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Abstract—In clinical neuroimaging applications where sub-
jects belong to one of multiple classes of disease states and
multiple imaging sources are available, the aim is to achieve
accurate classification while assessing the importance of the
sources in the classification task. This work proposes the use of
fully Bayesian multiple-class multiple-kernel learning based on
Gaussian Processes, as it offers flexible classification capabilities
and a sound quantification of uncertainty in parameter estimates
and predictions. The exact inference of parameters and accurate
quantification of uncertainty in Gaussian Process models, how-
ever, poses a computationally challenging problem. This paper
proposes the application of advanced inference techniques based
on Markov chain Monte Carlo and unbiased estimates of the
marginal likelihood, and demonstrates their ability to accurately
and efficiently carry out inference in their application on synthetic
data and real clinical neuroimaging data. The results in this paper
are important as they further work in the direction of achieving
computationally feasible fully Bayesian models for a wide range
of real world applications.

I. INTRODUCTION

Kernel based classifiers, such as support vector machines
(SVMs) [1] and Gaussian process (GP) classifiers [2], rep-
resent a successful class of nonlinear models for predictive
classification. Important extensions to these include multiple-
kernel learning (MKL) [3] and multiple-class (MC) classifi-
cation variants. Such variants can determine an instance as
belonging to one of multiple classes when considering multiple
representations of the same data; this is termed the multiple-
class multiple-kernel learning (MC-MKL) problem.

Several formulations of the MC-MKL problem have been
proposed in the literature [3]. While most of these algo-
rithms have been successfully employed to tackle a number
of challenging problems, there are generally difficulties in
incorporating any form of uncertainty in predictions, or in
the assessment of the relative importance of different kernels.
This can be problematic in applications, such as the ones in
clinical neuroimaging that are considered here, where little
data is available and a sound quantification of uncertainty is
of primary interest. From this point of view, approaches to
the MC-MKL problem based on a probabilistic formulation of
Gaussian Processes (GPs) have previously been proposed [4].
MC-MKL classifiers based on GPs [2] offer a reliable way
to statistically assess the importance of kernels and quantify
uncertainty in predictions, while retaining the features that
make SVM classifiers successful. Namely, the flexibility to
construct non-linear classification boundaries between classes.

In neuroimaging applications, however, given the high dimen-
sionality of the problem and the fact that the mapping of the
weights in the input space is only exact in the linear case,
kernels are particularly appealing as they offer an efficient way
to represent similarity between very high dimensional images.

Inferring the parameters (kernel weightings) of such GP
classifiers, which is key to reliably quantifying uncertainty, is
very challenging. As such, a number of approximate schemes
have been proposed that allow for the development of tractable
classification models, but can severely affect performance and
the ability to reliably quantify uncertainty. This paper applies
inference techniques based on Markov chain Monte Carlo
(MCMC) methods [5], as they offer asymptotic guarantees
of convergence to exact inference, and make it possible to
achieve results up to a given precision level in a Monte Carlo
sense [6]. Previous MCMC approaches applied to MC-MKL
classification using GPs have been proposed in [4], but they are
characterized by slow convergence speed and low efficiency.
In particular, this is due to the fact that the marginal likelihood
of GP classifiers cannot be expressed in closed form. In order
to circumvent such an intractability, this paper proposes to
extend the Pseudo-Marginal (PM) MCMC approach in [7],
where the marginal likelihood is replaced by an unbiased
estimate in the Hastings ratio, to the MC-MKL setting. An
unbiased estimate of the marginal likelihood is constructed
using importance sampling with an importance distribution
obtained by the Laplace approximation [2]. By employing this
MCMC approach, it is possible to produce samples from the
correct posterior distribution over parameters, without the need
to actually compute the marginal likelihood exactly.

By allowing for the effective sampling of the posterior
over parameters, statistical models that suitably account for
uncertainty can be constructed. This development has rele-
vance within a number of fields aiming to tackle MC-MKL
problems, and in this paper we demonstrate the applicability
of the proposed approach to clinical neuroimaging examples.
Within this context an important and emerging objective is to
be able to accurately diagnose and predict the future clinical
outcome of patients based on a number of imaging modalities
(here represented using kernels). This is a challenging prob-
lem because neurological and psychiatric diseases are often
characterised by overlapping symptom profiles and individual
variations in disease progression that make them difficult to
discriminate. Thus, a reliable measurement of classification
uncertainty is required.

