
Supervised Classification and Gene Selection
Using Simulated Annealing

Maurizio Filippone, Francesco Masulli, Stefano Rovetta
DISI - Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova and CNISM

Via Dodecaneso 35, 16146 Genova (Italy) – {filippone, masulli, rovetta}@disi.unige.it

Abstract— Genomic data are often characterized by small
cardinality and high dimensionality. For those data, a feature
selection procedure could highlight the relevant genes and
improve the classification results. In this paper we propose
a wrapper approach to gene selection in classification of
gene expression data using Simulated Annealing and SVM.
The proposed approach can do global combinatorial searches
through the space of possible input subsets, can handle cases
with numerical, categorical or mixed inputs, and is able to
find (sub-)optimal subsets of input variables giving very low
classification errors. The method has been tested on the publicly
available data sets Leukemia by Golub et al. and Colon by
Alon at al. The experimental results highlight the capacity of
the method to select minimal sets of relevant genes.

I. INTRODUCTION

Genomic data are often characterized by small cardinality
and high dimensionality and can include some features that
are not relevant for the discrimination among classes. This is
the case e.g. with gene expression data obtained from DNA
microarrays where each dimension or feature corresponds to
a gene expression data. Usually, some (or most) genes are
not relevant for the discrimination between classes. This is
inherent in the experiment design: a lot of candidate genes
are probed in a microarray experiment, and those related to
the phenomenon under study are to be identified.

For those data, a gene selection procedure could highlight
the relevant genes and improve the classification results at
the same time.

In this paper we propose a wrapper approach to gene
selection in classification of gene expression data. The com-
binatorial search is performed using the Simulated Annealing
(SA) method [14] which is a global search method tech-
nique derived from Statistical Mechanics and based on the
Metropolis algorithm [18], while the learning algorithm is
the SVM which is one of the most popular classifiers [6].

In the next section we briefly review the input variable se-
lection problem and approaches, then the Simulated Anneal-
ing technique is presented and we describe how we applied
it to input selection problem (Sect. III) with a mechanism for
the measurement of the input relevance (Sect. IV). In Sect. V
and VI the experimental validation of the method is shown
and Sect. VII concerns the conclusions.

II. GENE SELECTION AS A VARIABLE SELECTION

PROBLEM

Gene selection is a specific instance of a more general
problem, which is called input or variable selection [12].

Note that our main goal is selection of relevant genes
rather than performance optimization or dimensionality re-
duction. Therefore features (derivative variables obtained by
transformation of raw input variables) are not of interest.
Input selection algorithms can be broadly divided into two
categories [4], [15]: filters and wrappers. Filters evaluate the
relevance of each input (subset) using the data set alone,
while wrappers invoke a learning algorithm to evaluate the
quality of each input (subset). Both approaches, filters and
wrappers, usually involve combinatorial searches (often only
local) through the space of possible input subsets. Wrappers
are usually more computationally demanding, but they can
be superior in accuracy when compared with filters.

The strategy for variable selection, and the underlying
assumptions about the input variables themselves, is also a
design choice. Variables can be selected as a subset with
aggregate discriminative power [22], [20], or ranked for their
individual relevance [24], [17]. In the latter case variables
are assumed to be weakly correlated, so that their individual
importance can be unambiguously assessed. In the former
case, it is assumed that all possible interaction patterns can
occur, and this forces a much more complex search space.
However, ranks can also be used as an indication to evaluate
a subset selection process, in an in-between approach.

The definition of relevance itself can be subject to varia-
tions [15], and the goal of the procedure can also be different,
with some approaches aiming at comprehensive set (find all
significant variables [13], [16], [20]) or at explanatory sets
(this is generally the case with all gene selection tasks, where
one wants to identify the most important genes only, as e.g.
in [10]). Again, an in-between approach is possible [24]
when an explicit cost function includes both performance
and complexity (number of variables) terms. In this case, a
continuum of possible balances is provided by the relative
weighting of these terms.

