
1

123

November 16, 2010 DRAFT



2

A Perturbative Approach to Novelty Detection

in Autoregressive Models
Maurizio Filippone and Guido Sanguinetti

Abstract

We propose a new method to perform novelty detection in dynamical systems governed by linear

autoregressive models. The method is based on a perturbative expansion to a statistical test whose leading

term is the classicalF -test, and whoseO( 1

n
) correction can be approximated as a function of the number

of training points and the model order alone. The method can be justified as an approximation to an

information theoretic test. We demonstrate on several synthetic examples that the first correction to the

F -test can dramatically improve the control over the false positive rate of the system. We also test the

approach on some real time series data, demonstrating that the method still retains a good accuracy in

detecting novelties.

Index Terms

novelty detection, autoregressive modeling, time series,statistical testing.

I. I NTRODUCTION

Novelty detection is the problem of identifying unexpected/abnormal events in data sets based solely

on normal examples. Due to its practical importance, the problem has drawn much attention and many

approaches have been proposed, including neural networks [1], [2], extreme value statistic [3], information

theory [4], kernel and support vector methods [5], [6], [7],frequentist [8] and Bayesian [9] non-parametric

approaches (for a good review of statistical approaches fornovelty detection seee.g. [10], [11]).
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Most approaches rely on estimating some characteristics ofthe data distribution for the normal class

from training data, and then use this distribution to define a measure of how novel a test point is. Due

to the absence of information on the distribution of novel events, any novelty detection system will

necessarily label some normal data as novel (false alarms),and an important characteristic of the system

is its ability to accurately predict the rate with which false alarms will be raised. Depending on the

application, it is important to balance the cost of letting some novelties be undetected, and the cost of

raising too many false alarms.

Of particular interest is the problem of identifying novelties in time series due to its many applications

ranging from condition monitoring in health-care [12], [13] to fault detection in engineering [14], [15],

[16], [17]. We can distinguish between two subtly differentgoals when dealing with novelties. One is

identifying novelties in order to mitigate their effect on parameter estimation. In other words, the outliers

are assumed to contaminate the series under study and the goal is to cope with that in the modeling

stage. In this kind of approach, the learning system can be set up off-line, and is often referred to outlier

detection. In the context of time series, many approaches have been proposed with this aim [18], [19],

[20], [21], [22], [23]. Another goal, instead, is learning amodel from a set of data that is considered

normal. In this case, the assumption is that the data used to train the learning system constitute the

basis to build a model of normality and the decision process on test data is usually online and based on

the model of normality [24], [25], [26], [27], [28]. Equally important is the distinction between event-

based and model-based novelties. Event-based novelties, also known asAdditive Outliers(AO), are single

observations that deviate from the norm. Model-based novelties, also known asInnovation Outliers(IO),

instead, arise when the system changes its behavior over time. Typically, when a model is constructed,

this problem is translated in the identification of changes inthe model parameters.

In this paper, we consider the online identification of event-based novelties in stationary linear autore-

gressive models with Gaussian noise. These constitute an important and broadly used class of dynamical

systems where each observation is modeled as a linear combination of previous observations plus a

normally distributed noise term. We approach this problem by using a perturbative approximation to

an information theoretic measure, recently introduced in [4] for i.i.d. data. Specifically, we consider an

approximation to theinformation content(for the definition see Section II) of a new element of the

series. This is defined by considering the Kullback-Leibler (KL)divergence between the estimates of the

distributions of the stochastic term obtained before and after the new point is considered.

The KL divergence has been used with success in many areas of statistics [29], from model identification

to approximation in Bayesian inference. In this paper, we intend to use it to motivate our proposed measure
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of the information content of a new data point.

We approximate such a measure by expanding it in powers of theinverse of the sample size about the

true (unknown) parameter values. This procedure yields a modified F -test which is able to more accurately

incorporate the variability introduced by finite sample sizeeffects. We test the model on a variety of

synthetic examples exploring a wide range of parameter values and model orders, and comparing with

a number of competing methods. This indeed confirms that the proposed approach does lead to a tight

control over the false alarm rate, while retaining a competitive ability to highlight true positives. We

also explore the robustness of the method to violations of its assumptions, testing on data generated by

non-Gaussian non-linear autoregressive models. The model is still shown to perform well at controlling

the false positive rates, although the non-Gaussian natureof the data leads to a slightly over-conservative

bias. We then test our model on two historic time series from an environmental and a financial data sets

and show that our approach is still able to capture exceptional events corresponding to true event-based

novelties.

In the i.i.d. case presented in [4], the information contentof a new data point was measured using

the KL divergence between the estimated distribution on thetraining data and the one when a new test

point was added. The motivation for using the KL divergence totest for novelties lies in its connections

with Neyman-Pearson lemma [30]. It has been shown that in the Gaussian case, such an approach is

analytically tractable and yields a test that is related to the F -test [4]. In the case of mixture models, it

has been necessary to resort to some approximations and sampling to obtain a test for novelties. In this

paper, instead, we approximate the information content of anew data point by obtaining an analytical

correction to anF -test on the stochastic terms. The motivation for applying the test on the stochastic

terms, rather than the full process, is that it requires the computation of the KL divergence between

univariate Gaussians, which is more easily evaluated than the multidimensional divergences that would

be obtained using the full process.