The remainder of this paper is structured as follows.



Sec. II describes GPs within the MC-MKL framework. Sec. III
describes the proposed PM MCMC approach. Sec. IV reports
the experimental work, and Sec. V concludes the paper.

II. MC-MKL GAUSSIAN PROCESSES

A GP is a set of random variables, any finite set of which
is jointly Gaussian [2]. Denote by f(x) the realization of one
of these variables at input x. The GP is fully specified by a
mean function, say µ(x), and a covariance function k(x,x′).
The covariance function can be considered as the equivalent of
the kernel function in kernel machines. Due to the properties
of GPs, given a set of n input vectors {x1, . . . ,xn}, the corre-
sponding variables (f(x1), . . . , f(xn))

T are jointly Gaussian
with mean (µ(x1), . . . , µ(xn))T and covariance matrix with
entries kij = k(xi,xj).

Our approach to multiple-class (MC) classification using
GPs follows [2]. Let {(x1,y1), · · · , (xn,yn)} be a set of n
pairs, where xi is an input vector and yi its associated class. In
the case of MC problems, each yi = (y1i , . . . , y

C
i )T represents

the assignment of one input to one of C classes; if an instance
i belongs to class c, then the cth element of yi is 1 and
0 everywhere else. The model assumes that class labels are
conditionally independent given a set of class specific latent
variables f = (f11 , . . . , f

1
n, f

2
1 , . . . , f

2
n, f

C
1 , . . . , f

C
n )T. Then,

the probability πci that instance i belongs to class c is given
by the soft-max transformation:

πci =
exp(f ci )∑
c′ exp(f c

′
i )

(1)

The likelihood function is multinomial with probabilities given
by πci . We assume that each of the C class-specific sets of
latent variables has a GP prior N (f c|0,Kc). This assumption
implies a GP prior on all latent variables N (f |0,K), with K
block diagonal and with Ki on the ith diagonal block. In all,
the model can be thought of as hierarchical, where class labels
y are conditioned on the latent variables f , which in turn are
conditioned on θ.

A further extension of the classification framework using
GPs is represented by the incorporation of different sources in
the learning process. Assume that a set of d input sources are
available and that, from these, a set of d covariance matrices Sh
can be derived. To asses the importance of a given data source
in the classification task, we propose to model the covariance
associated to the GP prior of each class-specific set of latent
variables as a linear combination of the data sources:

Kc =

d∑
h=1

θchSh (2)

In this way, each θ represents a kernel weighting in the
classification process, and can thus be used as a measure of
how important a given input source is in determining a class.

A. Adaptation of covariance parameters and predictions

For some new input, say x∗, the purpose of the classifier is
to predict its label y∗. One standard and widely used approach
is to maximize the marginal likelihood with respect to θ

θ̂ = arg max
θ

[
p(y|θ) =

∫
p(y|f)p(f |θ)df

]
(3)

and approximate the predictive distribution for y∗ as follows:

p(y∗|x∗,y, θ̂) =

∫
p(y∗|f∗)p(f∗|f , θ̂)p(f |y, θ̂)df∗df (4)

Unfortunately, the integral with respect to f in eq. 3 is not
analytically tractable. A number of schemes have been pro-
posed within the context of GP models to solve this problem,
for example the Laplace Approximation (LA) [2] that we
will employ here. The LA scheme for GPs [2] attempts to
approximate the posterior over the latent variables p(f |y,θ) as
a Gaussian. This can be achieved by inspection of the second
order Taylor expansion around the mode of the logarithm of
the posterior over f . The mode can be found using Newton’s
iterative method; defining the logarithm of the posterior as Ψ,
Newton’s iterations are based on the following update:

fnew = f − (∇f∇fΨ(f))−1∇fΨ(f) (5)

starting from f = 0 until convergence.

