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Abstract

Clustering is the problem of grouping objects on the basis of a similarity measure
among them. Relational clustering methods can be employed when a feature-based
representation of the objects is not available, and their description is given in terms
of pairwise (dis)similarities. This paper focuses on the relational duals of fuzzy cen-
tral clustering algorithms, and their application in situations when patterns are
represented by means of non-metric pairwise dissimilarities. Symmetrization and
shift operations have been proposed to transform the dissimilarities among pat-
terns from non-metric to metric. In this paper, we analyze how four popular fuzzy
central clustering algorithms are affected by such transformations. The main contri-
butions include the lack of invariance to shift operations, as well as the invariance
to symmetrization. Moreover, we highlight the connections between relational duals
of central clustering algorithms and central clustering algorithms in kernel-induced
spaces. One among the presented algorithms has never been proposed for non-metric
relational clustering, and turns out to be very robust to shift operations.
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1 Introduction

Clustering is the problem of grouping objects on the basis of a similarity
measure among them. It occurs very often in different disciplines and research
areas; this is the reason why several approaches have been proposed. In some
clustering applications, it is not possible to have a feature-based representation
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of the objects, and the description is given in terms of pairwise (dis)similarities.
Some approaches have been proposed to cluster objects represented in this
way, and are referred to as relational clustering methods.

Popular crisp relational clustering algorithms form hierarchical structures ag-
glomerating patterns on the basis of the given dissimilarities; they are the
so called Sequential Agglomerative Hierarchical Non-Overlapping SAHN ap-
proaches [37,18,39]. The result is a hierarchical structure of groups known
as dendrogram. Other approaches to the relational clustering are the Parti-
tions Around Medoids (PAM) method [19], Clustering LARge Applications
(CLARA) [19], and Clustering Large Applications based upon RANdomized
Search (CLARANS) [29]. A relational clustering algorithm, called EVCLUS,
has been developed in the framework of belief functions [7]. Some fuzzy re-
lational clustering algorithms can be found in literature, for instance those
proposed by Ruspini [33], Diday [8], Roubens [32], the Relational Fuzzy c-
means (RFCM) [14], the Relational Possibilistic c-means (RPCM) [6], Fuzzy
Analysis (FANNY) [19], and the Windham association prototypes [40]. In
fuzzy clustering, a pattern can belong to more than one cluster with differ-
ent degrees. This allows to obtain a more sound description of the clusters in
situations where some patterns can belong to more than one cluster, or some
patterns do not belong to any cluster, since they are outliers. All these scenar-
ios can be efficiently handled by means of the generalization of the concept of
membership from crisp to fuzzy.

RFCM is based on the optimization of a proper objective function similar to
that of Fuzzy c-means (FCM) [4]. Also the optimization procedure follows the
scheme used by FCM. In fact, RFCM turns out to be the relational dual of the
FCM; in other words, the RFCM with the squared Euclidean distances as dis-
similarities, gives the FCM. This duality can be found between the RPCM [6]
and the Possibilistic c-means (PCM) [21] too. In general, the central clustering
algorithms are based on the concept of memberships and centroids, and are
asked to find the clusters in the input space that is usually Euclidean. In the
dual versions, since the patterns are not described in terms of features, the con-
cept of centroid as a weighted mean of the patterns looses its meaning. More-
over, if the dissimilarities are not metric, the convergence of the algorithms is
not guaranteed [13,30,31]. This problem arises mainly because the distances
between patterns and centroids can assume negative values, thus leading to
numerical problems. For this reason, some solutions have been proposed. In
Ref. [20], the authors propose a fuzzy relational algorithm that selects the
centroids among the objects composing the data set. A fuzzy clustering deal-
ing with non-Euclidean dissimilarities is the Non-Euclidean Relational Fuzzy
c-means (NERF c-means) [13]. FANNY optimizes the same objective function
as RFCM with m = 2, but employing the Lagrange multiplier technique; this
gives an elegant way to handle non-metric dissimilarities.
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Another approach proposes to transform the dissimilarities among patterns
from non-metric to metric [30,13] and forms the basis of the modification
allowing NERF c-means to deal with non-metric dissimilarities. Non-metric
dissimilarities are characterized by the fact that at least one of the follow-
ing conditions is not met: symmetry and obeying to the triangular inequality.
The transformations needed to let them become metric are symmetrization
and shift operations. The symmetrization operation makes the dissimilarities
symmetric. Shift means that a constant value is added to the pairwise dis-
similarities, to let them satisfy the triangular inequality 2 . The point is how
these transformations influence the behavior of the clustering algorithms. It
has been shown that they do not influence the K-means optimization pro-
cedure [30,31], since they change the objective function by a constant. Once
the dissimilarities are metric, they can be considered as pairwise squared Eu-
clidean distances between vectors representing the objects. These are called
embedding vectors, and are not computed explicitly. This is the link with the
theory of central clustering in the space induced by positive semidefinite ker-
nels [10]. Such kernels can be obtained by the dissimilarity matrix, and each
entry is a scalar product between vectors representing the original objects.
The pairwise scalar products contain enough information to let to apply the
central clustering algorithms on the embedding vectors. Popular unsupervised
learning algorithms making use of kernels are the Kernel PCA [36], K-Means
in feature space [12,36], and One Class SVM [16,17,38]. For a survey on kernel
clustering methods see [10].

This paper considers the approaches belonging to the K-means [25,27] family,
in particular those based on fuzzy memberships [3,4,21,22]. The literature lacks
of an explicit analysis on what happens to central fuzzy clustering algorithms
when the dissimilarities are transformed. This paper explicitly shows how the
objective functions of four clustering algorithms based on fuzzy memberships
change, due to symmetrization and shift operations. The considered clustering
algorithms are: Fuzzy c-means I (FCM I) [4], Fuzzy c-means II (FCM II) [3]
(also known as soft K-means [26]), Possibilistic c-means I (PCM I) [21], and
Possibilistic c-means II (PCM II) [22]. The main contributions include the lack
of invariance to shift operations, as well as the invariance to symmetrization.
As a byproduct, the kernel versions of FCM I, FCM II, PCM I and PCM II are
obtained, that can be viewed as relational duals of the four algorithms. FCM I
and PCM II in feature space have been proposed in Refs. [41] and [11]. The
relational duals of FCM I and PCM I have been proposed in Refs. [14] and [6];
the non-Euclidean case is studied in Ref. [13] for FCM I. To the best of our
knowledge, FCM II and PCM I in feature space have never been proposed so
far, as well as the non-Euclidean relational dual of FCM II and PCM II; this
represent another novelty of this paper.