The paper is organized as follows: in Section II we sketch the derivation of the proposed statistical

test for novelty detection for linear autoregressive models; in Section III we show some experiments on

synthetic and real data sets; in Section IV we draw the conclusions. The full derivation of the method is

reported in the Appendix.
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II. STATISTICAL TESTING FORAR(d) TIME SERIES WITH I.I .D. GAUSSIAN NOISE

A. Parameter Estimation

Let us consider a time seriesX = {x1, x2, . . . , xn}. A linear autoregressive modelof orderd (AR(d))

describes each observation as a linear combination ofd past observations plus a stochastic term. In other

words, anAR(d) model can be written as:

xt+1 =
d
∑

j=1

αjxt+1−j + εt+1 + µ = αT
xt + εt+1 + µ (1)

having introduced the vectors:

xt = (xt, xt−1, . . . , xt−d+1)

The d coefficients of the linear combination are contained in the vector α = (α1, . . . , αd). The terms

εt+1 are i.i.d. and distributed as aN (0, γ2). The valueµ allows to model series with non-zero mean. In

the following, we will assume that the process is stable.

By imposing the first order stationarity ofE[xt], that ism = E[xt] ∀t:

E[xt+1] =
d
∑

i=1

αiE[xt+1−i] + E[εt+1] + µ

we obtain:

m =
µ

1 −
∑d

i=1 αi

which is well defined due to the stability assumption. There areseveral well established methods for

system identification in linear autoregressive models [31];in the following, we will use the Yule-Walker

method for estimating the parameters of the model. In particular, we define the following correlations:

ck = E[(xi+1 − m)(xi+1−k − m)] =
d
∑

j=1

αjc|j−k| ∀k = 1, . . . , d

Introducing the vectorc = (c1, c2, . . . , cd)
T and the correlation matrixC:

C =

















c0 c1 . . . cd−1

c1 c0 . . . cd−2

...
...

...
...

cd−1 cd−2 . . . c0

















we see thatc = Cα, hence:

α = C−1
c (2)

provided thatC−1 exists.
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When we observe a time seriesX comprisingn observations, we can estimateα by replacing the

elements ofc andC in Eq. 2 by the sample correlations which are the unbiased estimators of the true

correlations:

ĉk =
1

n − d

n−1
∑

i=d

(xi+1 − m̂)(xi+1−k − m̂)

where m̂ is the mean value of the series. At this point we can pose the problem of estimating the

parameters in this way [31]:

α̂ = Ĉ−1
ĉ (3)

Once we havêα, we can estimate the other parameters of the modelµ andγ.

µ̂ = m̂(1 −
d
∑

i=1

α̂i) (4)

Defining the estimated stochastic term as

ε̂i+1 = xi+1 − α̂
T
xi − µ̂ (5)

we obtain the following expression for the estimated variance of the stochastic term [31]

γ̂2 =
1

n − d

n−1
∑

i=d

(ε̂i+1)
2 . (6)

B. Information theoretic measure for novelty detection

The main tool that we will consider in this section is theKullback-Leibler (KL) divergencebetween

two distributionsp(x) andq(x), also known asrelative entropy, defined as:

KL [p(x)‖q(x)] =

∫

p(x) log

[

p(x)

q(x)

]

dx. (7)

The KL divergence is often characterised as an information theoretic quantity as follows (for a com-

prehensive overview see, e.g., [29], [32], [33]): considersome unknown distributionp(x), and suppose

we wish to use another (simpler) distributionq(x) to build a coding scheme to transmit values ofx

to a receiver. In the assumption of an efficient coding scheme,the KL divergence measures how many

bits per symbol are wasted by using the coding scheme based onq(x) instead ofp(x). As perfect

compression can be achieved only whenq(x) andp(x) coincide almost everywhere, we see that the KL

divergence is always positive and provides a measure of the dissimilarity betweenp(x) and q(x). This

can be interpreted as the amount of information about the true distribution which is lost by adopting

the approximating distributionq(x). Note, however, that the KL divergence is not a metric, as it is not

symmetric and does not satisfy the triangular inequality.
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In [4] we proposed a novelty detection method for i.i.d. databased on the idea of measuring the

information content of a new data point. To define this information content, we considered the following

case: let us assume a parametric generative model for the observations given by a probability distribution

p(x|θ). Let us assume we have a training setX and a pointx∗ we wish to test for novelty. Let̂θ be

the maximum likelihood estimate of the parameterθ obtained using the training set only, andθ̂∗ be the

estimate using the augmented set{X, x∗}. The information content of the new pointx∗ was then defined

as

I(x∗) = KL[p(x|θ̂)‖p(x|θ̂∗)].

Remarkably, the distribution of this quantity resulted to be analytically computable in the Gaussian case,

yielding a test which isindependentfrom the statistics of the generating distribution, and dependent only

on the dimensionality and number of available data points. This test turned out to be closely related to

the classicalF -test, but the new interpretation allowed us to extend this concept to non-trivial cases such

as the mixture of Gaussian case.

C. Perturbative measure for novelty detection

In this Section, we introduce the measure for novelty detection we intend to use. We start our

discussion from the information theoretic measure for novelty detection based on the KL divergence.

Unlike the i.i.d. Gaussian case, the complex dependence of the AR parameters on the data means that

the information content cannot be analytically computed. We therefore replace it with a simpler measure

which approximates it well in the regions of large deviance,i.e. for points that are likely to be novel.

We consider the effect of the addition of a new pointx∗ to the training setX on the estimation of

the parameters of the AR model, in the null hypothesis that the new pointx∗ is generated by the same

stochastic process as the training set. We denote the updated parameters bŷα∗, µ̂∗, and γ̂2
∗ , and the

stochastic terms bŷε∗i+1. Note that to simplify the notation we will useεn+1 = ε∗ in the sums to denote

the stochastic term associated toxn+1 = x∗.