Let Π be the matrix obtained by stacking by row the C
matrices diag(πc) each of size n × n. Also, let π and y
be the vectors obtained by concatenating all the πc and yc,
respectively. The gradient is ∇fΨ(f) = −K−1f+y−π, while
the negative Hessian reads:

−∇f∇fΨ(f) = K−1 + diag(π)−ΠΠT (6)

= + −

In the last equation we added an illustration of the structure
of the matrices, assuming three classes; grey areas indicate a
nonzero value in the corresponding matrix. Newton’s iterations
require the inversion of the negative Hessian and its multipli-
cation by the gradient. Approaching this calculation naively
would lead to a prohibitive computational cost (scaling with
the cube of the number of classes as well as with the cube of
the number of training data) and the storage of a (nc)× (nc)
matrix. By exploiting the structure of the Hessian, however, it
is possible to reduce the computational cost making it linear in
the number of classes, and storing at most n×n matrices. Full
details can be found in [2]. Denoting by q(f |θ) = N (f |f̂ , Σ̂)
the approximating Gaussian we have Σ̂−1 = −∇f∇fΨ(f̂).

This approach has two primary drawbacks: (i) parameters
are optimized and not inferred, and (ii) optimization is based
on a possibly inaccurate approximation to p(y|θ). In particular,
(i) is problematic for interpreting the parameters in a given
application and because no uncertainty in parameter estimates
is carried forward to predictions, while (ii) may lead to wrong
conclusions in the interpretation of model parameters.

B. Bayesian inference of parameters and predictions

A way to avoid the aforementioned limitations would be
to carry out a fully Bayesian treatment of the problem where
all latent variables and parameters are integrated out, giving a
predictive distribution on y∗:

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|f ,θ)p(f ,θ|y)df∗dfdθ (7)

where we dropped the conditioning on the x’s for simplicity
of notation. However, this is problematic from an analytic per-
spective, given that it requires integrating over the intractable



posterior distribution over f and θ. A tractable way to solve
eq. 7 is through MCMC methods. Denote by f (i),θ(i) the ith
of N samples drawn from p(f ,θ|y). It is then possible to
approximate the predictive distribution by means of a Monte
Carlo integration:

p(y∗|y) ' 1

N

N∑
i=1

∫
p(y∗|f∗)p(f∗|f (i),θ(i))df∗ (8)

where the remaining integral can be easily approximated using
a further Monte Carlo integration. In the limit of long runs,
MCMC simulation is known to asymptotically converge to the
exact predictive distribution [5].

While MCMC methods allow for a tractable solution of
eq. 7, the structure of the MC-MKL model means that there
is high coupling between parameters and latent variables. In
particular it is not possible to easily sample f and θ jointly,
so it is necessary to resort to sample schemes where f and
θ are sampled sequentially from p(f |θ,y) and from p(θ|f).
However, this latter sampling scheme is known to be extremely
inefficient, as the coupling between parameters and latent
variables yields a poor exploration of the posterior distribution
over θ. While the sampling from p(f |θ,y) can be done very ef-
ficiently [8], the bottleneck is represented by the sampling from
p(θ|f), as this ties the posterior distribution over parameters
to the current values of the latent variables. A number of ap-
proaches have been proposed to tackle this problem; prominent
methods to decoupling parameters and latent variables within
MCMC approaches include reparameterization techniques [8].
Such techniques mitigate the coupling effect, but low sampling
efficiency and slow convergence speed are still problematic.
Recently, a different approach to solving the coupling effect
has been proposed in [7]. In the next section we illustrate this
technique applied to MC-MKL problems using GPs.

III. PSEUDO-MARGINAL MC-MKL WITH GPS

In this section we focus on the sampling from the posterior
distribution p(θ|y). Before illustrating the idea behind the
proposed approach, we briefly present the Metropolis-Hastings
(MH) algorithm [5] used in the present work. Assuming that
p(y|θ) is available in closed form and that a prior p(θ) is
assigned to the parameters, the MH algorithm proceeds as
follows. The algorithm is initialized randomly from θ. Then, a
new set of parameters θ is proposed, say from π(θ′|θ), and this
is accepted or rejected with probability based on the Hastings
ratio [p(y|θ′)p(θ′)π(θ|θ′)]/[p(y|θ)p(θ)π(θ′|θ)]. This process
is repeated for several iterations. The first iterations (termed
the ‘burn-in’ period) are usually discarded and the rest are
used to estimate the predictive probability and to analyze the
uncertainty in the estimate of parameters. Given that p(y|θ)
is intractable, this procedure is clearly not viable, and we
propose the use of the PM MCMC approach which avoids
computing p(y|θ) exactly and still achieves samples from the
exact p(θ|y).