2 In fact, we require the stronger condition that the dissimilarities become squared
Euclidean distances.
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The relational dual of FCM II, in particular, turns out to be very robust to
shift operations. For the sake of presentation, however, we prefer to show a gen-
eral formulation of the relational duals of central fuzzy clustering algorithms,
introducing the four fuzzy clustering algorithms as special cases.

In the experimental tests on synthetic data sets, we analyze the behavior of
the presented algorithms during and at the end of the optimization. We also
study if there is a chance to cope with the effect of the shift, by tuning the
parameters, by using a score based on the Kullback-Leibler divergence. On one
of the two synthetic data sets, we study the performances in terms of correct
assignments of cluster labels, when adding noise to the relational matrix; this
could simulate a real scenario, where the measures of relations between pairs
of patterns are noisy. The experimental part ends showing the performances
of the algorithms in a real application.

This Section discusses how to embed in Euclidean spaces sets of patterns de-
scribed by pairwise dissimilarities, along with some basic concepts on positive
semidefinite kernels. Then the paper is organized as follows: Section 2 shows
how the objective functions of four fuzzy central clustering algorithms change,
due to distance transformations; Section 3 provides an experimental analysis
on synthetic and real data sets, and then the conclusions are drawn. Many
technical details concerning the derivations of the proposed algorithms and
theoretical aspects can be found in the appendices.

1.1 Embedding Objects Described by Pairwise Dissimilarities in Euclidean

Spaces

Let Y = {y1, . . . , yn} be a set of objects and r : Y ×Y → R a function between
pairs of its elements. The conditions that r must satisfy to be a distance are:

• r(yi, yj) ≥ 0 ∀i, j = 1, . . . , n and r(yi, yi) = 0 ∀i = 1, . . . , n (Positivity);
• r(yi, yj) = r(yj, yi) ∀i, j = 1, . . . , n (Symmetry) ;
• r(yi, yj) + r(yj, yk) ≥ r(yi, yk) ∀i, j, k = 1, . . . , n (Triangular inequality).

Let’s assume that r satisfies only the first condition. In this case, r can be
interpreted as a dissimilarity measure between the elements of the set Y .
Clearly, it is not possible to embed the objects according to r in a Euclidean
space, as long as it does not satisfy also the other two conditions. The only way
to cope with this problem is to apply some transformations to let r become a
distance function. Regarding the symmetry, the following, for instance, could
represent a solution:

r̂(yi, yj) = max(r(yi, yj), r(yj, yi)) ∀i, j (1)
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or:

r̂(yi, yj) =
1

2
(r(yi, yj) + r(yj, yi)) ∀i, j (2)

Depending on the application, one can choose the most suitable solution to
fix the symmetry.

Once the symmetry is fixed, to make r satisfy the triangular inequality, a
constant shift 2α can be added to all the pairwise distances, excluding the
dissimilarity between a pattern and itself:

r̃(yi, yj) = r(yi, yj) + 2α ∀i 6= j (3)

Let’s introduce R as the n × n matrix with entries rij = r(yi, yj). Let e =
{1, 1, . . . , 1}T and I the n × n identity matrix. Eq. 3 is equivalent to:

R̃ = R + 2α(eeT − I) (4)

The natural question arises: how can we choose α to guarantee that R̃ is a
squared Euclidean distance matrix? The answer is in a theorem that can be
found in Refs. [23,31]. In this Section the theorem is reported, while the proof
can be found in App. B.

Before showing the theorem, some preliminary definitions are needed. Let’s
decompose R by means of a matrix S:

rij = sii + sjj − 2sij (5)

Let Q = I − 1
n
eeT. The centralized version P c of a generic matrix P is defined

as:

P c = QPQ (6)

It’s clear from Eq. 5 that S is not uniquely determined by R. All the matrices
S + αeeT, for instance, lead to the same matrix R ∀α ∈ R. It can be proved,
however, that the centralized version of S is uniquely determined by R (see
App. A):

Sc = −
Rc

2
(7)

Now we have all the elements to claim that:
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Theorem 1.1 R is a squared Euclidean distance matrix if and only if Sc � 0.

The proof can be found in App. B or in Refs. [23,31]. The theorem states
that Sc must be positive semidefinite to ensure that R is a squared Euclidean
distance matrix. It is well known that the eigenvalues λi of positive semidefinite
matrices satisfy λi ≥ 0 ∀i = 1, . . . , n [1]. If at least one eigenvalue of Sc is
negative, R is not a squared Euclidean distance matrix. Let λ1 be the smallest
eigenvalue of Sc. Simple concepts of linear algebra ensure that the following
diagonal shift to Sc:

S̃c = Sc − λ1I (8)

makes S̃c positive semidefinite. The diagonal shift of Sc transforms R in a
matrix representing squared Euclidean distances. The resulting transformation
on R is the following:

R̃ = R − 2λ1(ee
T − I) (9)

Since S̃c is positive semidefinite, it can be thought as representing a scalar
product. Thus, it exists a matrix X for which:

S̃c = XXT (10)

The rows of X are the realization of the embedding vectors xi. In other words
each element yi of the set Y has been embedded in a Euclidean space and is
represented by xi. The entries of S̃c are the scalar product between the vectors
xi.

Resuming, if the only thing known about the data to analyze are the pairwise
dissimilarities, the matrix Sc can be checked for positive semidefiniteness. If
it is, Sc can be kept as is, otherwise the diagonal shift to Sc has to be applied.
Either way, Sc or S̃c is the product of two unknown matrices X. This is the
link between the theory of embedding a set of objects in Euclidean spaces and
the theory of kernel methods. S̃c can be interpreted as the Gram matrix that
is used in kernel algorithms. In Ref. [23,24] the authors give an interpretation
of the negative eigenvalues of Sc.

1.2 Mercer Kernels

A kernel function K : X × X → R is called a positive definite kernel (or
Mercer kernel) if and only if K is symmetric and positive semidefinite [2,34].
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Each Mercer kernel can be expressed as follows:

K(xi,xj) = Φ(xi)
TΦ(xj) (11)

where Φ : X → F performs a mapping from the input space X to F which
is called feature space. In order to simplify the notation, we introduce kij =
K(xi,xj). The elements kij are the entries of the Gram matrix containing the
kernel function evaluated for all the pairs of objects belonging to X. It is worth
noting that the choice of K induces an implicit map Φ, that can be unknown
in general. Despite that, a well known result shows that it is not necessary to
know Φ to compute the distances in feature space:

‖Φ(xi) − Φ(xj)‖
2 = (Φ(xi) − Φ(xj))

T(Φ(xi) − Φ(xj))

= kii + kjj − 2kij (12)

This is the so called distance kernel trick [28,36].

Kernels have been used in many supervised and unsupervised algorithms. In
fact, every algorithm where input vectors appear only in dot products with
other input vectors can be kernelized [35]. In Support Vector Machines [5], one
takes advantage of this mapping to solve a classification problem in a high di-
mensional feature spaces. In clustering methods, the goal is to identify groups
in data; the kernel function, that implicitly map the input space into another
space, should be chosen in such a way so as to highlight such structures.