To estimate the impact of the new point on the identification ofthe process, we compute the Kullback-

Leibler divergence between the distribution of the stochastic term when estimated with and without

x∗ [29]

IKL(x∗) = KL
[

N (ε|0, γ̂2)‖N (ε|0, γ̂2
∗)
]

=

∫

N (ε|0, γ̂2) log

[

N (ε|0, γ̂2)

N (ε|0, γ̂2
∗)

]

dε. (8)

Recalling the information-theoretic interpretation of the KL divergence, and remembering that asymptoti-

cally ML estimates converge to the true values, we see that one could interpretIKL(x∗) as the amount of

information about the true process that is gained through the addition of the new data point. Therefore,
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we interpret the quantityIKL(x∗) as theinformation contentof the new point given a training setX,

and in the following we will use an approximate expression for it that will be more easy to analyze.

Notice that, to alleviate the notation, the dependency on the training set is not indicated explicitly in

the following. The rest of the paper is devoted to deriving a tractable approximation of this information

content that can be used for statistical testing purposes.

The KL divergence between two Gaussian distribution is readily obtained from its definition and yields:

IKL(x∗) =
1

2

[

log

(

γ̂2
∗

γ̂2

)

− 1 +
γ̂2

γ̂2
∗

]

(9)

The information content measured in this way is a function of the ratio γ̂2
∗

γ̂2 only. This consideration

forms the basis of the proposed perturbative approach. Assuming that the ML estimates for the parameter

γ are not dramatically changed by the addition of the new pointx∗, we see that the dominant term in

equation (9) is a monotonic function of

I(x∗) =
γ̂2
∗

γ̂2
, (10)

which is a much easier expression to analyze. It should be noted, however, that we are replacingIKL(x∗),

a non-monotonic function in the ratioγ̂
2
∗

γ̂2 , by a monotonic function of it. This is exemplified in Fig. 1,

which shows the KL divergence (left panel) and the devianceẑ2 (right) in the i.i.d. case as a function

of a new pointx∗ (the deviance is defined as the squared distance of the new point from the estimated

meanµ̂, divided by the estimated variancêσ2 and it is connected to the ratio of the estimated variances
γ̂2
∗

γ̂2 [4]). As expected, the KL divergence is minimal when the distance between the new point and the

true mean is about one standard deviation. It then rises slightly when the new point is very close to its

mean value; this highlights that new points very close to themean carry as much information as points

at about one and a half standard deviation from the mean. We see from Fig. 1, however, that bothI(x∗)

andIKL(x∗) are monotonic in a large region on the tails of the distribution, corresponding to about30%

of the total area of the Gaussian. Therefore, in realistic novelty detection scenarios, we see that testing

the tails of the KL distribution or testing the tails of the distribution of the noise ratioγ̂
2
∗

γ̂2 is essentially

equivalent.

For this reason, from now on we will focus onI(x∗) as a measure of information content. Making

use of equation (6), we can rewrite this in terms of the estimated stochastic terms as

I(x∗) =
n − d

n − d + 1

∑n
i=d

(

ε̂∗i+1

)2

∑n−1
i=d (ε̂i+1)

2 (11)

When x∗ has an additive stochastic term falling in regions of low density of N (0, γ2), its information

content will be unexpectedly high. In general, this method is not able to detect changes in the distribution
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Figure 1. KL divergence (left panel) and devianceẑ2 = (x∗−µ̂2)

σ̂2 (right panel) for i.i.d. Gaussian data.

of the process; instead, it is designed to analyze the degreeof novelty of the stochastic contribution of

x∗. Setting a threshold on the distribution of the information content would allow to flag such situations.

The information content measured through the KL divergence will be a distribution with respect to the

training setX and the test pointx∗. The threshold can be set on the basis of the quantiles of such a

distribution whenx∗ comes from the same model as the data points inX. In this case, in the same spirit

of statistical testing, the area of the density function starting from the threshold has to be set on the basis

of the percentage of normal data points that we are willing toflag as novel (false positives).

As we will see shortly, the distribution ofI(x∗) with respect toX andx∗ is not tractable. We propose

an approximation scheme in order to approximate it, leadingto a tractable novelty detection method for

linear autoregressive time series.

D. Proposed novelty detection method for autoregressive time series

The strategy that we will follow to obtain a tractable test fornovelty detection can be summarized in

the following steps:

1) expandI(x∗) in terms of the true values of the parameters;

2) simplify I(x∗) by using Taylor expansions;

3) neglect random variables with zero expectation and orderhigher than the second in1/n (I(x∗)

itself is a function inO(1/n));

4) I(x∗) results in aF -distributed variable with a multiplicative correction term;

5) approximate the multiplicative term by its expectation.
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We will present these steps here, and will include few mathematical details in the appendix for clarity.

1) Step 1: We start by writing the estimates of the various parameters as their true values plus a

correction term due to the fact that the estimation is based on a finite set of observations; for example,

for the linear coefficients, we have

α̂ = α+ ∆α α̂∗ = α+ ∆α∗.

Since our test will be essentially based on testing the stochastic term in a new point in the series, we

are particularly interested in the estimates of the stochastic terms

ε̂i+1 = εi+1 + ∆εi+1 ε̂∗i+1 = εi+1 + ∆ε∗i+1 (12)

From the definition of̂εi+1:

∆εi+1 = −∆αT
xi − ∆µ (13)

We are interested in making explicit the dependence of the terms in this equation on the training and

test data points. By using the model assumptions, we can rewrite the entrieŝck as

1

n − d

n−1
∑

i=d





d
∑

j=1

αjxi+1−j + εi+1 + µ − m̂



 (xi+1−k − m̂)

After some computations, we obtain̂c = Ĉα+ψ, where we introduced the vector:

ψ =
1

n − d

n−1
∑

i=d

(

εi+1 − µ
∆m

m

)

(xi − m̂e)

wheree = (1, 1, . . . , 1). If we rewrite the estimatêα = α+ ∆α, we identify ∆α = Ĉ−1ψ.