The PM MCMC approach is based on the results in [9],
that show that using an unbiased estimate of the marginal
likelihood p(y|θ) in the MH algorithm is enough to ensure
the algorithm samples from the exact posterior distribution
p(θ|y). Denoting by p̃(y|θ) such an unbiased estimate of

the marginal likelihood, the acceptance criterion for the MH
algorithm becomes:

min

{
1,
p̃(y|θ′)p(θ′)π(θ|θ′)
p̃(y|θ)p(θ)π(θ′|θ)

}
(9)

This effectively gets around the problem of coupling of f and
θ, as latent variables are approximately integrated out of the
model, while retaining an exact MCMC scheme. The way
we propose to obtain an unbiased estimate of the marginal
likelihood is based on importance sampling [5]. Importance
sampling is conducted by drawing Nimp samples from the
approximating distribution q(f |θ), and estimating:

p̃(y|θ) ' 1

Nimp

Nimp∑
i=1

p(y|f (i))p(f (i)|θ)

q(f (i)|θ)
(10)

Note that the variance of the importance sampling estimator
can affect the efficiency of the proposed PM MCMC approach.
In particular, it can happen that one estimate p̃(y|θ) is so large
that it makes it difficult for the MCMC approach to accept any
new proposal θ′. This effect adds to the difficulty in exploring
a potentially large parameter space, so it is important to employ
approximations to reduce variance in the estimate of the
marginal likelihood. Note also that the only significant extra
computational burden, compared to employing an MCMC
approach based on approximate marginal likelihoods, is in the
drawing of latent variables from q(f |θ), and this can be done
efficiently by exploiting the structure of the precision matrix
of q(f |θ) as discussed next.

A. Sketch of the implementation

The proposed approach requires the sampling from
q(f |θ) = N (f |f̂ , Σ̂). A naive implementation would factorize
Σ̂, or its inverse, leading to the need to store a (nc) × (nc)
matrix, which can be prohibitive even for a reasonably sized
data set with only a few classes. In this section we avoid this
by sequentially drawing the latent variables pertaining to each
class as follows:

f1 f2|f1 f3|f2, f1 . . . fC |fC−1, . . . , f1

By employing standard identities for marginal and conditional
distributions of jointly Gaussian variables, we can approach the
drawing of the latent variables by storing only n×n matrices.
Note also that the order in which variables are sampled does
not matter. Define Λ = K−1+diag(π)−ΠΠT as the precision
of q(f |θ) at the mode f̂ . Denote by Λ[i,j] the block i, j of the
matrix Λ, and by Λ[i:j,m:n] the concatenation of blocks from
i to j column-wise and from m to n row-wise.

1) Sampling f1: Using standard Gaussian identities, the
distribution of f1 is Gaussian with mean f̂1 and covariance

Λ[1,1] − Λ[1,2:C]Λ
−1
[2:C,2:C]Λ[2:C,1] (11)

= −

In the equation we highlighted the blocks of Λ involved in the
calculation, assuming a three class problem. The calculation
of Σmar requires the inversion of a potentially large matrix
Λ−1[2:C,2:C]. Following the same derivation of the Newton iter-
ations [2], this can be done by storing only n× n matrices.
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Fig. 1. Left: Latent functions drawn from the multiple-class GP model used
to generate the synthetic data set. Right: soft-max transformation of the latent
functions to obtain the probabilities of each class.

2) Sampling fr|fr−1, . . . , f1: Define f [1:(r−1)] as the con-
catenation of the r − 1 previously sampled latent variables.
The sampling from this conditional distribution can be done
by noticing that fr is Gaussian with covariance Λ[r,r] and mean

f̂r − Λ−1[r,r]Λ[r,1:(r−1)](f
[1:(r−1)] − f̂ [1:(r−1)]) (12)

This requires the factorization of Λ[r,r], which is of size n×n.

