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A Perturbative Approach to Novelty Detection

In Autoregressive Models

Maurizio Filippone and Guido Sanguinetti

Abstract

We propose a new method to perform novelty detection in dycelnsystems governed by linear
autoregressive models. The method is based on a pertwleagdansion to a statistical test whose leading
term is the classical-test, and whosé (1) correction can be approximated as a function of the number
of training points and the model order alone. The method @afuktified as an approximation to an
information theoretic test. We demonstrate on severalhgfitt examples that the first correction to the
F-test can dramatically improve the control over the falssitp@ rate of the system. We also test the
approach on some real time series data, demonstratinghthahéthod still retains a good accuracy in

detecting novelties.

Index Terms

novelty detection, autoregressive modeling, time segtijstical testing.

. INTRODUCTION

Novelty detection is the problem of identifying unexpedtdthormal events in data sets based solely
on normal examples. Due to its practical importance, thélpro has drawn much attention and many
approaches have been proposed, including neural netwbK&], extreme value statistic [3], information
theory [4], kernel and support vector methods [5], [6], [féquentist [8] and Bayesian [9] non-parametric

approaches (for a good review of statistical approachesduelty detection see.g.[10], [11]).
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Most approaches rely on estimating some characteristiteeoflata distribution for the normal class
from training data, and then use this distribution to defineemsare of how novel a test point is. Due
to the absence of information on the distribution of noveérdég, any novelty detection system will
necessarily label some normal data as novel (false alaand)an important characteristic of the system
is its ability to accurately predict the rate with which falalarms will be raised. Depending on the
application, it is important to balance the cost of lettimgn® novelties be undetected, and the cost of
raising too many false alarms.

Of particular interest is the problem of identifying novedt in time series due to its many applications
ranging from condition monitoring in health-care [12], [18 fault detection in engineering [14], [15],
[16], [17]. We can distinguish between two subtly differgaals when dealing with novelties. One is
identifying novelties in order to mitigate their effect oarpmeter estimation. In other words, the outliers
are assumed to contaminate the series under study and thésgoacope with that in the modeling
stage. In this kind of approach, the learning system can bepseff-line, and is often referred to outlier
detection. In the context of time series, many approaches baen proposed with this aim [18], [19],
[20], [21], [22], [23]. Another goal, instead, is learningnaodel from a set of data that is considered
normal. In this case, the assumption is that the data usedhiio the learning system constitute the
basis to build a model of normality and the decision procesgest data is usually online and based on
the model of normality [24], [25], [26], [27], [28]. Equallyriportant is the distinction between event-
based and model-based novelties. Event-based novelsesgrabwn ashdditive Outliers(AO), are single
observations that deviate from the norm. Model-based tiegelalso known agnovation Outlierg(10),
instead, arise when the system changes its behavior over Tigpically, when a model is constructed,
this problem is translated in the identification of changethinmodel parameters.

In this paper, we consider the online identification of eVested novelties in stationary linear autore-
gressive models with Gaussian noise. These constitute aortamp and broadly used class of dynamical
systems where each observation is modeled as a linear catianinof previous observations plus a
normally distributed noise term. We approach this problgmubing a perturbative approximation to
an information theoretic measure, recently introduceddinf¢r i.i.d. data. Specifically, we consider an
approximation to thenformation content(for the definition see Section IlI) of a new element of the
series. This is defined by considering the Kullback-Leibler (Kiergence between the estimates of the
distributions of the stochastic term obtained before arer dhe new point is considered.

The KL divergence has been used with success in many areagisfiss [29], from model identification

to approximation in Bayesian inference. In this paper, wenid to use it to motivate our proposed measure
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of the information content of a new data point.

We approximate such a measure by expanding it in powers dhtleese of the sample size about the
true (unknown) parameter values. This procedure yields afradd’-test which is able to more accurately
incorporate the variability introduced by finite sample sefects. We test the model on a variety of
synthetic examples exploring a wide range of parameteregaiind model orders, and comparing with
a number of competing methods. This indeed confirms that thegopeml approach does lead to a tight
control over the false alarm rate, while retaining a comjpetiability to highlight true positives. We
also explore the robustness of the method to violationssoésisumptions, testing on data generated by
non-Gaussian non-linear autoregressive models. The medillishown to perform well at controlling
the false positive rates, although the non-Gaussian nafutee data leads to a slightly over-conservative
bias. We then test our model on two historic time series fronervironmental and a financial data sets
and show that our approach is still able to capture excegtievents corresponding to true event-based
novelties.

In the i.i.d. case presented in [4], the information contehtt new data point was measured using
the KL divergence between the estimated distribution ontthi@ing data and the one when a new test
point was added. The motivation for using the KL divergencéesi for novelties lies in its connections
with Neyman-Pearson lemma [30]. It has been shown that in thes§lan case, such an approach is
analytically tractable and yields a test that is relatedht K-test [4]. In the case of mixture models, it
has been necessary to resort to some approximations andirsgngpobtain a test for novelties. In this
paper, instead, we approximate the information content néw data point by obtaining an analytical
correction to anF'-test on the stochastic terms. The motivation for applying tést on the stochastic
terms, rather than the full process, is that it requires thiputation of the KL divergence between
univariate Gaussians, which is more easily evaluated thamtultidimensional divergences that would
be obtained using the full process.