Introducingδji = (xj − m̂e)Ĉ−1(xi − m̂e), we finally obtain:

∆εi+1 =
µ∆m

m(n − d)

n−1
∑

j=d

δji −
1

n − d

n−1
∑

j=d

εj+1δji − ∆m
µ

m
(14)

2) Step 2:Substituting the relations (12) into the computations ofγ̂2 andγ̂2
∗ allows to show explicitly

the dependencies from the stochastic termsεi+1 and their corrections∆εi+1 and∆ε∗i+1. Defining:

k =
n−1
∑

i=d

(∆εi+1)
2 + 2

n−1
∑

i=d

εi+1∆εi+1 (15)

k∗ =
n
∑

i=d

(∆ε∗i+1)
2 + 2

n
∑

i=d

εi+1∆ε∗i+1 (16)

we get:

I(x∗) =
n − d

n − d + 1

∑n
i=d ε2

i+1
∑n−1

i=d ε2
i+1





1 + k∗

P

n

i=d
ε2

i+1

1 + k
P

n−1

i=d
ε2

i+1



 (17)
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We compute an approximation ofI(x∗) by using the Taylor expansion of the term in brackets in

Eq. 17, and the following Taylor expansion:

1
∑n

i=d ε2
i+1

≃
1

∑n−1
i=d ε2

i+1

(

1 −
ε2
∗

∑n−1
i=d ε2

i+1

)

(18)

Letting k∗ = k + ∆k and substituting equation (18) into equation (17) we obtain

I(x∗) ≃
n − d

n − d + 1

(

1 +
ε2
∗

∑n−1
i=d ε2

i+1

)[

1 +
∆k

∑n−1
i=d ε2

i+1

−
k

∑n−1
i=d ε2

i+1

ε2
∗

∑n−1
i=d ε2

i+1

]

(19)

In this operation we are neglecting terms having expectation in O(1/n3); a detailed analysis of the rates

of convergence of the various terms in equation (19) is givenin the appendix. Also, the same analysis

shows that the standard deviation of the various terms decays with the same order inn, hence giving a

weak convergence result.

3) Step 3: The expression for the approximate information content given in equation (19) is made

up of six terms. The first term is a constant offset termn−d
n−d+1 . The second term is proportional to the

ratio ε2
∗

P

n−1

i=d
ε2

i+1

; since the (true) stochastic termsε are all independent, the distribution of this term is

recognized as anF random variable with1 andn − d degrees of freedom,

ε2
∗

∑n−1
i=d ε2

i+1

∼
1

n − d
F(1,n−d). (20)

The expectationE
[

∆k
P

n−1

i=d
ε2

i+1

]

can be shown to be vanishingly small (see the appendix for details);

therefore, we neglect the two terms involving ∆k
P

n−1

i=d
ε2

i+1

. Finally, the term

ε2
∗

∑n−1
i=d ε2

i+1

k
∑n−1

i=d ε2
i+1

ε2
∗

∑n−1
i=d ε2

i+1

∼ O

(

1

n3

)

and is therefore neglected. The remaining term k
P

n−1

i=d
ε2

i+1

ε2
∗

P

n−1

i=d
ε2

i+1

is the main proposed correction and

is analyzed in detail in the following step.

4) Step 4:The remaining correction term contains the sameF -distributed variable, and is multiplied

by a random variable that we will replace by its expectation:

I(x∗) ≃
n − d

n − d + 1

(

1 + τ
ε2
∗

∑n−1
i=d ε2

i+1

)

(21)

with

τ = 1 − E

[

k
∑n−1

i=d ε2
i+1

]

(22)

In this step we are neglecting the covariance between theF -distributed variable ε2
∗

P

n−1

i=d
ε2

i+1

and k
P

n−1

i=d
ε2

i+1

.

In our experimental investigation, this covariance did seem to be indeed negligible, except when the values

of the autoregressive parametersα were very close to boundary of the region of stability (|(1−α)| ∼ 0).
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Table I

PSEUDO-CODE OF THE PROPOSED NOVELTY DETECTION METHOD FOR AUTOREGRESSIVE TIME SERIES.

1) set the false positive rateρ;

2) estimate the parameters of anAR(d) time series onX;

3) computeFρ that is the(1 − ρ)-th quantile of anF(1,n−d);

4) compute the thresholdθρ corresponding to the rejection rateρ:

θρ =
n − d

n − d + 1

»

1 +
1

n − d
Fρ

„

1 +
d

n − d
+

1

n

«–

5) compute the ratioγ̂
2
∗

γ̂2 given a new observationx∗;

6) if ( γ̂2
∗

γ̂2 > θρ) then flag x∗ as outlier

7) else flag x∗ as normal

5) Step 5: The computation of the expectationτ up to the first order in1/n is straightforward but

somewhat intricate, and is given in the appendix. The final result is a simple correction involving solely

the size of the training set and the order of the autoregressive model

τ ≃ 1 +
d

n − d
+

1

n
(23)

After this analysis, we obtain anF -test for the ratio with a correction that depends only onn, andd.