IV. EXPERIMENTAL RESULTS

In this section we present the application of our method-
ology to one synthetic data set and two real data sets. All
experiments rely on the MH algorithm applied to the logarithm
of θ. In order to ensure an efficient MCMC sampling scheme
we followed common practice and allowed for an adaptive
phase where we tuned the MH proposal variance to obtain an
acceptance rate between 20% and 30%. To assess the efficiency
of our sampler we used the Effective Sample Size (ESS) [10]
on 10,000 samples gathered after the adaptive phase for ten
parallel chains. The ESS metric is based on autocorrelation,
and is used to assess the independence between samples
generated in the MCMC sequence. A high ESS relative to the
total number of samples shows good efficiency in the scheme,
whereas a low ESS shows high correlation between samples,
meaning that the sampler is not efficiently exploring the space.

To measure the convergence of a chain on the posterior
distribution we employed the Gelman and Rubin shrink fac-
tor [11], R̂. R̂ gives an indication on the convergence of
MCMC algorithms (convergence is achieved as R̂ approaches
1), and in our experiments it was estimated based on ten
parallel chains. We report R̂ across 1000, 2000 and 10,000
iterations for the least efficient variable in each case. We also
show the average acceptance rate across all chains, as it gives
indication of a poor approximation of the marginal likelihood
using importance sampling as discussed previously.

A. Synthetic Data

A synthetic three-class data set consisting of 150 instances,
equally divided into three classes, was constructed using the
combination of two kernels with weights θ11 = θ21 = θ32 = 2
and 0 for all other class/kernel combination. The first kernel
is derived from an RBF covariance function, while the second
was derived from a linear one. Fig. 1 shows the latent functions
drawn from the model and their transformation using the soft-
max function used to generate the observed labels y. For this
analysis we used a Gamma(1, 1) prior on kernel weights and
an adaptive phase of 2000 iterations.

TABLE I. EFFICIENCY AND CONVERGENCE MEASURED OVER 10,000
SAMPLES ON THE SYNTHETIC DATA SET.

Nimp
ESS R̂ % Acc

Min (σ) Max (σ) @103 @2 · 103 @104 Rate
450 172(33) 734(40) 1.05 1.11 1.01 23.3
100 164(19) 724(85) 1.09 1.02 1.01 23.1
10 166(33) 693(103) 1.13 1.02 1.01 22.3

The posterior distribution over kernel weightings for the
synthetic data are shown in fig. 2. The results demonstrate the
ability of our method to characterize the posterior distribution
over the kernel weighting. Despite the large posterior variance,
there is an apparent distinction between kernel weights in the
first two classes and the third class, consistently with the kernel
parameters that were used to construct the data. Table I shows
the efficiency achieved by our method across the synthetic data
when varying the number of importance samples. Remarkably,
we note that decreasing the number of importance samples has
little effect on the efficiency, and that near optimal acceptance
rates are achieved across all importance sampling schemes.

B. Parkinsonian Data

The second data set consists of structural magnetic
resonance imaging (MRI) data acquired from 62 subjects
who were either healthy controls (14 subjects) or pa-
tients with one of three akinetic-rigid neurological disor-
ders (multiple system atrophy (MSA, 18 subjects), pro-
gressive supranuclear palsy (PSP, 16 subjects), or idio-
pathic Parkinson’s disease (IPD, 14 subjects)). For each sub-
ject a T1-weighted structural image was acquired using a
spoiled gradient recalled imaging sequence (SPGR). These
images were preprocessed using the SPM8 software pack-
age (www.fil.ion.ucl.ac.uk/spm), which consisted
of segmenting the images into different tissue types using
the “new segment” routine, then normalized to a standard
space using the diffeomorphic anatomical registration using
exponential lie algebra (DARTEL) toolbox [12]. Normalised
grey matter images were smoothed with an isotropic 6mm
smoothing kernel before being parcellated anatomically into
six target regions of interest (brainstem, cerebellum, caudate,
middle occipital gyrus, putamen, and one for all other brain
regions). A linear (dot product) kernel was computed from all
voxels in each of the regions, yielding a total of six kernels.
Full details on diagnostic criteria, MRI sequence parameters
and data preprocessing can be found elsewhere [4], [13].
We use the previous results in [4] as a benchmark for the
present work, which used the same data and preprocessing to
evaluate different MCMC approaches to classify between the
different disorders and to assess the importance of different
brain regions in the classification process.