The paper is organized as follows: in Section Il we sketch thévatgoon of the proposed statistical
test for novelty detection for linear autoregressive megdigl Section Il we show some experiments on
synthetic and real data sets; in Section IV we draw the coimigs The full derivation of the method is

reported in the Appendix.
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[l. STATISTICAL TESTING FORAR(d) TIME SERIES WITH L.I.D. GAUSSIAN NOISE
A. Parameter Estimation

Let us consider a time seriéé = {z1, z2,...,x,}. A linear autoregressive modef orderd (AR(d))
describes each observation as a linear combinatiehpzfst observations plus a stochastic term. In other

words, anAR(d) model can be written as:

d
Tip1 = Z QjTip1—j +Eta1 + = Xy + Epp1 + (1)
=

having introduced the vectors:

Xp = (T4, Tp—15 - Tp—di1)
The d coefficients of the linear combination are contained in thetoreaw = (a1, ..., a4). The terms
41 are i.i.d. and distributed as/&(0,~2). The valueu allows to model series with non-zero mean. In
the following, we will assume that the process is stable.
By imposing the first order stationarity ®z;|, that ism = E[z;] Vt:

d
Elzin] =Y Bz ]+ Eleen] + p
=1

we obtain:
_ H
1- Z?:1 oY
which is well defined due to the stability assumption. There saeeral well established methods for
system identification in linear autoregressive models [Bithe following, we will use the Yule-Walker

method for estimating the parameters of the model. In pddaicwe define the following correlations:

d
cr = El(xip1 — m)(xip1- —m)] = Zajc\j—’ﬂ Vk=1,...,d
j=1

Introducing the vectot = (c1, ca, ..., cq)T and the correlation matrig’:
Co C1 N 6 |
C1 Co oo Cq—2
C =
Cd—1 Cd—2 ... Co

we see that = Ca, hence:

a=C"lc (2)

provided thatC—! exists.
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When we observe a time serié§ comprisingn observations, we can estimate by replacing the
elements ofc and C' in Eq. 2 by the sample correlations which are the unbiasecthagiis of the true

correlations:

Cp = )(Zig1—k — M)
:d

where m is the mean value of the series. At this point we can pose tbblgm of estimating the
parameters in this way [31]:

~

a=0C"le (3)

Once we havey, we can estimate the other parameters of the modmahd .

d
i= (1= &) 4
=1
Defining the estimated stochastic term as
A o AT ~
Eitl = Tip1 — O X; — [i )

we obtain the following expression for the estimated vareanof the stochastic term [31]

n—1
42 = ! PRGN (6)

n—d 4
i=d

B. Information theoretic measure for novelty detection

The main tool that we will consider in this section is tallback-Leibler (KL) divergencéetween

two distributionsp(z) and¢(z), also known aselative entropy defined as:

KL p(a) (o)) = [ ple)tog [zm . @)

The KL divergence is often characterised as an informati@orétic quantity as follows (for a com-
prehensive overview see, e.g., [29], [32], [33]): consiseme unknown distributiop(z), and suppose
we wish to use another (simpler) distributigiz) to build a coding scheme to transmit values aof
to a receiver. In the assumption of an efficient coding scheheeKL divergence measures how many
bits per symbol are wasted by using the coding scheme baseg9ninstead ofp(z). As perfect
compression can be achieved only whgm) andp(z) coincide almost everywhere, we see that the KL
divergence is always positive and provides a measure of iggndlarity betweerp(x) and ¢(z). This
can be interpreted as the amount of information about the distribution which is lost by adopting
the approximating distributiog(x). Note, however, that the KL divergence is not a metric, as itat

symmetric and does not satisfy the triangular inequality.
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In [4] we proposed a novelty detection method for i.i.d. datsed on the idea of measuring the
information content of a new data point. To define this infaioracontent, we considered the following
case: let us assume a parametric generative model for tleevaltions given by a probability distribution
p(z]@). Let us assume we have a training Sétand a pointx, we wish to test for novelty. Lef be
the maximum likelihood estimate of the parametesbtained using the training set only, aédbe the
estimate using the augmented $&t, «..}. The information content of the new point was then defined

as
Z(x.) = KL[p(x|0)||p(x(0.)]-

Remarkably, the distribution of this quantity resulted wodnalytically computable in the Gaussian case,
yielding a test which isndependenfrom the statistics of the generating distribution, andeseent only

on the dimensionality and number of available data pointés Tdést turned out to be closely related to
the classicalF-test, but the new interpretation allowed us to extend thigcept to non-trivial cases such
as the mixture of Gaussian case.