Finally, the test we propose is based on:

I(x∗) ≃
n − d

n − d + 1

[

1 +
1

n − d
F(1,n−d)

(

1 +
d

n − d
+

1

n

)]

(24)

Fig. 2 illustrates the steps of the approximation ofI(x∗) as a function ofε∗ for anAR(4). As we can see,

the dark shaded area in the bottom-right plot, that represents the final approximation in Eq. 24, captures

quite well the distribution of the trueI(x∗) over different resampling of the series (light shaded area).

Also, the difference between the approximations in Eq. 24 andEq. 21 is hardly noticeable, showing that

the last step of the approximation is fairly accurate.

Setting a rejection rate, we can easily compute the quantilesof I(x∗). Such quantiles are a simple

combination of the quantiles of anF distribution,n, andd. For large values ofn, the correction terms

vanish, leaving theF -test only as we would expect, since the estimates of the stochastic terms will

converge to the true ones. For small values ofn, the correction allows to cope with the fact that the

parameter estimation has been performed on a short time series. In Tab. I, we report the steps comprising

the novelty detection method for autoregressive time series.
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Figure 2. Visualization of the approximation steps ofI(x∗) as a function ofε for anAR(4) with α = (0.3,−0.2,−0.1, 0.05).

The shaded areas represent values between the first and third quartileof the distribution over1000 repetitions where we

resample a series ofn = 50 points. Top-left: the true distribution ofI(x∗). Top-right: approximation in Eq. 19 (dark gray) over

the true distribution ofI(x∗). Bottom-left: approximation in Eq. 21 (dark gray) over the true distributionof I(x∗). Bottom-right:

approximation in Eq. 24 (dark gray) over the true distribution ofI(x∗).

III. E XPERIMENTAL RESULTS

A. Competing methods

We compare the proposed method, that we will denote as PM (Perturbative Method), against three

others that we will call ML (Maximum Likelihood),F -test, and MP (Ma and Perkins [26]).

1) ML: In the ML method, we consider the following residual:

ε̂∗ = x∗ − α̂
T
xn − µ̂ (25)
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and treat the estimated parameters as the true ones. In this case, ε̂∗ is compared to the quantiles of

N (0, γ̂2) corresponding to the selected false alarm rate.

2) F -test: The F -test method, instead, is based on the classical statistical F -test, which is the most

powerful test for i.i.d. Gaussian data. We will test the ratio γ̂2
∗

γ̂2 without the correction term given by the

variability in the parameters thus assuming that the estimate of the stochastic terms are distributed as the

true ones:
γ̂2
∗

γ̂2
∼

n − d

n − d + 1

[

1 +
1

n − d
F1,(n−d)

]

(26)

3) MP: The algorithm proposed by Ma and Perkins [26] is based on One-Class SVMs [34] (1-SVM).

The methods starts by embedding the time series in ad dimensional space by sliding a window of length

d over it. Once the set ofn− d + 1 vectors is obtained, 1-SVM with a Gaussian kernel having variance

σ2 and upper bound on the fraction of outliersν is applied. This leads to a decision function on whether

the vectors fall in a “normal” region or not. When a vector falls in the “outlier” region, all its time points

are flagged as outliers. Ma and Perkins suggest to run such procedure for different values ofd and flag a

time point when it resulted in a novel vector for all the tested dimensions. Given that the time series will

have temporal correlations, it has been proposed to projectthe d-dimensional vectors on the hyperplane

having normal vectore = (1, 1, . . . , 1). In the experiments, we tested both the unprojected and projected

versions; in the experiments, we found that the projected version achieves better performances than the

unprojected one in terms of accuracy and false positive rate. Therefore, we will report the results for

the projected version only. Unfortunately, [26] does not provide any guidelines on how to setσ and the

values of the dimensions. Since the number of possible combinations of such parameters is too large to be

explored meaningfully, we decided to set the variance of thekernel automatically; therefore for different

dimensions, the kernel will assume different values (in contrast to what shown in [26]). We follow the

idea that we want to capture the inner region of the vector representation as the normal region. For this

reason, we compute an empirical distribution of the squaredpairwise distances among the data vectors,

and setσ2 to correspond to its95-th percentile. We set the upper bound of outliers in 1-SVMν = ρ

(ρ is the false positive rate we are willing to tolerate - Tab. I). The values ofd for which we test the

algorithms are reported for each series throughout the paper.

B. Synthetic data sets

1) Known model order - Test series without novelties:We check the behavior of the proposed method

on a set of four synthetically generated linear autoregressive time series with different orders and

parameters (see Tab. II).
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Table II

PARAMETERS OF THE FOUR SYNTHETIC TIME SERIES. U[−0.1,0.1] STANDS FOR THE UNIFORM DISTRIBUTION IN THE

INTERVAL [−0.1, 0.1].

d µ γ α

Synth1 1 2 0.1 (0.3)

Synth2 5 1 0.5 (0.18, 0.13, 0.12,−0.14,−0.13)

Synth3 10 −3 0.2 αi ∼ U[−0.1,0.1]

Synth4 50 0.5 0.1 αi ∼ U[−0.1,0.1]

The goal of this analysis is to see if the proposed method is able to achieve, on average, the expected

false alarm rate. We perform this analysis generating a training time series of lengthn and a test series

of length 105 drawn from the same model parameters. We use the algorithm inTab. I for all the test

points and we compute the number of points of the test series flagged as novel. Since the test series is

generated using the same parameters, the points that are flagged as novel are false positives. In this way,

we obtain the false alarm rate for a specific training series oflength n. We repeat such procedure for

different values ofn and we average the false positive rate over200 repetitions for each value ofn; in

each repetition we generate a new training series of lengthn.