To summarize, the gene selection problem is stated as the
problem of selecting small subsets of input variables achiev-
ing high discriminating power but with good explanatory
properties. Interactions among genes may and do occur, but
as a working hypothesis it is possible to rank genes according
to their individual relevance. These hypotheses form the basis
of the method we are presenting here, which is based on
optimizing the combination of performance and complexity
costs.



TABLE I

SIMULATED ANNEALING INPUT SELECTION (SAIS) ALGORITHM.

1) Initialization of parameters;
2) Initialize g at random (binary mask);
3) Perform classification and evaluate the generalized system energy E;
4) do
5) Initialize f = 0 (number of iterations), h=0 (number of success);

a) do
b) Increment number of iterations f ;
c) Perturb mask g;
d) Perform classification and evaluate the generalized system

energy E;
e) Generate a random number rnd in the interval [0,1];
f) if rnd < P (∆E) then

i) Accept the new g mask;
ii) Increment number of success h;

g) endif
h) loop until h ≤ hmin and f ≤ fmax;

6) update T = αT ;
7) loop until h > 0;
8) end.

III. SA FOR GENE SELECTION

The method for input selection we propose makes use of
Simulated Annealing (SA) technique [14] that is a global
search method technique derived by Statistical Mechanics.
SA is based on the Metropolis algorithm [18] that has been
proposed to simulate the behavior and small fluctuations of a
system of atoms starting from an initial configuration, by the
generation of a sequence of iterations. In the Metropolis al-
gorithm each iteration is composed by a random perturbation
of the actual configuration and the computation of the corre-
sponding energy variation (∆E). If ∆E < 0 the transition is
unconditionally accepted, otherwise the transition is accepted
with probability given by the Boltzmann distribution:

P (∆E) = exp

(

−∆E

KT

)

(1)

where K is the Boltzmann constant and T the temperature.
In SA this approach is generalized to the solution of

general optimization problems [14] by using an ad hoc
selected cost function (generalized energy), instead of the
physical energy. SA works as a probabilistic hill-climbing
procedure searching for the global optimum of the cost
function. The temperature T takes the role of a control
parameter of the search area (while K is usually set to 1),
and is gradually lowered until no further improvements of
the cost function are noticed. SA can work in very high-
dimensional searches, given enough computational resources.

SA has been already applied to classification of gene
expression data from DNA microarray [1] with the aim of
training perceptrons.

In this paper we apply SA to the variable selection
problem. The approach we adopted is to constrain the search
space to subsets of variables, and to evaluate a compound
cost function combining performance and complexity scores,
as previously indicated. The method is described in the
following, whereas in Tab. I a step-by-step outline of the

proposed Simulated Annealing Input Selection (SAIS) algo-
rithm is presented.

Let g = (g1, g2, . . . , gd) be a binary mask representing
the system state (configuration), where each bit gi (with i =
1, . . . , d) corresponds to the selection (gi = 1) / deselection
(gi = 0) of a input (if we want to select a set of s inputs, at
each time only s bits will be set to 1). The initialization of
the vector mask g (Step 2) is done by generating s0 integer
numbers with uniform distribution in the interval [1, d] and
setting the corresponding bits to 1 of g and the remaining
ones to 0. A perturbation or move (Step 5c) is done in the
following way:

1) chose w and v following uniform distributions, respec-
tively in the intervals [wmin, wmax] and [vmin, vmax];

2) a number of w of genes set to 1 are set to 0;
3) a number of v of genes set to 0 are set to 1;

The values wmin, wmax, vmin, vmax regulate the variability of
each perturbation.

The classification task (Steps 3 and 5d) is performed in
the sub-space of selected inputs defined by the vector mask
g. After each run of the classification algorithm we can
obtain an evaluation of the generalized energy E as a linear
combination of the Classification Error ε (obtained with a
cross-validation technique, such as leave one out or k-fold
validation) and of the number of selected genes s:

E = ε + λ s (2)

The introduction of the number of selected genes s in the
computation of E penalizes situations in which the number
of selected genes is too high. This choice of E leads to the
minimization of the number of genes able to achieve a good
classification error. The compromise between these two terms
is controlled by λ (regularization coefficient).