C. Perturbative measure for novelty detection

In this Section, we introduce the measure for novelty deiactve intend to use. We start our
discussion from the information theoretic measure for tgveetection based on the KL divergence.
Unlike the i.i.d. Gaussian case, the complex dependenckeoAR parameters on the data means that
the information content cannot be analytically compute@. thérefore replace it with a simpler measure
which approximates it well in the regions of large devianae, for points that are likely to be novel.

We consider the effect of the addition of a new paintto the training setX on the estimation of
the parameters of the AR model, in the null hypothesis thatrtew pointz, is generated by the same
stochastic process as the training set. We denote the wpgatameters byx,, fi., and42, and the
stochastic terms by;, ;. Note that to simplify the notation we will usg, ;; = . in the sums to denote
the stochastic term associatedag, = ..

To estimate the impact of the new point on the identificatiothefprocess, we compute the Kullback-
Leibler divergence between the distribution of the stodbastrm when estimated with and without
z [29]

Tia (o) = KL W0 32N 052 = [ Nelo. %) 10g (AT e ®

Recalling the information-theoretic interpretation oé tL divergence, and remembering that asymptoti-
cally ML estimates converge to the true values, we see thatonld interprefky (x.) as the amount of

information about the true process that is gained throughatidition of the new data point. Therefore,
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we interpret the quantityky (z.) as theinformation contenbf the new point given a training se¥,

and in the following we will use an approximate expressionitahat will be more easy to analyze.

Notice that, to alleviate the notation, the dependency entthining set is not indicated explicitly in
the following. The rest of the paper is devoted to derivingagttble approximation of this information

content that can be used for statistical testing purposes.
The KL divergence between two Gaussian distribution is tgaditained from its definition and yields:
1 A2 o
Ikn(zs) = B [log <’AY2> -1+ ) 9)

The information content measured in this way is a functionhef rtatioz—g only. This consideration
forms the basis of the proposed perturbative approach.nisguthat the ML estimates for the parameter

~ are not dramatically changed by the addition of the new pointwe see that the dominant term in
(10)

equation (9) is a monotonic function of
22
Vx
I(l'*) = 22
42
which is a much easier expression to analyze. It should ednbowever, that we are replacifigy, (),

a non-monotonic function in the rati;ég—, by a monotonic function of it. This is exemplified in Fig. 1,

which shows the KL divergence (left panel) and the deviaircgright) in the i.i.d. case as a function
of a new pointz, (the deviance is defined as the squared distance of the newfpmim the estimated
mean/:, divided by the estimated variané@ and it is connected to the ratio of the estimated variances
jy—j [4]). As expected, the KL divergence is minimal when the alise between the new point and the
true mean is about one standard deviation. It then risehktBligvhen the new point is very close to its
mean value; this highlights that new points very close torttfean carry as much information as points
at about one and a half standard deviation from the mean. Wé&ea Fig. 1, however, that both(x,)
andZxky,(z,) are monotonic in a large region on the tails of the distrifmuticorresponding to abo@0%
of the total area of the Gaussian. Therefore, in realisticelipwdetection scenarios, we see that testing
the tails of the KL distribution or testing the tails of thesttibution of the noise ratic%% is essentially

equivalent.
(11)

For this reason, from now on we will focus &f(z.) as a measure of information content. Making
use of equation (6), we can rewrite this in terms of the egehatochastic terms as

n—d >, (éf+1)2

I(zs) = T,
n—d+ 13700 (Ei4)”
When z, has an additive stochastic term falling in regions of low signof A/(0,~?), its information
content will be unexpectedly high. In general, this mettodadt able to detect changes in the distribution
DRAFT
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Figure 1. KL divergence (left panel) and deviante= “0;2”2) (right panel) for i.i.d. Gaussian data.

of the process; instead, it is designed to analyze the degjreevelty of the stochastic contribution of
z,. Setting a threshold on the distribution of the informati@mtent would allow to flag such situations.
The information content measured through the KL divergenitebe a distribution with respect to the
training setX and the test point.. The threshold can be set on the basis of the quantiles of such a
distribution whenz, comes from the same model as the data point¥ inn this case, in the same spirit
of statistical testing, the area of the density functiomtstg from the threshold has to be set on the basis
of the percentage of normal data points that we are willin§ag as novel (false positives).

As we will see shortly, the distribution &f(z.) with respect toaX andzx, is not tractable. We propose
an approximation scheme in order to approximate it, leatling tractable novelty detection method for

linear autoregressive time series.