It is noted that in early disease stages it can be difficult
to differentiate between the disorders present in this data set,
and that misdiagnosis is common [4], [14]. Finding sensitive
and specific neurobiological markers of disease type may
help with early diagnosis and ultimately improve outcomes
for patients, since the treatments currently available are not
equally effective in all disorders. As such, providing accurate
estimates of predictive confidence are of the utmost importance
in this application. An additional requirement is the ability
to accurately assess the usefulness of each brain region for
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Fig. 2. Left: Posterior distribution of parameters in the synthetic data example. Center: Posterior weight estimates for region data. Regions: (1)Brainstem,
(2)Cerebellum, (3)Caudate, (4)Middle occipital gyrus (5)Putamen (6)Other regions. Right: Posterior weight estimates for ADHD and ASD.

TABLE II. EFFICIENCY AND CONVERGENCE ON PARKINSONIAN DATA.

Nimp
ESS R̂ % Acc

Min (σ) Max (σ) @103 @2 · 103 @104 Rate
450 36.4(11.0) 118.4(13.0) 1.8 1.14 1.07 10.0
100 25.0(14.7) 106.4(42.0) 2.42 1.62 1.40 8.1
10 11.06(6.0) 51.3(14.3) 1.89 1.60 1.24 7.3

classification, which provides valuable information about the
differential pathology underlying the disorders.

1) Posterior Distribution: Following the same experimen-
tal procedure as in [4], we use a Gamma(2, 2) prior distribu-
tion in our MCMC sampler and allow for an adaptive phase
of 5000 iterations. The results of our method in providing a
distribution over kernel weightings for the Parkinsonian data
are shown in fig. 2. We find that the results are comparable with
those achieved in [4]. Like the reference results, we find that
there is high variance on each estimate due to the small data
set and weak prior in use. However, as discussed further in [4],
the results do show some specific features that show a good
correspondence with the known pathology of the diseases.

2) Efficiency and convergence: The efficiency of our ap-
proach on the brain region data is shown in Table II, and refers
to 15, 000 samples. Results show that the mean ESS across
all variables is quite low, being around 0.24%. In all, results
provide an indication that the MH sampler may not be well
suited to the problems investigated here. We propose that the
large parameter space plays a preponderant role in limiting
the efficiency that can be achieved by the MH algorithm.
Furthermore, the LA may also provide a poor estimation of the
distribution, thus leading to inefficiency. Despite the sampler
achieving a very low percentage of independence, we notice
that convergence is still achieved within the first 2000 samples.
In particular, we highlight that our methodology achieved
comparable convergence than the worst variable reported in
the comparative test done in [4]. This shows that, despite poor
efficiency in the sampling of the parameter, and relatively few
samples in total, our approach is still able to quickly converge.

C. ADHD and ASD data

The third data set consists of structural MRI data de-
rived from 77 adolescent subjects (aged 10-18) who were
either healthy controls (29 subjects) or patients with either
attention deficit/hyperactivity disorder (ADHD, 29 subjects)

TABLE III. RESULTS ON ADHD AND ASD DATA.

Method Nimp
ESS R̂ % Acc

Min (σ) Max (σ) @103 @104 Rate

PM
450 436(111) 677(130) 1.15 1.00 30.9
100 378(79) 725(141) 1.05 1.00 31.0
10 410(56) 637(111) 1.08 1.00 29.6

AA – 134(16) 166(13) 1.09 1.01 33.2

or autism spectrum disorder (ASD, 19 subjects). For each
subject a T1 weighted SPGR structural image was acquired,
which were preprocessed using SPM8. Similar to the previous
application, images were segmented into different tissue types
using new segment, normalised to a standard space using
DARTEL, modulated to preserve total grey matter density then
smoothed with an 8mm smoothing kernel prior to analysis.
For these data, a single linear kernel was constructed from
the normalised, smoothed whole-brain grey matter MRI data.
Full details on the subject recruitment, MRI data acquisition
and data preprocessing can be found in [15]. In [15] the LA
is used to perform multi-class classification of the disorders,
and will once again serve as a benchmark for the present work.
The motivation for this application is to quantify the capability
of MRI for discriminating between the disorders and healthy
controls and to find biological markers predictive of disease
state that can complement the behaviourally derived clinical
diagnoses. Our analysis of the MCMC chains is based on the
Gamma(1, 1) prior and 10,000 samples gathered after 5,000
iterations where the MH algorithm was adapted.