From the previous analysis, we know that starting from the pairwise dissim-
ilarities between patterns, it is possible to construct the matrix S̃c having
all the properties of Mercer kernels K. Here the dissimilarities in R imply
K = S̃c, that implies Φ. The next Section shows how it is possible to obtain
a formulation of the central clustering algorithms, knowing just K. Since K
induces an implicit map Φ, it will not be possible to know the prototypes of
the clusters, that will be points in the space F .

1.3 Pre-Shift and Post-Shift

Before closing this Section, it is worth noting that in general there are two
options when shifting R to obtain S̃c. The first is to shift the dissimilarities R
obtaining R̃, and then compute S̃c associated to R̃. Let’s call this procedure
pre-shift:

S̃c = −
1

2
(QR̃Q) (13)
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The second choice, the post-shift, is to compute Sc associated to R, and then
shift its diagonal elements:

Sc + αI (14)

Both the methods allow to compute a matrix corresponding to the same shift,
but:

Sc + αI 6= −
1

2
(QR̃Q) (15)

App. C shows that the choice between pre-shift and post-shift does not affect
the studied clustering algorithms.

2 Central Clustering Algorithms Objective Functions

The central clustering algorithms are based on the concept of centroids and
memberships. In this family, we can find the fuzzy versions of the K-means
with the probabilistic and possibilistic description of the memberships: Fuzzy
c-means [4] and Possibilistic c-means [21]. Given a set of patterns X, the set
of centroids V = {v1, . . . ,vc} and the membership matrix U are defined. The
set V contains the prototypes/representatives of the c clusters. The element
vi are also referred to as codevectors or centroids. U is a c× n matrix having
entries uih representing the membership of the pattern h to the cluster i. Both
Fuzzy and Possibilistic c-means are fuzzy, since uih ∈ [0, 1] while uih ∈ {0, 1}
for K-means. In K-means and FCM algorithms the memberships of a pattern
to all the c clusters are constrained to sum up to one:

c
∑

i=1

uih = 1 ∀k = 1, . . . , n (16)

This is the so called probabilistic constraint, that is relaxed in the possibilistic
paradigm; in the latter case, the memberships can be interpreted as a degree
of typicality.

In general, the clustering solution is obtained by minimizing a functional com-
posed by two terms:

J(U, V ) = G(U, V ) + H(U) (17)
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The first term is a measure of the distortion and the second is an entropic score
on the memberships. The distortion can be written as the following sum:

G(U, V ) = 2
c
∑

i=1

n
∑

h=1

uθ
ih‖xh − vi‖

2 (18)

with θ ≥ 1. The aim of the entropy term H(U) is to avoid trivial solutions
where all the memberships are zero or equally shared among the clusters.

For the algorithms having a constraint on U , the Lagrange multipliers tech-
nique has to be followed in order to perform the optimization. This means
that a further term, depending only on U , must be added to J(U, V ). The
Lagrangian associated to the optimization problem reads:

L(U, V ) = G(U, V ) + H(U) + W (U) (19)

The technique used by these methods to perform the minimization is the so
called Picard iteration technique. The Lagrangian L(U, V ) depends on two
groups of variables U and V related to each other, namely U = U(V ) and
V = V (U). In each iteration one of the two groups of variables is kept fixed,
and the minimization is performed with respect to the other group. In other
words:

∂L(U, V )

∂vi

= 0 (20)

with U fixed gives a formula for the update of the centroids vi, and:

∂L(U, V )

∂uih

= 0 (21)

with V fixed gives a formula for the update of the memberships uih. The
algorithms start by randomly choosing U or V , and iteratively update U and
V by means of the previous two equations. It can be proved that the value
of L does not increase after each iteration [15]. The algorithms stop when a
convergence criterion is satisfied on the U , V or G; usually the following is
considered:

‖U − U ′‖p < ε (22)

where U ′ is the updated version of the memberships and ‖‖p is a p-norm.
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Since L(U, V ) depends on V only because of G(U, V ), the update of the vi is
the same for all the considered algorithms. From Eq. 20:

vi =

∑n
h=1 uθ

ihxh
∑n

h=1 uθ
ih

(23)

By substituting Eq. 23 into Eq. 18, it is easy to verify that the following
functional is equivalent to G(U, V ):

G(U) =
c
∑

i=1

n
∑

r=1

n
∑

s=1

uθ
iru

θ
isd

2
rs

n
∑

r=1

uθ
ir

(24)

Here d2
rs is the squared Euclidean distance between patterns r and s. This

allows to write the objective function only in terms of U , when the description
of the data set is in terms of pairwise distances.

In the non-metric case, it is not possible to identify d2
rs as the squared Eu-

clidean distance between patterns r and s. Anyway, it is still possible to think
that the objective function of the clustering is:

G(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrhk

n
∑

h=1

uθ
ih

(25)

In the following, this way of writing G(U) will be useful to show how the
objective functions change with respect to dissimilarities transformations.

2.1 Analysis of Four Clustering Algorithms

In this Section, we analyze four central clustering algorithms based on fuzzy
memberships: Fuzzy c-means I (FCM I) [4], Fuzzy c-means II (FCM II) [3],
Possibilistic c-means I (PCM I) [21], and Possibilistic c-means II (PCM II) [22]
(see App. D for the complete derivation of these four algorithms). Tab. 1
resumes the terms of the Lagrangian in Eq. 19 for the mentioned clustering
algorithms. Since the sum of the memberships of a point to all the clusters
is constrained to be one in fuzzy clustering, the term W (U) 6= 0. For the
possibilistic algorithms W (U) = 0, since that constrain is relaxed. In fact, for
these algorithms the minimization of L(U) should be done in the hypercube
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Table 1
Resuming table of the entropy functions, θ value, and constraints, for the considered
clustering algorithms.

Method θ H(U) W (U)

FCM I m 0
n
∑

h=1

βh

(

1 −
c
∑

i=1

uih

)

FCM II 1 λ

c
∑

i=1

n
∑

h=1

uih ln(uih)
n
∑

h=1

βh

(

1 −
c
∑

i=1

uih

)

PCM I m

c
∑

i=1

ηi

n
∑

h=1

(1 − uih)m 0

PCM II 1
c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) 0

defined by uih ∈ [0, 1]∀i, h. Since the form assumed by the update equations,
however, this constrain is automatically satisfied. In FCM I and PCM I, the
exponent of the memberships θ is usually called m, while θ = 1 in FCM II
and PCM II.

