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Abstract— Forecasting the tide level in the Venezia lagoon
is a very compelling task. In this work we propose a new
approach to the learning of tide level time series based on the
local learning procedure of Bottou and Vapnik, by considering
the use of a fuzzy method for the selection of the closest patterns
to the one to forecast. We made use also as learners of Support
Vector Machines and of their ensembles based on Bagging and
AdaBoost. The obtained forecasts of 500 randomly selected tide
levels seem to be quite promising. Good performances are also
noticed for forecasts of a set of 80 tide levels corresponding
to exceptional periods with high tide and sea variabilities.
The obtained forecasts of 80 selected tide levels compare very
favorably with those of the baseline linear regressor model.

I. I NTRODUCTION

After the disastrous flood of November 1966 in Venezia
(194 cm over the average sea level) the Municipality of
Venezia set up the first observation service of the high tides.
In December 1979 another severe flood occurred (166 cm
over the average sea level). In consequence of these events,
the municipal government decided to found the CPSM –
Centro Previsioni e Segnalazioni Maree(Tide Forecasting
and Signalling Center) – which mainly has to supply an
effective alarm service regarding the occurrence of important
or extraordinary high (and ebb) tides [5].

Forecasting the tide level is the most compelling task that
the CPSM has to deal with. Mainly, this task is faced by
means of statistical modelling. Currently, the CPSM has
some multivariate regression models at its disposal, each
of which is variously based on features regarding the tide
level gauged at Venezia and the atmospheric pressure value
gauged by more survey stations of the Adriatic sea and the
Tyrrhenian one.

In this work we propose a new approach based on the the
general local learning procedure by Bottou and Vapnik [1],
by considering the use of a fuzzy method for the selection
of closest patterns from the data set and of Support Vector
Machines and of their ensembles based on Bagging and
AdaBoost. The obtained results are compared with a baseline
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model consisting in the so–called MC –Modello Completo
(Complete Model) – that is one of the well–performing
models used by CPSM.

The rest of this paper is organized as follows. Section II
shows the fuzzy approach to pattern selection. Section III
describes the MC linear regressor baseline forecaster, while
Section IV presents the base learners and their ensembles
we have used in our approach. In Section V we present the
data set and the methods we have used in the experimental
validation, the results we have obtained and their discussion.
Section VI draws the conclusions of the paper.

II. FUZZY APPROACH TO PATTERN SELECTION

As discussed in [1], the performances of learning algo-
rithms (e.g., neural networks, Support Vector Machines -
SVMs) can be satisfactorily increased if the set of learning
data is properly selected. In particular, the concept of local
learning is strongly advised and suggested. The local learning
approach proposed by Bottou and Vapnik is based in the
following procedure [1]:

For each test pattern:

1) Select thek closest patterns from the data set;
2) Train a learning machine using the above selected

patterns (local learning);
3) Apply the above trained learning machine to predict

the test pattern.

Such approach has been demonstrated to be very efficient
for learning in non–homogeneous domains, such as the case
of our data set. The main idea consists, given the actual
pattern, in the selection of a suitable subset of all the data
set. The dimension of such subset needs to be not so large
in order to reduce as most as possible the learning time at
each step, and at the same time, sufficiently representative
for the capacity of the learning system. In such a way, the
trade–off between capacity and number of patterns can be
optimized. In this case study, we focus the attention to the
forecasting problem of the tide over a time window of (at
most)48 hours, using a pattern of75 features:

• 30 1–hour frequency tide levels in Venezia (from current
time T to time T − 29);

• 5 3–hour frequency atmospheric pressure values for
each of the survey stations in Alghero, Bari, Genova
and Venezia (from current timeT to time T − 12);

• 5 3–hour frequency quantities regarding the squares
of the difference of the atmospheric pressure values,
multiplied by the sign of the difference itself (signed
squared gradient) for each of the following couple of
survey stations: Dubrovnik and Bari; Pola and Rimini;
Spalato and Termoli; Trieste and Ravenna; and Zara and



mean of Falconara and Pescara (from current timeT to
time T − 12).

The locality component is here represented by a suitable
triangular fuzzy membership function, with one parameter
(the amplitude) dynamically adjusted in such a way that
the neighborhood includes a significant number of similar
sampled patterns. To avoid confusion, we name as current
pattern the75 component vector formed by the last sampled
data at timet, and as a past pattern each of the sampled data
formed by (consecutive) observed values sampled backward
starting from any timeτ before t, while we name as a
local pattern each pattern belonging to the neighborhood
of the current pattern. A local pattern is a past pattern
selected after the search in the data base. Any (past) pattern
is uniquely determined by a time valueτ , with τ < t,
formed by the consecutive values of tide level, atmospheric
pressure value and signed squared gradient starting from
τ and collected backward (30 values for level tide,20 for
atmospheric pressure and25 for signed squared gradient).