The distribution over kernel weightings for the ADHD and
ASD data are shown in fig. 2. Overall, we find that our method
provides the ability to effectively assess the weighting distri-
bution. Much like the previous two examples however, there
is little discriminative ability provided by kernel weightings,
particularly between HC and ASD patients. Regardless, the
method is still useful in developing a predictive model for
discrimination between the three classes.

1) Efficiency and Convergence: The efficiency and conver-
gence achieved by our approach on the ADHD and ASD data
are shown in Table III. The results show that the results are
only marginally affected by the number of importance samples,
and convergence is fast. Table III also reports a comparison
of the ESS and of the R̂ statistics with reparameterization
techniques, and in particular with the Ancillary-Augmentation
(AA) reparameterization as in [4]. The analysis of these



results indicate that the PM MCMC approach achieves higher
efficiency with respect to reparameterization techniques, thus
suggesting that the proposed approach is effective in breaking
the correlation between latent variables and hyper-parameters.

2) Classification performance: Before concluding this sec-
tion, we motivate the fully Bayesian treatment of MC-MKL
problems by reporting the classification performance achieved
by the proposed method. Uncertainty in model parameters is
accounted for in the predictions, as given by eq. 8, and class
labels are assigned based on the maximum of the predictive
distribution across the three classes. The confusion matrix of
the classifier, in a leave-one-out setting, results in:

Predicted
ADHD HC ASD

Actual
ADHD 22 6 1

HC 9 18 2
ASD 2 1 16

From the confusion matrix we derive a balanced accuracy
of 74.0%, which is higher than the comparable result of 68.2%
that can be achieved when employing a multiple-class GP
classifier using the LA [15]. The sensitivity of our classification
over the three classes is 75.9%, 62.1%, and 84.2%, and the
positive predictive values are 66.7%, 72.0%, and 84.2%.

V. CONCLUSION

In this paper, we showed the application of advanced
MCMC methods to the multiple-class multiple-kernel learning
(MC-MKL) problem using Gaussian Processes (GPs). We also
demonstrated this application on real neuroimaging data. The
results on the ADHD and ASD data show that the proposed
fully probabilistic MC-MKL with GPs outperforms alternate
approximate methods in terms of classification. This is con-
sistent with the results obtained in other applications of fully
Bayesian classification approaches [4], [7]. This demonstrates
the issues in carrying out approximate inference as opposed to
the proposed exact approach. Another result is in the capability
of the proposed approach of providing posterior distributions
over parameters that weight the contribution of different imag-
ing sources to the classification problem. This is important for
interpretation purposes. From the methodological perspective,
we demonstrated that it is possible to devise an exact MCMC
scheme, building upon deterministic approximations, requiring
a comparable computational cost. The results suggest that the
proposed MCMC approach yields chains that exhibit good
convergence properties in relatively few samples. Furthermore,
in some cases, good approximations to the marginal likelihood
can be achieved using relatively few importance samples.

Overall, the results are important in furthering work in
the direction of achieving feasible fully Bayesian inference
across a wide range of applications. Furthermore, our results
show some inefficiency when the sampling is carried out in
high-dimensional parameter spaces; this is due to the ineffi-
cient exploration of the random walk characterizing the MH
algorithm. As such, future work may investigate the use of
alternative sampling methodologies, such as Hybrid Monte
Carlo [5], which can produce less correlated samples, or the
use of annealed importance sampling to reduce the variance
of the estimator of the marginal likelihood as in [16]. Also,
it would be interesting to investigate the use of alternative

approximation schemes such as the recently proposed Expec-
tation Propagation algorithm for multiple-class classification
using GPs [17].
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