App. D shows the derivation of the four clustering algorithms in the case of
a feature-based representation of the patterns. Now we show how to obtain
a clustering solution starting from a relational matrix R. From the analysis
in Section 1.1, it is possible to choose α big enough to guarantee that R̃
represents a squared Euclidean distance matrix. This allows to represent each
pattern in a Euclidean space F , where the discussed clustering algorithms can
be applied. In fact, the positions of the patterns in F is still encoded in R̃, and
thus is unknown. Nevertheless, using the fact that K = S̃c contains the scalar
products between patterns, an update formula for the memberships can be
explicitly found. Each pattern is represented by a vector xi ∈ F and the set
of centroids V is composed by prototypes in F . As an example, let’s analyze
the update equations of vi and uih for the FCM II:

uih =
exp

(

−‖xh−vi‖
2

λ

)

∑c
j=1 exp

(

−‖xh−vj‖2

λ

) (26)

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(27)

Since we don’t know explicitly the vectors xi, it would not be possible to
compute vi explicitly. Substituting Eq. 27 in Eq. 26, however, we obtain:

‖xh − vi‖
2 =

∥

∥

∥

∥

∥

xh −

∑n
r=1 uirxr
∑n

r=1 uir

∥

∥

∥

∥

∥

2
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Table 2
Resuming table of the memberships update equations for the considered clustering
algorithms.

FCM I

u−1
ih =

c
∑

j=1





z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

z
(0)
h − 2ajz

(1)
jh + a2

jz
(2)
j





1

m−1

FCM II

uih =

exp

(

−
z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

λ

)

c
∑

j=1

exp



−
z
(0)
h − 2ajz

(1)
jh + a2

jz
(2)
i

λ





PCM I

u−1
ih =

(

z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

ηi

)
1

m−1

+ 1

PCM II

uih = exp

(

−
z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

ηi

)

= khh − 2

∑n
r=1 uirkrh
∑n

r=1 uir

+

∑n
r=1

∑n
s=1 uiruiskrs

(
∑n

r=1 uir)2
(28)

This allows to obtain an update equation for the memberships for the consid-
ered clustering algorithms.

To obtain a more convenient way of writing the update equations, let Uθ be
the c × n matrix having uθ

ih as elements, and let:

ai =

(

n
∑

h=1

uθ
ih

)−1

(29)

z(0) = diag(K) (30)

Z(1) = UθK (31)

z(2) = diag(UθKUT
θ ) (32)

Then, Eq. 28 becomes:

‖xh − vi‖
2 = z

(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i (33)

Tabs. 2 and 3 show the update equations of the memberships and the steps
composing the considered clustering algorithms.
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Table 3
Pseudocode of the presented clustering algorithms

(1) if R is not symmetric, then symmetrize it using Eq. 34;

(2) Compute Sc using Eq. 7;

(3) if Sc � 0 then K = Sc;

(4) else K = Sc − λ1I;

(5) Initialize parameters: c, m (FCM I, PCM I), λ (FCM II), ηi (PCM I, PCM II);

(6) Initialize U ;

(7) Update U using the update equation in Tab. 2 corresponding to the chosen
method;

(8) if the convergence criterion is not satisfied then go to step 7;

(9) else stop.

2.2 Effect of Symmetrization and Shifts on the Lagrangian

Up to now, we have seen how the symmetrization and the shift operation
allowed to cope with the non-metricity of the dissimilarity matrix. The crucial
aspect that has to be considered is the impact of these transformations on the
behavior of the clustering algorithms. In the following, we show the effect of
the transformation on the Lagrangian of the central clustering algorithms.

2.3 Invariance of G(U) to Symmetrization of R

Let’s analyze what happens to the Lagrangian L when R is transformed in
the following way:

r̂ij =
rij + rji

2
(34)

which is equivalent to:

R̂ =
R + RT

2
(35)

It’s clear that the only term of the functional affected by the distance trans-
formation is G(U). Showing that:
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n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikr̂hk =

1

2

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrhk +

1

2

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrkh

=
n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrhk (36)

the invariance of the Lagrangian L(U) to the symmetrization of R is proved. In
other words, in presence of a non-symmetric R, the symmetrization in Eq. 34
does not change the clustering objective function. In force of this result, R
will be considered symmetric in the rest of this paper.

2.4 Transformation of G(U) to Shift Operations

The shift operation on the dissimilarities reads:

r̃hk = rhk + 2α ∀h 6= k (37)

which is equivalent to Eq. 4:

The only term in the Lagrangian L(U) changing due the dissimilarities shift
is G(U):

Gα(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikr̃hk

n
∑

h=1

uθ
ih

= G(U) + 2α
c
∑

i=1

n
∑

h=1

uθ
ih − 2α

c
∑

i=1

n
∑

h=1

u2θ
ih

n
∑

h=1

uθ
ih

(38)

The Lagrangian will result in:

Lα(U) = G(U) + H(U) + W (U) + 2α (A(U) − B(U)) (39)

This result shows that in general the Lagrangian for the central clustering
algorithms is not invariant to such transformations. Only for K-means A(U)−
B(U) = n − c, which means that the K-means objective function is invariant
to distance shifts [30,31]. Besides, for fuzzy clustering algorithms for which
θ = 1, A(U) reduces to n.
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Figure 1. Plot of the synthetic data set composed by two clusters and some outliers.

In general, since θ ≥ 1 and uih ∈ [0, 1], the following two inequalities are
satisfied:

A(U) =
c
∑

i=1

n
∑

h=1

uθ
ih < n (40)

B(U) =
c
∑

i=1

n
∑

h=1

u2θ
ih

n
∑

h=1

uθ
ih

< c (41)

The contributions of A(U) and B(U) to Lα(U) are weighted by 2α. This means
that Lα(U) can be strongly affected by large shift values. The next Section
provides an experimental analysis showing the effect of the shift operation on
the behavior of the presented clustering algorithms.

Tab. 4 resumes the Lagrangian Lα(U) of the discussed clustering algorithms,
considering also the effect of the shift. In FCM II and PCM II, A(U) = n; in
FCM I and PCM I, both A(U) and B(U) are not constant.

3 Experimental Analysis

3.1 Synthetic Data Set 1

The presented clustering algorithms have been tested on a synthetic data set
composed by two clusters in two dimensions (Fig. 1). Each cluster is com-
posed by 200 points sampled from a Gaussian distribution. The position of
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Table 4
Resuming table of the objective functions, after the shift operation, for the consid-
ered clustering algorithms.