As we said above, for the selection of a proper subset
of similar patterns, a suitable kernel function has to be
selected [3]. In our proposal, we choose a triangular fuzzy
membership function whose amplitude is fixed by default to
the following values:30 cm for the level tide,20 hPa for
the atmospheric pressure,25 hPa2 for the signed squared
gradient. Those default values can be increased at each in-
teraction in such a way to include at least a pre-fixed number
of patterns in the local neighborhood. From numerical tests
this scarcity situation of neighborhood patterns is quite rare
(about5 to 10 cases over100). During this research, the cur-
rent pattern is matched with all the past ones, comparing each
component together. A necessary condition to be included in
the local neighborhood requires that each component differs
no more than the amplitude of the membership function.
In so doing, the membership function filters the difference
between all the75 components, and only if all the filtered
values are positive, they are aggregated to furnish a degree
of similarity between the current pattern and the considered
past pattern. Conversely, if the absolute difference between a
component of the current pattern and the same component of
the comparing (past) pattern overpasses the amplitude of the
membership function, the pattern is discharged, avoiding the
computation of the difference of the remaining components.
This way, we observed a significant time saving with respect
to other local algorithms based on distance operator for
the selection of the neighborhood. If the considered past
pattern passes the test for all the75 components, it is
formally included in the local neighborhood. To this purpose
it is sufficient to recover the time valueτ . The aggregation
algorithm is a simple weighted averaging of all the filtered
values component by component. After having compared
the current pattern with all the past ones, the algorithm
checks if the selected local patterns are less than the fixed
minimum number (a changeable parameter). If the number
is insufficient, the amplitude of the membership function is
increased using a scale factor, until the obtained number

is satisfactory. At the end, the following values are stored:
τ(1), τ(2), . . ., τ(Nt), Sim(1), Sim(2), . . ., Sim(Nt),
whereNt indicates the number of the patterns in the local
neighborhood for the current pattern starting (backward) at
time t, τ(j) means the starting (backward) time of thej-th
similar pattern, andSim(j) indicates its similarity degree
with the current pattern, withj = 1, . . . , Nt. The patterns
are then ordered following the decreasing order of similarity.
Even if the procedure needs to be run at each current time
t, all the numerical tests on the real data showed good
performances mainly for the computational required time.

III. B ASELINE FORECASTER

In this section we shall describe MC –Modello Completo
(Complete Model) – that is a linear regressor model used
by CPSM. In this paper we use MC as a baseline for our
benchmarks.

In detail, this model utilizes75 features described in
previous section, and can be formalized as follows:

dh(T + h) =

29
∑

i=0

aidh(T − i) +

4
∑

k=1

4
∑

i=0

bk,ipk(T − 3i)+

+

5
∑

l=1

4
∑

i=0

cl,isign (∆k(T − 3i)) ∆2

k(T − 3i),

wheredh(t) denotes the meteorological contribution1 to the
tide level recorded by the survey station in Venezia at time
t, T indicates the current time,h denotes the horizon time
of the forecast,pk(t) indicates the atmospheric pressure
recorded by thek–th survey station at timet, ∆k(t) means
the difference of atmospheric pressure recorded by thel–th
couple of survey stations at timet, andai, bk,i, cl,i indicate
the coefficients.

IV. BASE LEARNERS ANDENSEMBLES

As base learners, we have used linear SVM [7] for
regression implemented in R [10] through the functionsvmof
packagee1071. The implementation is the porting of Chang
and Lin code [4], [6].

We used also ensemble methods [12] aggregating the
output of a set of base learners and can increase general-
ization on the same data set, as they can boost margins,
reduce variance, and also bias. The ensemble methods we
have considered are the Bagging [2] and the Adaboost [9]
algorithms that are based on data set re-sampling. We have
implemented in R those ensemble techniques. The imple-
mentation of Adaboost for regression follows [8].2

1It is worth noting that the tide level is given by the summation of
the astronomical contribution (easy to forecast) and the meteorological
contribution (difficult to forecast).

2The package [11] is available athttp://mlsc.disi.unige.it/R.