The initial value of temperature T is obtained as the
average value of ∆E computed over an assigned number
p of random perturbations of the mask g.

SAIS is a computational intensive algorithm, but it is able
to work with both numeric and categorical variables. It is
worth noting that each time we run the SAIS algorithm we
can find a sub-optimal subset of s inputs from the original
d. In principle, each independent run of SAIS can lead to a
quite different subset of inputs.

IV. RANKING INPUT RELEVANCE

SA is an algorithm implementing a stochastic time-varying
dynamical system where the state vector evolves in the
direction of the minima of the generalized energy function. In
our case during the evolution of the SAIS algorithm the bits
set in the state vector g will be related to the more relevant
inputs (genes) with increasing probability.

The inputs which are more relevant for classification
should appear soon in the set of bits set to 1 and will be
as more frequent as the temperature decreases. In order to
estimate the relevance of inputs, we can include in the SAIS
an aging algorithm. To this end, we can define a vector
r = (r1, r2, . . . , rd). At Step 2 of the SAIS algorithm, we set



TABLE II

VALUES OF PARAMETERS

Meaning Symbol Experiment 1 Experiment 2
Number of random perturbations of g used to p 10000 10000
estimate the initial value of T

Number of inputs to be initially selected s0 20 20
Cooling parameter α 0.9 0.9
Maximum number of iteration at each T fmax 10000 2000
Minimum number of success for each T hmin 1000 200
Regularization coefficient λ 10−2 2 · 10−3

Minimum number of bits to be switched wmin, vmin 1 1
Maximum number of bits to be switched wmax, vmax s, 10 s, 10
Aging constant γ 0.98 0.98

ri = 0 ∀i. Every time a perturbation is accepted (Step 5.f),
according to the Boltzmann distribution, we update r using
this formula:

r = γr + g (3)

where γ is the aging constant chosen in the interval [0,1].
At the end of the SAIS the vector r tells us how long each

input has belonged to it in the last few successful moves of
the algorithm. We give to vector r an interpretation as vector
of input relevances.

It is worth noting that measures based on similar aging
algorithms are also used in other dynamical systems such as
operating systems of computers [21], sensor networks [9],
and chaotic systems [3].

V. EXPERIMENTAL VALIDATION

SAIS has been implemented in R-language [19] under
Linux operating system. We used as the classification al-
gorithm the Support Vector Machine (SVM) [23] in the
implementation of Chung et al. [5] that is one of most
popular classifier. We chose to work with linear kernels and
with a cost parameter C = 1 in the SVM functional in order
to avoid model selection on more parameters and to make a
biological interpretation of results possible.

The method was tested on two experiments on publicly
available data sets that will be described in the next subsec-
tions.

On a Pentium IV 1900 MHz personal computer a complete
running of SAIS on those data bases takes several hours
(involving the run of hundreds of thousands of SVM).

A. First experiment

The first one is Leukemia data by Golub et al. [10] 1.
The Leukemia problem consists in characterizing two forms
of acute leukemia, Acute Lymphoblastic Leukemia (ALL)
and Acute Mieloid Leukemia (AML). The original work
proposed both a supervised classification task (“class pre-
diction”) and an unsupervised characterization task (“class
discovery”).

1http://www.broad.mit.edu/cancer/software/genepattern/datasets/

The data set contains 38 samples for which the expression
level of 7129 genes has been measured with the DNA
microarray technique (the interesting human genes are 6817,
and the other are controls required by the technique). These
expression levels have been scaled by a factor of 100. Of
these samples, 27 are cases of ALL and 11 are cases of
AML. Moreover, it is known that the ALL class is in reality
composed of two different diseases, since they are originated
from different cell lineages (either T-lineage or B-lineage).
In the data set, ALL cases are the first 27 objects and AML
cases are the last 11. Therefore, in the presented results,
the object identifier can also indicate the class (ALL if id
≤ 27, AML if larger). Using those data (with dimensionality
d = 7129), Golub et al. [10] selected a set of 50 most relevant
genes.