D. Proposed novelty detection method for autoregressive siaries

The strategy that we will follow to obtain a tractable test mawvelty detection can be summarized in
the following steps:
1) expandZ(zx,) in terms of the true values of the parameters;
2) simplify Z(x,) by using Taylor expansions;
3) neglect random variables with zero expectation and onitgrer than the second ib/n (Z(x.)
itself is a function inO(1/n));
4) Z(z.) results in aF'-distributed variable with a multiplicative correctiorre

5) approximate the multiplicative term by its expectation.
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10

We will present these steps here, and will include few matieal details in the appendix for clarity.
1) Step 1: We start by writing the estimates of the various parametsrshair true values plus a
correction term due to the fact that the estimation is based @nite set of observations; for example,

for the linear coefficients, we have
a=oa+ Ax o, = o+ Ao,

Since our test will be essentially based on testing the stticheerm in a new point in the series, we

are particularly interested in the estimates of the stdahssrms
€ir1 = €i+1 + Agi é;-k+1 =E&iy1 + AEal (12)

From the definition of;, 1:

Agip = —Aa'x; — Ap (13)

We are interested in making explicit the dependence of thegtén this equation on the training and

test data points. By using the model assumptions, we cariteethie entries’, as

1/ d
1 5 R R
p— 5 E QjTip1—j +&ip1 +p— 1M | (Tp1-p — 1)
i=d \ j=1

After some computations, we obtain= C'a + v, where we introduced the vector:

— Z <€z+1 Am) (xi —rhe)

wheree = (1,1,...,1). If we rewrite the estimatéx = o + Aax, we identify Ao = C~14p.

¢_

Introducingd;; = (x; — me)C ! (x; — 1me), we finally obtain:

n—1

Am
A51’-&-1 Iu Z ji T Z 5]—1—15]1 - Am% (14)

2) Step 2:Substituting the relations (12) into the computatlons%bndﬁ* allows to show explicitly

the dependencies from the stochastic teems and their correctiong\s; ;1 and Ae}, ;. Defining:

n—1 n—1

k=) (Acip1)® +2) ei1Aeig (15)
i=d i=d

k"= Z(A5j+1)2 +2 Z cit18eiiq (16)
i=d i=d

we get:

n—d anEzQ-‘rl 1+sz Eit1

— 1
n d—f—lzn 3+1 1—|—Z,d152+1

I(z.) = (17)
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11

We compute an approximation @f(z,) by using the Taylor expansion of the term in brackets in

Eq. 17, and the following Taylor expansion:

1 1 g2
= ~ l— =5 (18)
> id€i Die dl €71 ( > ie d1 z2+1>
Letting k* = k + Ak and substituting equation (18) into equation (17) we obtain
n—d g2 Ak k 2
I(zy) =~ <1+ — ) — = —
n—d+1 Zz d1 Z2+1 27, d1 12+1 Zz d1 12+1 Z , 12+1

In this operation we are neglecting terms having expectdtic)(1/n3); a detailed analysis of the rates

1+

] (19)

of convergence of the various terms in equation (19) is givetihe appendix. Also, the same analysis
shows that the standard deviation of the various terms dewéy the same order in, hence giving a
weak convergence result.

3) Step 3: The expression for the approximate information contentrgive equation (19) is made
up of six terms. The first term is a constant offset terﬁ% The second term is proportional to the
ratio 71252 since the (true) stochastic termsare all independent, the distribution of this term is

i=d “it1

recognized as am’ random variable withl andn — d degrees of freedom,

2
€ 1
- ~ Fin_a- (20)
1 _ 77 (Ln—=d)
iachy n—d
The expectatiorE [971’“62} can be shown to be vanishingly small (see the appendix faaildgt
i=d “i+1
therefore, we neglect the two terms InVO|VI%. Finally, the term
2 2
o k €% 1
n—1 2 n—1 2 n—1 2 NO <ni‘)>
Zz d 7,+1 i=d H—l i=d 7,+1
and is therefore neglected. The remaining t k = nilz is the main proposed correction and

i=d 'L+l =d L+1

is analyzed in detail in the following step.
4) Step 4:The remaining correction term contains the safdistributed variable, and is multiplied

by a random variable that we will replace by its expectation:

n—d g2
I(ry) ~—— | 1 —_ 21
o n—d+1< Ty 3+1> e
with
k
Zz d z+1
In this step we are neglecting the covariance betweer tbestributed variable——: = k

i=d z+l d z+l

In our experimental investigation, this covariance didhsée be indeed negligible, except When the values

of the autoregressive parametersvere very close to boundary of the region of stabiliyl - a)| ~ 0).
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Table |

PSEUDO-CODE OF THE PROPOSED NOVELTY DETECTION METHOD FOR AUTOREGRSIVE TIME SERIES

1) set the false positive raje
2) estimate the parameters of AR (d) time series onX;;
3) computeF), that is the(1 — p)-th quantile of anFi; ,,_a);

4) compute the threshol@l, corresponding to the rejection rate
n—d 1 d 1
= 1 Foll4+ ——+ —
6o n—d+1[+n—dp<+n—d+n>}

. 52 . .
5) compute the ratlc%—; given a new observation.;

6) if (%; > 0,) then flag x.. as outlier

7) elseflag x. as normal

5) Step 5: The computation of the expectatienup to the first order inl/n is straightforward but
somewhat intricate, and is given in the appendix. The finallrésa simple correction involving solely
the size of the training set and the order of the autoregresabdel

d 1
T~l4 ——+ — (23)
n—d n

After this analysis, we obtain af-test for the ratio with a correction that depends onlyrgrandd.

