
n=214,d=9 n=215d=25 n =682,d=9 n="768d=38 n=1372,d=14
Nimp IS AIS IS AIS IS AlS IS AlS IS AIS
1 1.3(1.3) 3.6(2.3) 0.4(0.3) 2.9(1.8) 1.8(1.7) 5.0(2.5) 17.1(2.7) 22.5(3.3) 1.3(1.4) 4.7(2.1)
10 2.5(1.6) 4.9(3.2) 6.9(2.4) 6.4(2.0) 7.7(2.6) 4.5(1.8) 22.8(4.0) 24.1(3.9) 5.8(3.3) 9.2(3.1)

exactly. Given that the computational overhead scalediess [11]
the third power of the number of data, the results indicate
that this can be achieved with an acceptable computational
overhead. (12]

This paper considered GP classification as a working
example, and the Laplace approximation algorithm to obtain
the importance distribution. A matter of current investiga
is the application of the proposed methodology to other GP
models and other approximation schemes. Furthermore, thig,,
paper focused on the case of full covariance matrices. These
results can be extended to deal with sparse inverse coearian
matrices, which are popular when modeling spatio-temporafLs]
data, thus leading to the possibility to process massiveuatso
of data due to the use of sparse algebra routines. Finaity, th
paper did not attempt to optimize the annealing schemetbut 16l
would be sensible to do so in order to minimize the variance
of the annealed importance sampling estimator of the makgin (17]
likelihood [28].

[18]
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