We applied the SAIS algorithm using a leave one out
procedure for the computation of the classification error ε.
The choice of the leave one out resampling technique is due
to the scarcity of data in the sample.

In Fig. 1(a) and Fig. 1(b) the behavior of the classification
error ε and the number of selected genes are plotted versus
the iteration number of the algorithm in a run of SAIS. Each
iteration corresponds to a different value of temperature T

(i.e. Step 5 and Step 6 in Tab. I). This shows the ability of
SAIS to minimize both the Classification Error ε and the
number of relevant variables.

We did 10 independent runs of SAIS using the assumptions
in Tab. II. For each run we obtained a set of two genes
(even if we didn’t require explicitly this number) with perfect
discriminant ability (ε = 0). Each pair of selected genes
(Tab. III) contains at least one gene found by Golub et
al. [10]. Note that in Tab. III the classification error ε and
the number of misclassified patterns m are also shown.

The genes ranked, using the definition of relevance
of Sect. IV, in the first three positions are X95735 at,
M23197 at and M55150 at. These three genes are also
contained in the set selected by Golub et al. [10] and the
most relevant gene X95735 at has been also highlighted by
Guyon et al. [11].



TABLE III

GENES FOUND IN EACH RUN OF THE SAIS ALGORITHM ON THE LEUKEMIA DATA SET.

Run 1 Run 2 Run 3 Run 4 Run 5
ε; m 0; 0 0; 0 0; 0 0; 0 0; 0
Gene 1 M55150 at M58603 at M23197 at X95735 at U29607 at
Gene 2 HG3523-HT4899 s at U50136 rna1 at X85116 rna1 s at M10321 s at Y12670 at

Run 6 Run 7 Run 8 Run 9 Run 10
ε; m 0; 0 0; 0 0; 0 0; 0 0; 0
Gene 1 M63138 at D14659 at M23197 at HG3454-HT3647 at M55150 at
Gene 2 U29091 at X95735 at M24470 at X95735 at HG3523-HT4899 s at

TABLE IV

GENES FOUND IN EACH RUN OF THE SAIS ALGORITHM ON THE COLON DATA SET.

Run 1 Run 2 Run 3 Run 4 Run 5
ε; m 0.048; 3 0.048; 3 0.048; 3 0.081; 5 0.048; 3
Gene 1 T95063 R38636 H20505 D12686 L22214
Gene 2 H07899 H67764 H05966 D21261 T69748
Gene 3 R49565 M95627 Z50753 H02630 Z50753
Gene 4 R01755 R36977 M94250 X12369 L06175
Gene 5 X79683 T40637 R54818 L10413 R74208
Gene 6 T74896 U05875 U31525 U10117 –
Gene 7 M22488 R90908 X66365 T56690 –
Gene 8 H81802 – T51493 M38690 –
Gene 9 M24069 – M83664 L14076 –
Gene 10 J02854 – U33849 T47601 –
Gene 11 T67433 – X56597 – –
Gene 12 U09646 – – – –
Gene 13 R49719 – – – –
Gene 14 H13292 – – – –
Gene 15 X77548 – – – –
Gene 16 K03474 – – – –

Run 6 Run 7 Run 8 Run 9 Run 10
ε; m 0.032; 2 0.016; 1 0.065; 4 0.081; 5 0.016; 1
Gene 1 T54341 T74257 U37012 T74257 T74257
Gene 2 R87126 D26129 H64489 M76378 R37276
Gene 3 M95678 T81492 J03824 X13810 R07007
Gene 4 R27813 L09159 H65355 R49565 U37012
Gene 5 M11220 M23254 – X05276 M23419
Gene 6 U30498 X78817 – R55778 T78489
Gene 7 H05814 L06175 – L37112 X66503
Gene 8 T86444 U27699 – M23115 T89164
Gene 9 R88749 H08393 – U33849 H09137
Gene 10 H49515 H06061 – – R36977
Gene 11 M63239 M84490 – – T89175
Gene 12 – – – – U07802
Gene 13 – – – – H49870
Gene 14 – – – – M13450
Gene 15 – – – – T85165
Gene 16 – – – – H56077
Gene 17 – – – – R54097
Gene 18 – – – – D14663
Gene 19 – – – – M28219
Gene 20 – – – – X73424
Gene 21 – – – – L06111