FCM I

c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihum

ikrhk

n
∑

h=1

um
ih

+
n
∑

h=1

βh

(

1 −
c
∑

i=1

uih

)

+ 2α

c
∑

i=1

n
∑

h=1

um
ih − 2α

c
∑

i=1

n
∑

h=1

u2m
ih

n
∑

h=1

um
ih

FCM II

c
∑

i=1

n
∑

h=1

n
∑

k=1

uihuikrhk

n
∑

h=1

uih

+ λ

n
∑

h=1

c
∑

i=1

uih ln(uih) +
n
∑

h=1

βh

(

1 −
c
∑

i=1

uih

)

+ 2αn − 2α

c
∑

i=1

n
∑

h=1

u2
ih

n
∑

h=1

uih

PCM I

c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihum

ikrhk

n
∑

h=1

um
ih

+
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)m + 2α

n
∑

h=1

c
∑

i=1

um
ih − 2α

c
∑

i=1

n
∑

h=1

u2m
ih

n
∑

h=1

um
ih

PCM II

c
∑

i=1

n
∑

h=1

n
∑

k=1

uihuikrhk

n
∑

h=1

uih

+
c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) + 2αn − 2α

c
∑

i=1

n
∑

h=1

u2
ih

n
∑

h=1

uih

their center are respectively (0, 0) and (6, 6), and the standard deviations are
equal to one for both the features and the clusters. Twenty outliers have been
added sampling points in the set [−6, 12]×[−6, 12] using a uniform probability
distribution. The average of the squared distances is 43.4, the median is 34.4,
and the maximum is 360.9.

3.1.1 Behavior of the memberships during the optimization

For all the tested algorithms, the behavior of the memberships have been
analyzed during the optimization, for different values of α. In order to do that,
the elements rij have been set to the squared Euclidean distance ‖xi − xj‖

2,
and have been shifted with different values of α. The proposed algorithms have
been run on the modified data sets. During the optimization, the memberships
have been recorded to see how the distance shifts affected their behavior. At
each iteration, the difference between the matrix U when α = 0 and U ′ for
an α 6= 0 has been measured. The analysis has been made on the basis of the
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Figure 2. Behavior of the memberships during the optimization for different values
of α. First row FCM I m = 1.5 and FCM II λ = 20; second row PCM I m = 1.5
and PCM II γ = 0.5. Results are averaged over 100 repetitions with different ini-
tialization of U .

following score:

max(|U − U ′|) = max
i,h

(|uih − u′
ih|) (42)

averaged over 100 runs.

For the sake of brevity, we report in Fig. 2 the behavior of the memberships
for selected values of α and the parameters of the clustering algorithms (see
[9] for plots with other α and parameter values). In particular, we set the
value of m in FCM I and λ in FCM II in order to obtain a similar distribution
of the memberships at the end of the algorithms. For small α the results are
almost invariant as expected (first row of Fig 2). For values of α of the order
of the mean of the squared distances, the memberships in FCM I have a very
different behavior with respect to those on the original set. FCM II seems to
be less sensitive to shift operations, even for large values of α. At the end of
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the algorithm, the memberships can be defuzzified using a threshold of 0.5 to
obtain the cluster labels. The cluster labels have been found to be identical
for all the tested valued of α.

For PCM I we set m = 1.5 as in FCM I, and for PCM II there are no pa-
rameters to set up. In fact, in both the possibilistic algorithms, it is possible
to set the value of γ for the computation of η. We set γ = 0.5 for PCM I
and PCM II. The initialization of the memberships has been done using the
result obtained by the FCM II, since it showed high robustness to distance
shifts. This means that the values of ηi have been computed on the basis of
the memberships obtained by the FCM II. It can be seen, in the second row
of Fig. 2, that even for small values of α, the behavior of the memberships in
PCM I and PCM II is strongly affected by the shift operation.

The difference of the memberships in FCM I, after dissimilarities shift, presents
a peak around the first iterations. One possible explanation can be found
by looking at the functional and at the values assumed by the memberships
around those iterations. The terms A(U) and B(U) give a high contribution
when the memberships are near 1/c. In the first exploratory iterations, the
values are more likely to be near 1/c than later, when the clusters are well
identified. As we can see from Eq. D.10, as α increases, the memberships tend
to be 1/c, if c ≪ n. The memberships for α 6= 0 do not diverge from those
of α = 0; this effect can be noticed also for FCM II. A small peak in the
difference of the memberships for different α can be seen also for FCM II, and
is the effect of B(U) in the Lagrangian.

3.1.2 Histogram of the memberships at the end of the optimization

Let’s now analyze the histogram of the memberships, at the end of the opti-
mization, for different values of the shift and the clustering parameters. Let’s
introduce the following entropy-based score:

O(U) = −
∑

ij

uij log(uij) (43)

Fig. 3 shows a plot of O(U) for different values of α and the parameters. It is
possible to see how FCM II gives nearly the same results for different values of
shift. In FCM I, it is evident that this happens only in an almost crisp set-up
(m close to 1). In PCM I and PCM II, a small value of O(U) is caused by
several small values of the memberships. Indeed, for PCM II, where we set the
width of the membership function, for small values of γ, PCM II will tend to
give high membership to the more representative patterns only.
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Figure 3. Entropy vs the clustering parameters for different values of α. First row
FCM I and FCM II; second row PCM I and PCM II.

3.1.3 Coping with the shift by changing the parameters

Another interesting study that can be performed on a synthetic data set is
to analyze if there is the chance to cope with the problems coming from the
shift operation, by tuning the parameters in an appropriate way. In order
to do that, let’s denote with U and U ′ the memberships resulting from two
clustering algorithms, and introduce the following score:

KL =
∑

ij

uij log

(

uij

u′
ij

)

(44)

KL is a Kullback-Leibler-based score on the memberships that measures the
distance between the distributions of the memberships at the end of the two
algorithms. Since we are in a synthetic set up, it is possible to do the following:

• run a fuzzy clustering algorithm with some parameters on the unshifted
version of the data set;
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Figure 4. FCM I and FCM II - Parameter values needed to obtain the same solution
on a shifted data set as in the unshifted one.

• search for the new parameters, on the shifted data set, that lead to the same
distribution of the memberships as in the unshifted case.

We set the value of m = 2 for FCM I and a value of λ = 18 for FCM II;
these two values give an almost identical distribution of the memberships at
the end of the algorithms. Searching for the value of m and λ minimizing the
value of KL, we obtained the plot in Fig. 4. It is possible to see that in a
wide range of α values, FCM II is not affected by the shift. In FCM I, it is
necessary to move toward a more crisp behavior of the algorithm (lowering
m) to obtain the same distribution of the memberships as in the unshifted
case. For the possibilistic clustering algorithms, we don’t report this study for
the sake of brevity, since the distribution of the memberships assume a very
different form. This means that it was not possible to select the parameters
in the shifted case giving a KL score close to 0.