Finally, the test we propose is based on:

n—d 1 d 1
I(xy) ~ - 1+ — dF(Ln_d) <1 + —+ )] (24)

n—d n

Fig. 2 illustrates the steps of the approximatiory ¢f.) as a function ot, for an AR(4). As we can see,
the dark shaded area in the bottom-right plot, that reptsdée final approximation in Eq. 24, captures
quite well the distribution of the trué(z.) over different resampling of the series (light shaded area)
Also, the difference between the approximations in Eq. 24EBqd21 is hardly noticeable, showing that
the last step of the approximation is fairly accurate.

Setting a rejection rate, we can easily compute the quardilés(x,). Such quantiles are a simple
combination of the quantiles of af distribution,n, andd. For large values of., the correction terms
vanish, leaving theF-test only as we would expect, since the estimates of thehastic terms will
converge to the true ones. For small valuesnptthe correction allows to cope with the fact that the
parameter estimation has been performed on a short timessériTab. |, we report the steps comprising

the novelty detection method for autoregressive time serie
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Figure 2. Visualization of the approximation steps/¢f..) as a function ot for an AR(4) with o = (0.3, —0.2, —0.1,0.05).
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The shaded areas represent values between the first and third qo#rtile distribution overl000 repetitions where we
resample a series of = 50 points. Top-left: the true distribution df(z.). Top-right: approximation in Eq. 19 (dark gray) over
the true distribution of (z..). Bottom-left: approximation in Eq. 21 (dark gray) over the true distributib(x..). Bottom-right:
approximation in Eq. 24 (dark gray) over the true distribution/ ¢f..).

[1l. EXPERIMENTAL RESULTS
A. Competing methods

We compare the proposed method, that we will denote as PM (Batitte Method), against three
others that we will call ML (Maximum Likelihood)F'-test, and MP (Ma and Perkins [26]).

1) ML: In the ML method, we consider the following residual:

Ex =Ty — O Xy — [I (25)
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and treat the estimated parameters as the true ones. Inabéség is compared to the quantiles of
N(0,4?) corresponding to the selected false alarm rate.

2) F-test: The F-test method, instead, is based on the classical statidfi¢ast, which is the most
powerful test for i.i.d. Gaussian data. We will test theaaﬁ without the correction term given by the
variability in the parameters thus assuming that the eséirohthe stochastic terms are distributed as the
true ones: )

% T i;jl- 1 + n i dFl’(n_d) (26)

3) MP: The algorithm proposed by Ma and Perkins [26] is based on OassG3VMs [34] (1-SVM).

The methods starts by embedding the time seriesdrdianensional space by sliding a window of length
d over it. Once the set af — d + 1 vectors is obtained, 1-SVM with a Gaussian kernel havingavene

o2 and upper bound on the fraction of outlierss applied. This leads to a decision function on whether
the vectors fall in a “normal” region or not. When a vectotdah the “outlier” region, all its time points
are flagged as outliers. Ma and Perkins suggest to run suchdenmector different values of and flag a
time point when it resulted in a novel vector for all the testimensions. Given that the time series will
have temporal correlations, it has been proposed to prijeatf-dimensional vectors on the hyperplane
having normal vectoe = (1,1,...,1). In the experiments, we tested both the unprojected aneqieg
versions; in the experiments, we found that the projectediare achieves better performances than the
unprojected one in terms of accuracy and false positive iterefore, we will report the results for
the projected version only. Unfortunately, [26] does naivie any guidelines on how to setand the
values of the dimensions. Since the number of possible catibits of such parameters is too large to be
explored meaningfully, we decided to set the variance okdrael automatically; therefore for different
dimensions, the kernel will assume different values (intast to what shown in [26]). We follow the
idea that we want to capture the inner region of the vectaressmtation as the normal region. For this
reason, we compute an empirical distribution of the squamadvise distances among the data vectors,
and seto? to correspond to it95-th percentile. We set the upper bound of outliers in 1-S¥M- p

(p is the false positive rate we are willing to tolerate - Tab.Tihe values ofd for which we test the

algorithms are reported for each series throughout therpape

B. Synthetic data sets

1) Known model order - Test series without novelti#ge check the behavior of the proposed method
on a set of four synthetically generated linear autoregressme series with different orders and

parameters (see Tab. Il).
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Table Il
PARAMETERS OF THE FOUR SYNTHETIC TIME SERIESU|_q.1,0.1] STANDS FOR THE UNIFORM DISTRIBUTION IN THE

INTERVAL [—0.1,0.1].