0 20 40 60 80

0.
00

0.
10

0.
20

0.
30 Leukemia

Iteration

C
la

ss
ifi

ca
tio

n 
E

rr
or

0 20 40 60 80

5
10

15
20

Leukemia

Iteration

N
um

be
r 

of
 In

pu
ts

(a) (b)

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4 Colon

Iteration

C
la

ss
ifi

ca
tio

n 
E

rr
or

0 10 20 30 40 50

5
10

15
20 Colon

Iteration

N
um

be
r 

of
 In

pu
ts

(c) (d)

Fig. 1. Classification Error and Number of selected input variables vs the iteration number for Run 4 of Experiment 1 on Leukemia data set ((a) and
(b)), and for Run 7 of Experiment 2 of Colon data set ((b) and (c)).

B. Second experiment

The second data set on which we performed input selection
is the Colon data set by Alon et al. [2]. This is an oligonu-
cleotide microarray analysis of gene expression in 40 tumor
and 22 normal colon tissue samples, used to characterize the
role and behavior of more than 6500 human genes in colon
adenocarcinoma. The normal samples were obtained from a
subset of the tumor samples, so that they are well paired
to the corresponding positive samples. The actual data used

in the experiments 2, contain only the 2000 most clearly
expressed in the experiments, those with the highest minimal
intensity across the 62 tissue samples.

In all the experiments on this data set, the classification
error ε has been evaluated using k-fold validation with k = 6,
as in this case we have a bigger (but still a small) data base
than in previous experiment.

In Fig. 1(c) and Fig. 1(d) the behavior of the classification

2http://microarray.princeton.edu/oncology/affydata/index.html



error ε and the number of selected genes are plotted versus
the iteration number of the algorithm.

We did 10 independent runs of SAIS using the assumptions
in Tab. II. For each run we obtained a different set of 4-21
genes with good discriminant ability.

Run 7 selected 11 genes and made only one misclassifica-
tion on the data base. Moreover, the gene H08393, obtained
in this run, has been also highlighted by Guyon et al. [11].

VI. CONCLUSIONS

In this paper we have proposed a wrapper method for
selecting inputs based on simulated annealing technique [14]
and SVM [6]. The proposed approach performs a global
combinatorial search in the space of input variables, allowing
to select a minimal set of relevant inputs (genes), ranking at
the same time their relevance.

On the 7129-dimensional Leukemia data set by Golub et
al. [10] the proposed input selection method is able to find for
each run a subset of two genes, that is sufficient to achieve
null Classification Error with the leave one out procedure.

Different runs lead to obtain different pairs of genes and
the more frequent ones are also in the list found by Golub.

On the 2000-dimensional Colon data set by Alon et al. [2]
the proposed input selection method finds solutions with a
low number of selected genes and a very good discriminant
capability.

Note that each run of the algorithm yields a (possible new)
minimal set of genes with the minimal classification error.
The number of occurrence in the solution on the different
runs or the medium value of relevance (evaluated as in Sect.
IV) obtained in the different runs let us to rank the input
variables.

Even if Simulated Annealing is computationally intensive
SAIF algorithm shows a computational cost comparable with
other wrapper methods. Let’s consider, e.g., the method
by Guyon et al. [11] which performs feature selection by
recursive feature elimination. At each iteration a new linear
SVM is trained and the input variable with the smallest
weight is eliminated. In order to rank the entire set of
thousand of features it must run an SVM for each dimension
of the input space starting from thousands to one. In SAIF,
instead, we have much more SVMs to train but each one
performs classification in a space of small dimension (some
tenths of input variables).