We generate the time series using the linear autoregressivemodel presented in Section II (Eq. 1). In

order to sample from a stationary process, we generated values from aN (µ/(1−
∑d

i=1 αi), γ
2) followed

by a burn-in period of1000 samples. The results on the average false alarm rate are reported in Fig. 3 for

the four sets of parameters generating the series for a falsealarm rate of1%. Similar figures are obtained

for different rejection rates. In the MP method we selectedd = 2, 3, 4, 5 for Synth1,d = 3, 5, 7, 9 for

Synth2,d = 3, 7, 11, 15 for Synth3, andd = 3, 15, 35, 55 for Synth4.

While all methods except MP reach the desired level of false positive rate for large training sets, PM

performs consistently better than all other methods when the size of the training set is small. We notice

that the MP method particularly suffers from small sample problems; we hypothesize that this is due to

difficulties in selecting the appropriate kernel parametersand the set of dimensions for small training set

sizes. Also, notice that MP does not seem to converge to the correct false positive rate for large training

sets.

2) Unknown model order - Test series without novelties:In this section we report the result of applying

the novelty detection algorithms on the four time series in Tab. II, but we do not assume to know the
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Figure 3. A comparison of the average false alarm rate between the proposed method and the competing ones when the model

order is known. The false alarm rate was set to1%. Top-left: Synth1, top-right: Synth2, bottom-left: Synth3, bottom-right:

Synth4.

model order. We repeat the same procedure as in the former case, but every time that we sample a

training set of sizen, we estimate the model orderd. We choose the value ofd that maximizes the

Akaike information criterion(AIC) [35]. The averages of the false alarm rate over200 repetitions are

reported in Fig. 4 for a1% rejection rate. In the MP method we selected the values ofd as in the former

section.

3) Known model order - Test series with novelties:In this section we study the behavior of the

novelty detection methods on a time series where the test series has been contaminated by some noise.

In particular, we generate the test time series by using the same autoregressive model, but letting5% of

the times a stochastic term to be generated from a Gaussian with standard deviation that is4γ instead

November 16, 2010 DRAFT



17

1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

log(n)

av
er

ag
e 

fa
ls

e 
al

ar
m

 r
at

e
PM
ML
F−test
MP

2.0 2.5 3.0

0
2

4
6

8

log(n)

av
er

ag
e 

fa
ls

e 
al

ar
m

 r
at

e

PM
ML
F−test
MP

2.0 2.5 3.0 3.5

0
2

4
6

log(n)

av
er

ag
e 

fa
ls

e 
al

ar
m

 r
at

e PM
ML
F−test
MP

2.4 2.6 2.8 3.0 3.2 3.4 3.6

0
1

2
3

4
5

6
7

log(n)

av
er

ag
e 

fa
ls

e 
al

ar
m

 r
at

e

PM
ML
F−test
MP

Figure 4. A comparison of the average false alarm rate between the proposed method and the competing ones when the model

order is unknown and estimated maximizing the AIC. The false alarm rate was set to1%. Top-left: Synth1, top-right: Synth2,

bottom-left: Synth3, bottom-right: Synth4.

of γ. In Tab. III, we report the true positive rate (TP), false positive rate (FP) and accuracy (ACC)

(quartiles over200 runs) achieved by the tested methods, for different training set sizes and rejection

rates. In the MP method we selected the values ofd as in the former sections. To assess statistically the

difference between the various methods, we performed two-samplet-tests pairwise between the empirical

distributions of the FP, TP and ACC results obtained by the various methods on the synthetic data sets

(this was not done in the case of Synth1 as the scores were strongly non-Gaussian, making at-test less

meaningful). We see that the proposed method gives significant improvements over all the other methods

(at 1% significance) in terms of controlling FP rates (as could be expected, since this was its purpose)

but also in terms of overall accuracyin all cases. Although we could not perform a statistical test on the
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Table III

FALSE POSITIVE RATE (FP), TRUE POSITIVE RATE (TP), AND ACCURACY (ACC) FOR SELECTED VALUES OFn AND

REJECTION RATEρ. IN EACH CELL, WE REPORT THE VALUES OF THE MEDIAN AND IN PARENTHESIS THE FIRST AND THIRD

QUARTILE, COMPUTED OVER200 REPETITIONS. A t-TEST, WITH 1% SIGNIFICANCE, HAS BEEN RUN ON THE DISTRIBUTIONS

OF FP, TP,AND ACC WHEN THE CORRESPONDING NORMAL QUANTILE PLOT SHOWED REASONABLE NORMALITY BY

VISUAL INSPECTION (ALL EXCEPT THOSE OFSYNTH1); IN THESE CASES THE RESULTS THAT ARE SIGNIFICANTLY BETTER

THAN THE OTHERS ARE HIGHLIGHTED IN BOLD.

Synth1 ρ = 0.01 n = 10

FP TP ACC

PM 0.010 (0.002, 0.036) 0.451 (0.384, 0.507) 0.962 (0.941, 0.967)

ML 0.054 (0.026, 0.129) 0.584 (0.527, 0.630) 0.928 (0.859, 0.952)

F -test 0.016 (0.005, 0.056) 0.490 (0.425, 0.545) 0.957 (0.924, 0.965)

MP 0.707 (0.529, 0.827) 0.882 (0.788, 0.931) 0.321 (0.211, 0.489)

Synth2 ρ = 0.05 n = 100

FP TP ACC

PM 0.064 (0.049, 0.079) 0.626 (0.608, 0.646) 0.920 (0.908, 0.935)

ML 0.077 (0.059, 0.092) 0.642 (0.621, 0.659) 0.910 (0.896, 0.925)