L [eluln] o
Synthl| 1 2 101 (0.3)
Synth2| 5 | 1 | 0.5 | (0.18,0.13,0.12, —0.14, —0.13)
Synth3 || 10 | =3 | 0.2 ai ~Ut_o1.01]
Synth4 || 50 | 0.5 | 0.1 a; ~ U—o.1,0.1

The goal of this analysis is to see if the proposed method & @mbhchieve, on average, the expected
false alarm rate. We perform this analysis generating aiirgitime series of length and a test series
of length 10> drawn from the same model parameters. We use the algorithfiabn | for all the test
points and we compute the number of points of the test seriggdthas novel. Since the test series is
generated using the same parameters, the points that aredlaggiovel are false positives. In this way,
we obtain the false alarm rate for a specific training seriekedgth n. We repeat such procedure for
different values ofn and we average the false positive rate oX@d repetitions for each value of; in
each repetition we generate a new training series of length

We generate the time series using the linear autoregresside| presented in Section Il (Eq. 1). In
order to sample from a stationary process, we generagdues from a\V (1/(1 —Zle a;),~?) followed
by a burn-in period ofl 000 samples. The results on the average false alarm rate ar¢aeépor=ig. 3 for
the four sets of parameters generating the series for adtdse rate ofl %. Similar figures are obtained
for different rejection rates. In the MP method we selecled 2,3,4,5 for Synthl,d = 3,5,7,9 for
Synth2,d = 3,7, 11,15 for Synth3, and{ = 3, 15, 35, 55 for Synth4.

While all methods except MP reach the desired level of falsstpe rate for large training sets, PM
performs consistently better than all other methods whenstke of the training set is small. We notice
that the MP method particularly suffers from small samplebems; we hypothesize that this is due to
difficulties in selecting the appropriate kernel paramegers the set of dimensions for small training set
sizes. Also, notice that MP does not seem to converge to tireatdalse positive rate for large training
sets.

2) Unknown model order - Test series without noveltiesthis section we report the result of applying

the novelty detection algorithms on the four time series ab.TI, but we do not assume to know the
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Figure 3. A comparison of the average false alarm rate between thege@pnethod and the competing ones when the model

order is known. The false alarm rate was setl$4. Top-left: Synth1, top-right: Synth2, bottom-left: Synth3, bottom-right:

Synth4.

model order. We repeat the same procedure as in the former bat every time that we sample a

training set of sizen, we estimate the model order We choose the value af that maximizes the

Akaike information criterion(AIC) [35]. The averages of the false alarm rate o280 repetitions are

reported in Fig. 4 for 4% rejection rate. In the MP method we selected the valuesas in the former

section.

3) Known model order - Test series with noveltids: this section we study the behavior of the

novelty detection methods on a time series where the teigtsskeas been contaminated by some noise.

In particular, we generate the test time series by using dheesautoregressive model, but lettisig of

the times a stochastic term to be generated from a Gaussthnstaindard deviation that sy instead
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Figure 4. A comparison of the average false alarm rate between thege@pnethod and the competing ones when the model
order is unknown and estimated maximizing the AIC. The false alarm rasesetatol%. Top-left: Synthl, top-right: Synth2,
bottom-left: Synth3, bottom-right: Synth4.

of ~. In Tab. Ill, we report the true positive rate (TP), false pwsitrate (FP) and accuracy (ACC)
(quartiles over200 runs) achieved by the tested methods, for different trgirgat sizes and rejection
rates. In the MP method we selected the valueg a$ in the former sections. To assess statistically the
difference between the various methods, we performed bmoptet-tests pairwise between the empirical
distributions of the FP, TP and ACC results obtained by theouarimethods on the synthetic data sets
(this was not done in the case of Synthl as the scores wergylstnoon-Gaussian, making tatest less
meaningful). We see that the proposed method gives significgarovements over all the other methods
(at 1% significance) in terms of controlling FP rates (as could be etguk since this was its purpose)

but also in terms of overall accuraay all cases. Although we could not perform a statistical testhe
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Table Ill
FALSE POSITIVE RATE (FP), TRUE POSITIVE RATE (TP),AND ACCURACY (ACC) FOR SELECTED VALUES OF AND
REJECTION RATEp. IN EACH CELL, WE REPORT THE VALUES OF THE MEDIAN AND IN PARENTHESIS THE FIRSAND THIRD
QUARTILE, COMPUTED OVER200 REPETITIONS A ¢-TEST, WITH 1% SIGNIFICANCE, HAS BEEN RUN ON THE DISTRIBUTIONS
OF FP, TP,AND ACC WHEN THE CORRESPONDING NORMAL QUANTILE PLOT SHOWED REASONSLE NORMALITY BY
VISUAL INSPECTION (ALL EXCEPT THOSE OFSYNTH1); IN THESE CASES THE RESULTS THAT ARE SIGNIFICANTLY BETTER
THAN THE OTHERS ARE HIGHLIGHTED IN BOLD.