Moreover, it is worth noting that the proposed algorithm
can work either with numerical or categorical variables
depending on the associated learning machine and on the ap-
plication. For example in [8] we run SAIS method associated
to Fuzzy c-mean on the same data base obtaining minimal
sets of inputs able to perform unsupervised clustering with
null representation error.

ACKNOWLEDGMENT

Work funded by the Italian Ministry of Education, University
and Research (2004 “Research Projects of Major National Interest”,
code 2004062740).

REFERENCES

[1] Andreas Alexander Albrecht, Staal A. Vinterbo, and Lucila Ohno-
Machado. An epicurean learning approach to gene-expression data
classification. Artificial Intelligence in Medicine, 28(1):75–87, 2003.

[2] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and
A. J. Levine, Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays, Proc. Natl. Acad. Sci. USA. vol.96 no.12 pp.6745–6750 (1999).

[3] E. Barkai, Aging in Subdiffusion Generated by a Deterministic Dy-
namical System, Phys. Rev. Lett. vol. 90, 104101 (2003)

[4] A. Blum and P. Langley, Selection of Relevant Features and Examples
in Machine Learning, Artificial Intelligence, vol. 97, nos. 1–2, pp.
245–271, 1997.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library
for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[6] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273 – 297, 1995.

[7] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.

[8] Maurizio Filippone, Francesco Masulli, and Stefano Rovetta. Unsu-
pervised gene selection and clustering using simulated annealing. In
Isabelle Bloch, Alfredo Petrosino, and Andrea Tettamanzi, editors,
WILF, volume 3849 of Lecture Notes in Computer Science, pages
229–235. Springer, 2005.

[9] D. Ganesan, B. Greenstein, D Perelyubskiy, D. Estrin and John
Heidemann, An Evaluation of Multi-resolution Storage for Sensor
Networks, Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys 2003), 2003.

[10] Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloom-
field, C., Lander, E.: Molecular classification of cancer: Class
discovery and class prediction by gene expression monitoring. Science
vol. 286, pp. 531–537, 1999.

[11] Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection
for cancer classification using support vector machines. Machine
Learning, 46(1-3):389–422, 2002.

[12] Isabelle Guyon, Andre Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research, 3 1157–
1182, 2003.

[13] K. Kira and L. Rendell, The Feature Selection Problem: Traditional
Methods and a New Algorithm, Proc. 10th Nat l Conf. Artificial
Intelligence (AAAI-92), pp. 129–134, 1992.

[14] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by
simulated annealing. Science, vol. 220, pp.661–680, 1983.

[15] R. Kohavi and G. John, Wrappers for Feature Subset Selection,
Artificial Intelligence, vol. 97, nos. 1–2, pp. 273–324, 1997.

[16] I. Kononenko, Estimating Attributes: Analysis and Extensions of
RELIEF, Proc. Seventh European Conf. Machine Learning, pp. 171–
182, 1994.

[17] F. Masulli and S. Rovetta, Random Voronoi ensembles for gene
selection, Neurocomputing, vol. 55, no. 3-4, pp. 721-726, 2003.

[18] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equation of state calculations for fast computing machines.
Journal of Chemical Physics, vol. 21, pp. 1087–1092, 1953.

[19] R Development Core Team. R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria, 2005. ISBN 3-900051-07-0. http://www.R-project.org

[20] C. Moneta, G.C. Parodi, S. Rovetta, and R. Zunino, Automated
diagnosis and disease characterization using neural network analysis,
in Proceedings of the 1992 IEEE International Conference on Systems,
Man and Cybernetics - Chicago, IL, USA, pp. 123-128, 1992.

[21] A. Tanenbaum, Modern Operating Systems (2nd Edition), Prentice
Hall, 2001.

[22] N. Slonim and N. Tishby, Agglomerative information bottleneck. In
Advances in Neural Information Processing Systems, pages 617-623,
2000.

[23] Vladimir N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[24] J.Weston, A. Elisseff, B. Schoelkopf, and M. Tipping. Use of the zero
norm with linear models and kernel methods. Journal of Machine
Learning Research, vol. 3, 1439-1461, 2003.