3.2 Synthetic Data Set 2

The second data set is composed by 200-20 dimensional points divided in two
clusters. The first ten features are normally distributed with means (−2,−2, . . . ,−2)
for the first 100 patterns, and (2, 2, . . . , 2) for the other 100. The standard de-
viation is set to 1 for all the features and both the distributions. The other 10
features are uniformly distributed in the interval [−1, 1]. The mean squared
distance is 106.2, the median is 103.0, and the maximum is 334.

In Fig. 5, we report the entropy of the memberships at the end of the four
clustering algorithm, for different values of α and the parameters. Again it is
possible to repeat the considerations about the robustness of FCM II to shift
operation, and the inability of the other algorithms to deal with that.
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Figure 5. Entropy vs the clustering parameters for different values of α. First row
FCM I and FCM II; second row PCM I and PCM II.
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Figure 7. Accuracy vs the parameters (FCM I first plot, FCM II second plot).

We repeated the test based on the KL score (Fig. 6). Again, the possibilis-
tic algorithms lead to very different distributions, and we do not report this
analysis. For FCM I, it is necessary to set m to values close to 1 as the shift
becomes large. FCM II does not need any tuning to λ in a broad range of
values; when α is very large, it is necessary to increase it slightly.

In this synthetic data set we performed another test. We perturbed the rela-
tional matrix R with increasing levels of uniform distributed noise. This can
simulate a real situation when the measures of the relations between patterns
are noisy. In our case, we used the symmetrization on the noisy R, and we
shifted it obtaining a positive semidefinite kernel matrix. We studied the match
between cluster labels and true class labels, with respect to different values
of the parameters. The cluster labels are obtained by assigning a pattern to
the cluster for which the membership is the highest. Up to noise levels having
maximum value of 500 both FCM I and FCM II are able to label the two
clusters correctly. The situation for a noise uniformly distributed in [0, 1000]
is shown in Fig. 7. For the possibilistic clustering, the matching with the labels
starts to fail with lower noise levels.

3.3 USPS Data Set

We tested the presented algorithms on the USPS data set [36,23]. It is com-
posed by 9298 images acquired and processed from handwritten zip-codes
appeared on real US mail. Each image is 16 × 16 pixels; the training set in
composed by 7219 images and the test set by 2001 images. As in Ref. [23], only
the characters in the training set labeled as “0” and “7” have been considered,
obtaining a subset of 1839 images. The dissimilarity function used in Ref. [23]
is based on the Simpson score, which is a matching function between binary
images. Given two binary images, the following matrix can be constructed:
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where: a is the number of pixels that are white in both the images; b is the
number of pixels that are white in Img 2 and black in Img 1; c is the number
of pixels that are white in Img 1 and black in Img 2; d is the number of pixels
that are black in both the images. The Simpson score of two binary images is
defined as:

l =
a

min(a + b, a + c)
(45)

The images in the USPS data set are not binary; this has required a normal-
ization between 0 and 1, and a thresholding at 0.5. The dissimilarity based on
the Simpson score, is:

rij = 2 − 2lij (46)

which is between 0 and 2. The mean value of R, in this data set, is 0.88,
and the median is 0.92. The Simpson dissimilarity is symmetric, but does
not obey to the triangular inequality. Indeed, as can be seen in Fig. 8, there
are some negative eigenvalues of Sc. The smallest eigenvalue λ1 = −57.2 is
the value that added to the dissimilarities let R̃ become a squared Euclidean
distance matrix. We applied the four clustering algorithms on the selected
binary images, searching for two clusters.
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Figure 9. Entropy vs the clustering parameters. First row FCM I and FCM II;
second row PCM I and PCM II.

In Fig. 9, we can see the plot of the entropy O(U) of the memberships ver-
sus the parameters. Only FCM II, for particular values of λ, allows to obtain
a meaningful distribution of the memberships Fig. 10 shows the accuracy
obtained of the algorithms with respect to the parameters. The accuracy is
measured as the match between cluster labels and class labels. Both the en-
tropy and the accuracy are averaged over 50 trials with different initializations.
In these experiments, we noticed that FCM I resulted to be strongly affected
by different initializations.

FCM II resulted the best algorithm in terms of performances. The histogram
of the membership allows to refine the results, identifying the patterns that
are more representative of the two clusters, and those that are on the border
between them. As an illustrative example, we show (Fig. 11) the histogram of
the highest membership of the patterns to the clusters, obtained by FCM II
with λ = 0.15, that is the setup giving the best results on average (accuracy of
98.2 %). We can set a threshold on such memberships to label the patterns as
objects in the border between the two clusters. By looking at the histogram,
we set this threshold to 0.9. Fig. 11 shows the group of border objects, and
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Figure 10. Accuracy vs the clustering parameters. First row FCM I and FCM II;
second row PCM I and PCM II.

the two clusters found by the algorithm. The images have been sorted with
decreasing values of memberships. The image in the top-left corner has the
highest membership and moving to the right the memberships decrease.

4 Conclusions

In this paper, four central clustering algorithms based on fuzzy memberships
have been studied: FCM I, FCM II, PCM I, and PCM II. In particular, it has
been studied how the symmetrization and the shift operation on the dissim-
ilarities affect their objective function. The main theoretical results include
the proof of invariance of the objective function to symmetrization and the
lack of invariance to shift operations. Moreover, the four considered clustering
algorithms have been presented under a more general framework, highlighting
the connections between the relational clustering and the clustering in the
space induced by positive semidefinite kernels.
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Figure 11. Analysis of the results obtained by FCM II with λ = 0.15. First row:
histogram of the highest memberships of patterns to the two clusters and group of
objects having membership below the threshold (border objects). Second row: the
two clusters found by the algorithm

Both the theoretical analysis and the experiments conducted on synthetic and
real data sets, show that FCM II is the least sensitive to shift operations.
Indeed, its Lagrangian is not invariant only for a term that is bounded by
the number of clusters c, while FCM I’s contains also a term bounded by the
number of patterns n. In a typical problem, the number of clusters is very
small, compared to the number of patterns, and this gives to FCM II more
robustness with respect to FCM I. The situation is the same for PCM II and
PCM I, but the lack of competitivity between clusters, make them finding
solution where centroids collapse into a single one, even for small shifts. Small
distances are more affected by the sum of a constant than large distances,
making the data set sparse; the possibilistic algorithms are not able to handle
efficiently these situations.