Synthl p=0.01n=10

FP TP ACC
PM 0.010 (0.002, 0.036) 0.451 (0.384, 0.507) 0.962 (0.941, 0.967
ML 0.054 (0.026, 0.129) 0.584 (0.527, 0.630) 0.928 (0.859, 0.952
F-test || 0.016 (0.005, 0.056) 0.490 (0.425, 0.545) 0.957 (0.924, 0.965
MP 0.707 (0.529, 0.827) 0.882 (0.788, 0.931) 0.321 (0.211, 0.489
Synth2 p=0.05n =100

FP TP ACC
PM 0.064 (0.049, 0.079)| 0.626 (0.608, 0.646) 0.920 (0.908, 0.935)
ML 0.077 (0.059, 0.092) 0.642 (0.621, 0.659) 0.910 (0.896, 0.925
F-test || 0.073 (0.056, 0.088) 0.637 (0.617, 0.655) 0.913 (0.899, 0.928
MP 0.094 (0.075, 0.119) 0.554 (0.514, 0.586) 0.888 (0.866, 0.905
Synth3 p=0.01 n =100

FP TP ACC
PM 0.019 (0.012, 0.028)| 0.512 (0.488, 0.535) 0.958 (0.950, 0.963)
ML 0.030 (0.020, 0.041) 0.542 (0.521, 0.565)| 0.949 (0.939, 0.957
F-test || 0.027 (0.018, 0.037) 0.534 (0.513, 0.557) 0.952 (0.942, 0.959
MP 0.071 (0.054, 0.102) 0.468 (0.416, 0.531) 0.905 (0.880, 0.919
Synth4 p = 0.05 n = 1000

EP TP ACC
PM 0.061 (0.056, 0.066)| 0.625 (0.620, 0.630) 0.924 (0.919, 0.928)
ML 0.068 (0.063, 0.073) 0.634 (0.629, 0.639)| 0.917 (0.912, 0.921
F-test || 0.068 (0.063, 0.073) 0.634 (0.629, 0.639)| 0.917 (0.913, 0.922
MP 0.100 (0.090, 0.107) 0.501 (0.485, 0.513) 0.881 (0.874, 0.889

results obtained on Synthl data set, it is quite clear thaptbposed method achieves a better control
of the false positive and higher accuracy compared to therattethods.
4) Nonlinear autoregressive time series with non-Gaussiaise: The method that we propose has

guarantees to provide reliable results when dealing witbai autoregressive models in a neighborhood
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Figure 5. A comparison of the average false alarm rate on two nonlir@maGaussian time series (Left: series in Eq. 27 -
Right: series in Eq. 28). The false alarm rate was set%o In the left panel, the results from the MP method are not shown

since they are very poor.

of the unknown true model order. In this section, we study $e&enarios where the models are not linear
with non-Gaussian stochastic noise, in order to check h@asetassumption affect the performances in

terms of false positives. The two series we considered aréotlosving:

Tir1 = —0.1xe + 100 2241 + €441 (27)
with g;41 ~ 0.4 N (—0.0015,0.0012) + 0.6 M(0.001, 0.00052), and

xpp1 = exp(—|zy + vewe—1|) + 141 (28)

with £;11 ~ 0.3 NV(—0.14,0.05%) + 0.7 M (0.06, 0.12). In both cases it is easy to verify thafs] = 0. In
Fig. 5 we report the average false positive rate @@y repetitions for different values of. Again, we
estimate the model order by maximizing the AIC. In the MP rodtlve setd = 2,3,4,5 for both the
series. It is interesting to notice that farlarge, ML, PM, and the'-test converge to a biased solution,

where the average false alarm rate is slightly differeninftbe expected one.

C. Real data sets

In this section, we show two applications of the proposecetigwetection method on real time series.
The first data set we consider contains the yearly average (eedsured in feet) of lake Huron in the
northern U.S.A. from 1875 to 1972 (Fig. 6). We train the modellom first 50 years (the vertical solid

line in Fig. 6 shows the division between training and the t&dk); we estimate the model order by
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Figure 6. Novelty detection on the lake Huron data set. The dotted lines aredptm the years identified as novel: 1929,
1931, and 1960.

choosing the model that maximizes the AIC. In this case, wained an autoregressive model of order
d = 1. The proposed method, when we set the rejection ratéitoidentifies three novelties in the test
data (denoted with a black dot), corresponding to the ye@29€,11931, and 1960. The first novelty has
been discussed in the geographical literature in Ref. [BGg other two novelties can be ascribed to
unusual precipitation levels in the Michigan area in thevimes yeat.

The second data set contains the daily closing value of the FTSEirdex in the period from
January, 1st 2007 to January, 1st 2009. The index is recondkgddaring working days; therefore, the
series containg53 data points for each year, leading to a serie50sf observations. We trained a linear
autoregressive model on the basis of the flsstmonths (corresponding 296 observations); in Fig. 7
the solid line shows the division between training and tess.s\We selected a model ordér= 2 by
maximizing the AIC. In the testing phase, we set the rejectate to1%; the flagged events are marked
by a dot in Fig. 7. We can see that many novel events are detectie last part of the time series,

starting from September 15th 2008, when Lehman Brothers file€fapter 11 bankruptcy protection.