F -test 0.073 (0.056, 0.088) 0.637 (0.617, 0.655) 0.913 (0.899, 0.928)

MP 0.094 (0.075, 0.119) 0.554 (0.514, 0.586) 0.888 (0.866, 0.905)

Synth3 ρ = 0.01 n = 100

FP TP ACC

PM 0.019 (0.012, 0.028) 0.512 (0.488, 0.535) 0.958 (0.950, 0.963)

ML 0.030 (0.020, 0.041) 0.542 (0.521, 0.565) 0.949 (0.939, 0.957)

F -test 0.027 (0.018, 0.037) 0.534 (0.513, 0.557) 0.952 (0.942, 0.959)

MP 0.071 (0.054, 0.102) 0.468 (0.416, 0.531) 0.905 (0.880, 0.919)

Synth4 ρ = 0.05 n = 1000

FP TP ACC

PM 0.061 (0.056, 0.066) 0.625 (0.620, 0.630) 0.924 (0.919, 0.928)

ML 0.068 (0.063, 0.073) 0.634 (0.629, 0.639) 0.917 (0.912, 0.921)

F -test 0.068 (0.063, 0.073) 0.634 (0.629, 0.639) 0.917 (0.913, 0.922)

MP 0.100 (0.090, 0.107) 0.501 (0.485, 0.513) 0.881 (0.874, 0.889)

results obtained on Synth1 data set, it is quite clear that theproposed method achieves a better control

of the false positive and higher accuracy compared to the other methods.

4) Nonlinear autoregressive time series with non-Gaussiannoise: The method that we propose has

guarantees to provide reliable results when dealing with linear autoregressive models in a neighborhood
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Figure 5. A comparison of the average false alarm rate on two nonlinear non-Gaussian time series (Left: series in Eq. 27 -

Right: series in Eq. 28). The false alarm rate was set to1%. In the left panel, the results from the MP method are not shown

since they are very poor.

of the unknown true model order. In this section, we study twoscenarios where the models are not linear

with non-Gaussian stochastic noise, in order to check how these assumption affect the performances in

terms of false positives. The two series we considered are thefollowing:

xt+1 = −0.1 xt + 100xtxt−1 + εt+1 (27)

with εt+1 ∼ 0.4N (−0.0015, 0.0012) + 0.6N (0.001, 0.00052), and

xt+1 = exp(−|xt + xtxt−1|) + εt+1 (28)

with εt+1 ∼ 0.3N (−0.14, 0.052) + 0.7N (0.06, 0.12). In both cases it is easy to verify thatE[ε] = 0. In

Fig. 5 we report the average false positive rate over200 repetitions for different values ofn. Again, we

estimate the model order by maximizing the AIC. In the MP method we setd = 2, 3, 4, 5 for both the

series. It is interesting to notice that forn large, ML, PM, and theF -test converge to a biased solution,

where the average false alarm rate is slightly different from the expected one.

C. Real data sets

In this section, we show two applications of the proposed novelty detection method on real time series.

The first data set we consider contains the yearly average level(measured in feet) of lake Huron in the

northern U.S.A. from 1875 to 1972 (Fig. 6). We train the model onthe first 50 years (the vertical solid

line in Fig. 6 shows the division between training and the testsets); we estimate the model order by
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Figure 6. Novelty detection on the lake Huron data set. The dotted lines are placed on the years identified as novel: 1929,

1931, and 1960.

choosing the model that maximizes the AIC. In this case, we obtained an autoregressive model of order

d = 1. The proposed method, when we set the rejection rate to1%, identifies three novelties in the test

data (denoted with a black dot), corresponding to the years 1929, 1931, and 1960. The first novelty has

been discussed in the geographical literature in Ref. [36].The other two novelties can be ascribed to

unusual precipitation levels in the Michigan area in the previous year1.

The second data set contains the daily closing value of the FTSE 100 index in the period from

January, 1st 2007 to January, 1st 2009. The index is recorded only during working days; therefore, the

series contains253 data points for each year, leading to a series of506 observations. We trained a linear

autoregressive model on the basis of the first14 months (corresponding to296 observations); in Fig. 7

the solid line shows the division between training and test sets. We selected a model orderd = 2 by

maximizing the AIC. In the testing phase, we set the rejection rate to1%; the flagged events are marked

by a dot in Fig. 7. We can see that many novel events are detectedin the last part of the time series,

starting from September 15th 2008, when Lehman Brothers filed for Chapter 11 bankruptcy protection.

IV. CONCLUSIONS

In this paper we have introduced a new method for novelty detection in linear autoregressive models

with Gaussian noise. The method is based on a perturbative expansion of an information theoretic criterion

1Some statistics about the precipitation levels in the area around lake Huron can be found at the following url:

http://www.crh.noaa.gov/dtx/cms.php?n=clisum
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Figure 7. Novelty detection on the FTSE data set. Novelties are marked with a black dot. The dotted line is placed on September

15th 2008 when many observations are identified as novel.

for novelty originally proposed for i.i.d. data in [4]. By further expanding this approximation in powers

of 1
n

, wheren is the number of samples observed in the training set, we obtain a simple first order

correction to the classicalF -test, which provides a tight control on the false positivesrate for short time

series. This correction accounts for the variability in the estimates of the parameters given that they are

based on a finite set of observations. Extensive experimentation on synthetic data shows that our approach

performs consistently better than competing approaches, with a dramatic difference when the time series

is short. At the same time, testing on real data sets shows that the model still capture important novelties

which can often be traced back to known events of significance.