In the experimental tests on synthetic data sets, we analyzed the behavior of
the presented algorithms during and at the end of the optimization. In the first
data set, we studied the behavior of the memberships during the optimization
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and the entropy of the memberships at the end of the algorithms. We also
studied how it is possible to cope with the effect of the shift, by tuning the
parameters, by analyzing a score based on the Kullback-Leibler divergence. On
another synthetic data set, we studied the performances in terms of correct
assignment of cluster labels, when adding noise to the relational matrix. In
all these cases, FCM II showed more robustness in comparison to the other
algorithms. Regarding the parameters, we saw that in FCM I, one needs to
move toward a more crisp setup to cope with the shift. If the shift is very
large, as in the case of the USPS data set, the values of m must be set to 1
plus very small fractions. In FCM II, the value of λ can be set on the basis of
the values of the relational matrix. Values around half of the average of the
dissimilarities, have been found to be a good starting point. For large values
of the shift, the order of magnitude of λ to achieve the same result as in
the unshifted case, does not change; λ requires only to be slightly increased.
On USPS data set, we showed the performances of the algorithms in a real
application. FCM II resulted the only algorithm, among those presented here,
able to assign memberships to the patterns in a meaningful way. The analysis
of the memberships in FCM II allows to identify the patterns that are close
to the border between clusters, as well as those that are more representative
of the clusters.

Based on the analysis conducted in this paper, we claim that FCM II is the al-
gorithm, among those presented, that is less affected by shift transformations.
This suggests that it is the preferable algorithm, among those presented, to be
employed when patterns are represented by means of non-metric dissimilari-
ties. The relational dual of FCM II has never been proposed before in the case
of non-metric dissimilarities, and represents another novelty of this paper.

A Proof that Sc is Uniquely Determined by Rc

The centralized version of a generic matrix P is defined as:

P c = QPQ (A.1)

that is equivalent to:

pc
ij = pij −

1

n

n
∑

h=1

phj −
1

n

n
∑

k=1

pik +
1

n2

n
∑

h=1

n
∑

k=1

phk (A.2)

Inverting Eq. 5, we can write:

sij = −
1

2
(rij − sii − sjj) (A.3)
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The entries of the centralized version of S are:

sc
ij =−

1

2

[

(rij − sii − sjj) −
1

n

n
∑

h=1

(rhj − shh − sjj) −
1

n

n
∑

k=1

(rik − sii − skk)

+
1

n2

n
∑

h=1

n
∑

k=1

(rhk − shh − skk)

]

(A.4)

=−
1

2

(

rij −
1

n

n
∑

h=1

rhj −
1

n

n
∑

k=1

rik +
1

n2

n
∑

h=1

n
∑

k=1

rhk

)

(A.5)

This proves that the centralized version of S is uniquely determined by the
centralized version of R:

Sc = −
1

2
Rc (A.6)

B Proof of Theorem 1.1

In this section we report the proof that R is a squared Euclidean distance
matrix ⇐⇒ Sc � 0 [23,31]. Let’s start with ⇒. The centralized version of R
is:

Rc = QRQ = R −
1

n
eeTR −

1

n
ReeT +

1

n2
eeTReeT (B.1)

Assuming that a set of vectors x exists, for which:

rij = ‖xi − xj‖
2 (B.2)

the entries of Rc can be written as:

rc
ij = ‖xi − xj‖

2 −
1

n

n
∑

h=1

‖xh − xj‖
2 −

1

n

n
∑

k=1

‖xi − xk‖
2 +

1

n2

n
∑

h=1

n
∑

k=1

‖xh − xk‖
2

=xT
i xi + xT

j xj − 2xT
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n
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xT
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−
1

n

(

n
∑

k=1

xT
i xi + xT

k xk − 2xT
i xk

)

+
1

n2

(

n
∑

h=1

n
∑

k=1

xT
hxh + xT

k xk − 2xT
hxk

)

=−2

(

xT
i xj −

1

n

n
∑

h=1

xT
hxj −

1

n

n
∑

k=1

xT
i xk +

1

n2

n
∑

h=1

n
∑

k=1

xT
hxk

)

(B.3)

28



Introducing the quantity:

x̄ =
1

n

n
∑

h=1

xh (B.4)

we can rewrite Eq. B.3 in a more compact way:

rc
ij = −2(xi − x̄)T(xj − x̄) = −2x̆T

i x̆j (B.5)

This is equivalent to say that:

Sc = X̆X̆T (B.6)

which proves ⇒.

To prove ⇐, since Sc is positive semidefinite, we can write:

Sc = XXT (B.7)

where the rows of X are vectors x ∈ R
d. From Eq. 5, we obtain:

rij = sii + sjj − 2sij

=xT
i xi + xT

j xj − 2xT
i xj

= ‖xi − xj‖
2 (B.8)

thus proving ⇐.

C Pre-Shift and Post-Shift

Let’s analyze why:

Sc + αI 6= −
1

2
(QR̃Q) (C.1)

and how this can influence the behavior of the studied clustering algorithms.
First, let’s see what is the difference between the resulting matrices. For the
pre-shift we have:

−
1

2
(QR̃Q) = −

1

2
(QRQ) − αQ(eeT − I)Q = Sc − αQ(eeT − I)Q (C.2)
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Now:

Q(eeT − I)Q = QeeTQ − QQ = −QQ = −Q (C.3)

since:

Qe = (I −
1

n
eeT)e = e − e = 0 (C.4)

and:

QQ = (I −
1

n
eeT)(I −

1

n
eeT) = I −

2

n
eeT +

1

n2
eeTeeT = I −

1

n
eeT = Q(C.5)

Thus:

−
1

2
(QR̃Q) = Sc + αQ (C.6)

The difference between the matrices associated to post-shift and pre-shift is:

α(I − Q) =
α

n
eeT (C.7)

Now we prove that ‖xh − vj‖
2 is independent from the choice of the pre-shift

or post-shift:

‖xh − vj‖
2 = k′

hh − 2

∑n
r=1 uθ

irk
′
rh

∑n
r=1 uθ

ir

+

∑n
r=1

∑n
s=1 uθ

iru
θ
isk

′
rs

(
∑n

r=1 uθ
ir)

2
(C.8)

All the entries of the pre-shifted and post-shifted versions of K differ for a
constant term:

k′
ij = kij +

α

n
∀i, j (C.9)

Such difference cancels out in the computation of the distance between pat-
terns and centroids:

‖xh − vj‖
2 = khh +

α

n
− 2

∑n
r=1 uθ

irkrh
∑n

r=1 uθ
ir

− 2
α

n
+

∑n
r=1

∑n
s=1 uθ

iru
θ
iskrs

(
∑n

r=1 uθ
ir)

2
+

α

n
(C.10)
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D Derivation of FCM I, FCM II, PCM I, and PCM II

This section shows the derivation of FCM I, FCM II, PCM I, and PCM II.
At the end of each derivation, we discuss the influence of the distance shift on
the update equations.