IV. CONCLUSIONS

In this paper we have introduced a new method for noveltyatiet® in linear autoregressive models

with Gaussian noise. The method is based on a perturbatiansin of an information theoretic criterion

1Some statistics about the precipitation levels in the area around lake Hurdrmedaund at the following url:

http://www.crh.noaa.gov/dtx/cms.php?n=clisum
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Figure 7. Novelty detection on the FTSE data set. Novelties are marked wltlcladot. The dotted line is placed on September
15th 2008 when many observations are identified as novel.

for novelty originally proposed for i.i.d. data in [4]. By fiilher expanding this approximation in powers
of % wheren is the number of samples observed in the training set, weirolatasimple first order
correction to the classicdl-test, which provides a tight control on the false positivet® for short time
series. This correction accounts for the variability in tiséireates of the parameters given that they are
based on a finite set of observations. Extensive experimentati synthetic data shows that our approach
performs consistently better than competing approachis,axdramatic difference when the time series
is short. At the same time, testing on real data sets showshthanodel still capture important novelties
which can often be traced back to known events of significance.

Our approach assumes that the modeling and system idemifideam data is part of a preprocessing
separately carried out on the training data. While the aguggreshowed that preprocessing using standard
model selection tools is very effective, it would be an iat#ing area of further research to combine
novelty detection with system identification in a single st&pother potential area of interest would be

to consider higher order terms, which could lead to signifigamprovements for short time series.

APPENDIXA
ANALYSIS OF THE APPROXIMATIONS IN THE DERIVATION OF THE PROPSED NOVELTY DETECTION

METHOD

In this section we report the detailed computations inviblirethe derivation of the correction terms

for the proposed novelty detection method. We will start loynputing the expectatioil [%}

i=d “i41
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contained in Eq. 22. From the definition bin Eq. 15, we see that we need to compute the expectations of
S (Acii1)? and2 31 €541 Ac; 1. Assuming that the estimated stochastic terms and théérelifce

with the true ones are weakly correlatedamelyE[é;,1A¢; 1] ~ 0, we see that:

— -1
E Sory ci1fein B [Z? PRACH) (29)
1 1
>id € > icd 8z2+1
ThereforeE [+€2] ~E {%ﬂfs“] This means that in order to estlmdﬂe{ﬁ} we
i=d “i+1 i=d “i+1 1 i=d “i+1
need to compute only the expectations of the three tern¥s: f:f;AE 1,
i=d Si+1
We approximate them as:
A €i4104i
HAm Z §j1 d2 141953 ~0 (30)
m(n —d) =
1 Ei+1€j410 d
E [_ Z Zjn dl 12+1 Jj+1 jZ] ~_ (31)
n—d Dicd Eiv1 n—d
n—1
1
—’“‘AmZ;LdlE’QH] ~ = (32)
m Zz d z—i—l n

These results are based on few simple considerations andxaptions. Terms involving odd powers
of ¢;41 have expected value zero. We approximége as the product of two multivariate Gaussian
distributed variables id dimensions with identity covariance matrix; therefd®;;] ~ 0 andE[éjz.i] ~d
for i # j, andE[6;] ~ d.

Eq. 31 can be easily obtained by approximatEqL_1 Z”‘C} €i+1€j4105; inside the expectation by
S €218, Since the expectatidi[d;;] ~ d for all i, we can approximat® '~ 2, 0; ~ d > 1) €2, ;.

Eq. 32 can be obtained by writing explicithm with respect to the stochastic terms. First, we notice
that the expectation contains the multiplication of odd pmwin the stochastic terms and the temm
contained inAm = m — m; this expectation will be zero, leaving:

—f;iAmZ] ~E [ 5 i St ] (39
Dicd Eir1 me Y ild €

For the sake of simplicity, we will sketch the procedure tpragimate this expectation for th&R (1)

case. We see that the data points can be rewrittem,as- > . _ Oa ~1=%¢,41 + const., simply by
using the definition of autoregressive process in Eq. 1. Thuss %Z,;& Wy41Er4+1 + const., with

w1 = Yorg et = 1597 The constants will be multiplied by odd powers of the stotibas

2This assumption is confirmed by extensive simulations.
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terms, and they will have expectation zero. Finally, we apipnate Z?’dl €it1 Zf:& Wrg1Ert1 =
LS w1 Y1) €24 The mean of the weights results Jn>"" ") w,1 = 2= (1 — L f(«)), where

f(a) is a function ofa. Hence:

s
m

n—1
mz;df;“] ~ B2 [1—if(a)] (34)

S €24 ml—an
Rewriting 1/m = 1 — a, and neglecting the order i@(1/n?) we obtain the expectation in Eq. 32. In
a d-order autoregressive model, we can follow the same proeedieglecting the mixed terms; o,
keeping only the coefficients up to the first power, we obtaingéeeral result in Eq. 32.
Finally, it is straightforward to show that:
B [Ak] o @)
Zz d 12+1

This can be easily obtained by noticing thak contains differences of random variables having expec-

tations inO(1/n). In particular:

" — w1 w1
E (A (Ag; ~n—d+1l)———(n—d ~ 36
% e’ Zd €+1] (n—d+1)— g —(n—d) =0 =0 (36)
n n—1 Wy Wy
E [2281‘4_1A€;‘k+1 — 2;51+1A€i+1] ~ (n —d+ l)m — (n — d)n —d ~0 (37)

wherew; andwy are constant values.
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