Our approach assumes that the modeling and system identification from data is part of a preprocessing

separately carried out on the training data. While the approach showed that preprocessing using standard

model selection tools is very effective, it would be an interesting area of further research to combine

novelty detection with system identification in a single step. Another potential area of interest would be

to consider higher order terms, which could lead to significant improvements for short time series.

APPENDIX A

ANALYSIS OF THE APPROXIMATIONS IN THE DERIVATION OF THE PROPOSED NOVELTY DETECTION

METHOD

In this section we report the detailed computations involved in the derivation of the correction terms

for the proposed novelty detection method. We will start by computing the expectationE
[

k
P

n−1

i=d
ε2

i+1

]
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contained in Eq. 22. From the definition ofk in Eq. 15, we see that we need to compute the expectations of
∑n−1

i=d (∆εi+1)
2 and2

∑n−1
i=d εi+1∆εi+1. Assuming that the estimated stochastic terms and their difference

with the true ones are weakly correlated2, namelyE[ε̂i+1∆εi+1] ≃ 0, we see that:

E

[

∑n−1
i=d εi+1∆εi+1
∑n−1

i=d ε2
i+1

]

≃ −E

[

∑n−1
i=d ∆ε2

i+1
∑n−1

i=d ε2
i+1

]

(29)

ThereforeE
[

k
P

n−1

i=d
ε2

i+1

]

≃ E
[

P

n−1

i=d
εi+1∆εi+1

P

n−1

i=d
ε2

i+1

]

. This means that in order to estimateE
[

k
P

n−1

i=d
ε2

i+1

]

we

need to compute only the expectations of the three terms in
P

n−1

i=d
εi+1∆εi+1

P

n−1

i=d
ε2

i+1

.

We approximate them as:

E

[

µ∆m

m(n − d)

∑n−1
i=d

∑n−1
j=d εi+1δji

∑n−1
i=d ε2

i+1

]

≃ 0 (30)

E

[

−
1

n − d

∑n−1
i=d

∑n−1
j=d εi+1εj+1δji

∑n−1
i=d ε2

i+1

]

≃ −
d

n − d
(31)

E

[

−
µ

m
∆m

∑n−1
i=d εi+1

∑n−1
i=d ε2

i+1

]

≃ −
1

n
(32)

These results are based on few simple considerations and approximations. Terms involving odd powers

of εi+1 have expected value zero. We approximateδij as the product of two multivariate Gaussian

distributed variables ind dimensions with identity covariance matrix; thereforeE[δji] ≃ 0 andE[δ2
ji] ≃ d

for i 6= j, andE[δii] ≃ d.

Eq. 31 can be easily obtained by approximating
∑n−1

i=d

∑n−1
j=d εi+1εj+1δji inside the expectation by

∑n−1
i=d ε2

i+1δii. Since the expectationE[δii] ≃ d for all i, we can approximate
∑n−1

i=d ε2
i+1δii ≃ d

∑n−1
i=d ε2

i+1.

Eq. 32 can be obtained by writing explicitly∆m with respect to the stochastic terms. First, we notice

that the expectation contains the multiplication of odd powers in the stochastic terms and the termm

contained in∆m = m̂ − m; this expectation will be zero, leaving:

E

[

−
µ

m
∆m

∑n−1
i=d εi+1

∑n−1
i=d ε2

i+1

]

≃ E

[

−
µ

m
m̂

∑n−1
i=d εi+1

∑n−1
i=d ε2

i+1

]

(33)

For the sake of simplicity, we will sketch the procedure to approximate this expectation for theAR(1)

case. We see that the data points can be rewritten asxr =
∑r−1

s=0 αr−1−sεs+1 + const., simply by

using the definition of autoregressive process in Eq. 1. Thus,m̂ = 1
n

∑n−1
r=0 wr+1εr+1 + const., with

wr+1 =
∑n−r−1

s=0 αs = 1−αn−r

1−α
. The constants will be multiplied by odd powers of the stochastic

2This assumption is confirmed by extensive simulations.
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terms, and they will have expectation zero. Finally, we approximate
∑n−1

i=d εi+1
∑n−1

r=0 wr+1εr+1 ≃

1
n

∑n−1
r=0 wr+1

∑n−1
i=d ε2

i+1. The mean of the weights results in1
n

∑n−1
r=0 wr+1 = 1

1−α
(1 − 1

n
f(α)), where

f(α) is a function ofα. Hence:

−
µ

m
E

[

m̂

∑n−1
i=d εi+1

∑n−1
i=d ε2

i+1

]

≃ −
µ

m

1

1 − α

1

n

[

1 −
1

n
f(α)

]

(34)

Rewriting µ/m = 1 − α, and neglecting the order inO(1/n2) we obtain the expectation in Eq. 32. In

a d-order autoregressive model, we can follow the same procedure; neglecting the mixed termsαiαj ,

keeping only the coefficients up to the first power, we obtain thegeneral result in Eq. 32.

Finally, it is straightforward to show that:

E

[

∆k
∑n−1

i=d ε2
i+1

]

= 0 (35)

This can be easily obtained by noticing that∆k contains differences of random variables having expec-

tations inO(1/n). In particular:

E

[

n
∑

i=d

(∆ε∗i+1)
2 −

n−1
∑

i=d

(∆εi+1)
2

]

≃ (n − d + 1)
w1

n − d + 1
− (n − d)

w1

n − d
≃ 0 (36)

E

[

2

n
∑

i=d

εi+1∆ε∗i+1 − 2

n−1
∑

i=d

εi+1∆εi+1

]

≃ (n − d + 1)
w2

n − d + 1
− (n − d)

w2

n − d
≃ 0 (37)

wherew1 andw2 are constant values.
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