D.1 Fuzzy c-means I

The Lagrangian L(U) is:

L(U, V ) =
c
∑

i=1

n
∑

h=1

um
ih‖xh − vi‖

2 +
n
∑

h=1

βh(1 −
c
∑

i=1

uih) (D.1)

The first term is the distortion G(U, V ) and the second is W (U), which is not
zero, since the memberships are subjected to the probabilistic constraint in
Eq. 16. The parameter m > 1 works as a fuzzifier parameter; for high values
of m the memberships tend to be equally distributed among clusters. Setting
to zero the derivatives of L(U, V ) with respect to uih:

∂L(U, V )

∂uih

= mum−1
ih ‖xh − vi‖

2 − βh = 0 (D.2)

we obtain:

uih =

(

βh

m‖xh − vi‖2

)
1

m−1

(D.3)

Substituting the expression of uih into the constraint equation:

c
∑

i=1

(

βh

m‖xh − vi‖2

)
1

m−1

= 1 (D.4)

we obtain the Lagrange multipliers:

βh =





c
∑

i=1

(

1

m‖xh − vi‖2

)
1

m−1





1−m

(D.5)
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Substituting Eq. D.5 into Eq. D.3, the equation for the update of the mem-
berships uih can be obtained:

u−1
ih =

c
∑

j=1

(

‖xh − vi‖
2

‖xh − vj‖2

)
1

m−1

(D.6)

To compute the equation for the update of the vi, we set to zero the derivatives
of L(U, V ) with respect to vi:

∂L(U, V )

∂vi

= −
n
∑

h=1

um
ih (xh − vi) = 0 (D.7)

obtaining:

vi =

∑n
h=1 um

ihxh
∑n

h=1 um
ih

(D.8)

After a shift operation on the dissimilarities, the Lagrangian Lα(U, V ) contains
two more terms: A(U) and B(U). Since A(U) < n and B(U) < c, if c ≪ n,
we can neglect the term B(U):

Lα(U, V ) =
n
∑

h=1

c
∑

i=1

um
ih‖xh − vi‖

2 + α
n
∑

h=1

c
∑

i=1

um
ih +

n
∑

h=1

βh(1 −
c
∑

i=1

uih) (D.9)

Following the same procedure, we obtain that the update of the v is the same
as in Eq. D.8, but the update of the memberships is:

u−1
ih =

c
∑

j=1

(

‖xh − vi‖
2 + α

‖xh − vj‖2 + α

)
1

m−1

(D.10)

This shows that for large values of α and c ≪ n the membership tend to be
equally distributed among clusters.

D.2 Fuzzy c-means II

The Lagrangian L(U, V ) for FCM II is:

L(U, V ) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 + λ

n
∑

h=1

c
∑

i=1

uih ln(uih) +
n
∑

h=1

βh(1 −
c
∑

i=1

uih)(D.11)
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The entropic term favors values of the memberships near zero or one (Fig.
D.1). Let’s compute the derivative of L(U, V ) with respect to uih:

∂L(U, V )

∂uih

= ‖xh − vi‖
2 + λ(ln(uih) + 1) − βh = 0 (D.12)

This leads to:

uih =
1

e
exp

(

βh

λ

)

exp

(

−
‖xh − vi‖

2

λ

)

(D.13)

Substituting the last equation into the probabilistic constraint, we obtain:

c
∑

i=1

1

e
exp

(

βh

λ

)

exp

(

−
‖xh − vi‖

2

λ

)

= 1 (D.14)

This allows to compute the Lagrange multipliers:

βh = λ − λ ln





c
∑

j=1

exp

(

−
‖xh − vj‖

2

λ

)



 (D.15)

Substituting Eq. D.15 into Eq. D.13, we obtain the equation for the update
of uih:

uih =
exp

(

−‖xh−vi‖
2

λ

)

∑c
j=1 exp

(

−‖xh−vj‖2

λ

) (D.16)

Setting to zero the derivatives of L(U, V ) with respect to vi:

∂L(U, V )

∂vi

= −
n
∑

h=1

uih (xh − vi) = 0 (D.17)

the following update formula for the centroids vi is obtained:

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(D.18)
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Figure D.1. Plot of the FCM II entropy H(uih) = uih ln(uih), PCM I en-
tropy H(uih) = (1 − uih)m for increasing values of m, and PCM II entropy
H(uih) = uih ln(uih) − uih.

D.3 Possibilistic c-means I

The PCM I Lagrangian L(U, V ) does not have the W (U) term coming from
the probabilistic constraint on the memberships:

L(U, V ) =
n
∑

h=1

c
∑

i=1

um
ih‖xh − vi‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m (D.19)

The entropic term penalizes small values of the memberships.

Setting to zero the derivatives of L(U, V ) with respect to the memberships
uih:

∂L(U, V )

∂uik

= mum−1
ih (‖xh − vi‖

2) − ηim(1 − uih)
m−1 = 0 (D.20)

We obtain directly the update equation:

u−1
ih =

(

‖xh − vi‖
2

ηi

) 1

m−1

+ 1 (D.21)

The following derivative of L(U, V ):

∂L(U, V )

∂vi

= −
n
∑

h=1

um
ih (xh − vi) = 0 (D.22)

gives the update equation for the centroids vi:

vi =

∑n
h=1 um

ihxh
∑n

h=1 um
ih

(D.23)
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The following criterion is suggested to estimate the value of ηi:

ηi = γ

∑n
h=1 um

ih‖xh − vi‖
2

∑n
h=1 um

ih

(D.24)

where γ is usually set to one.

In presence of a shift operation on the dissimilarities, the Lagrangian is not
invariant. Following the same considerations made for FCM I about A(U) and
B(U), it is possible to neglect B(U), if c ≪ n:

Lα(U, V ) =
n
∑

h=1

c
∑

i=1

um
ih‖xh − vi‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m + α

n
∑

h=1

c
∑

i=1

um
ih(D.25)

Following the same procedure, we derive the equations for the update of U :

u−1
ih =

(

‖xh − vi‖
2 + α

ηi

)
1

m−1

+ 1 (D.26)

For large values of α, the memberships tend to become small.

D.4 Possibilistic c-means II

The PCM II Lagrangian L(U, V ) is:

L(U, V ) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 +

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) (D.27)

The entropic term penalizes small values of the memberships.

Setting to zero the derivatives of L(U, V ) with respect to the memberships
uih:

∂L(U, V )

∂uih

= ‖xh − vi‖
2 + ηi ln(uih) = 0 (D.28)

we obtain:

uih = exp

(

−
‖xh − vi‖

2

ηi

)

(D.29)
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Setting to zero the derivatives of L(U, V ) with respect to vi:

∂L(U, V )

∂vi

= −
n
∑

h=1

uih (xh − vi) = 0 (D.30)

we obtain the update formula for the centroids vi:

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(D.31)
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[6] M. de Cáceres, F. Oliva, and X. Font. On relational possibilistic clustering.
Pattern Recognition, 39(11):2010–2024, 2006.

[7] T. Denoeux and M. H. Masson. Evclus: evidential clustering of proximity data.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1):95–109,
2004.
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