Horizon sdE ME max E min E MAE Model
(h) (cm) (cm) (cm) (cm) (cm)
1 2.02 -0.09 8.63 -6.25 1.61 linear SVM c = 1, k = 500

2 3.47 0.09 11.32 -11.64 2.69 linear SVM c = 1, k = 600

3 4.40 0.11 16.58 -17.41 3.30 linear SVM c = 1, k = 600

6 5.44 0.48 15.93 -31.98 3.97 linear SVM c = 1, k = 600

12 6.29 0.10 23.07 -31.96 4.63 linear SVM c = 1, k = 500

24 8.44 -0.05 49.07 -38.07 5.93 linear SVM c = 1, k = 400

48 11.37 -0.43 34.81 -52.82 8.17 linear SVM c = 1, k = 500

TABLE I

RESULTS OBTAINED WITH SVM TESTED ON THE500 PATTERNS OFVEN-TIDESPROBLEM.

Horizon sdE ME max E min E MAE

(h) (cm) (cm) (cm) (cm) (cm)
1 3.47 -1.09 8.55 -10.26 2.79
2 7.45 -2.98 17.98 -24.04 5.72
3 10.59 -2.91 15.09 -32.90 8.30
6 15.35 -6.71 22.70 -54.64 12.01
12 20.46 -11.54 26.51 -68.66 16.94
24 28.44 -17.11 40.00 -89.65 24.55

TABLE II

RESULTS OBTAINED WITH MC TESTED ON THE80 PATTERNS OFVEN-TIDES∗ PROBLEM.

Horizon sdE ME max E min E MAE Model
(h) (cm) (cm) (cm) (cm) (cm)
1 3.48 -0.48 10.29 -7.82 2.78 linear SVM c = 1, k = 1000

2 5.54 -0.35 18.63 -17.17 4.19 linear SVM c = 1, k = 900

3 6.43 -0.46 17.18 -22.59 4.61 linear SVM c = 1, k = 800

6 10.91 -1.90 25.18 -29.41 8.17 linear SVM c = 1, k = 1100

12 10.07 -1.21 31.40 -29.13 7.51 linear SVM c = 1, k = 1000

24 11.68 2.04 29.72 -31.80 8.76 linear SVM c = 1, k = 1400

TABLE III

RESULTS OBTAINED WITH SVM TESTED ON THE80 PATTERNS OFVEN-TIDES∗ PROBLEM.

V. EXPERIMENTAL VALIDATION

A. Data and methods

The time series which are used concern the period from
January 1, 1966 to December 31, 1990, and the number of
valid patterns of the considered features is153819 with 75
dimensions.

From the entire data set we considered two forecasting
problems, namelyVEN-TIDESandVEN-TIDES∗. In the first
one we considered the forecast of 500 randomly selected tide
levels (test set). As the training set forVEN-TIDESwe used
the set of 51266 3–hours patterns. Then we concentrated on
the more challenging problemVEN-TIDES∗ of forecasting
80 tide levels corresponding to exceptional periods with high

tide and sea variabilities (test set). As training set forVEN-
TIDES∗ we used all the 154819 1–hour patterns in which
the pressure value for the first hour is used as well as for the
second and third hours.

We decided to implement forecasters with the temporal
horizons 1, 2, 3, 6, 12, 24, and 48 hours for the first
forecasting problems, and with the temporal horizons1, 2,
3, 6, 12, and24 hours for the second forecasting problems.

The forecaster are based on SVM for regression with cost
c = 1 and insensivity epsilon-tube withε = 0.1 and on their
Bagging and AdaBoost ensembles.

In order to implement the proposed local learning ap-
proach, we used as proximity relation the fuzzy distance
illustrated in Section II, using the following thresholds:20



Horizon sdE ME max E min E MAE Model
(h) (cm) (cm) (cm) (cm) (cm)
1 4.30 -0.01 13.50 -8.21 3.27 Adaboostn = 40, k = 300

1 3.77 -0.45 9.46 -7.75 3.05 Baggingn = 20, k = 400

1 4.06 -0.32 9.40 -8.82 3.25 Adaboostn = 100, k = 400

1 4.10 -0.31 9.83 -10.36 3.28 Adaboostn = 20, k = 600

2 7.01 -0.46 20.42 -19.89 5.44 Adaboostn = 20, k = 400

2 5.94 -0.66 15.43 -17.75 4.69 Baggingn = 20, k = 400

2 5.22 -0.42 15.34 -17.54 3.99 Baggingn = 20, k = 600

3 6.66 -1.06 23.06 -25.16 4.59 Adaboostn = 20, k = 800

3 6.34 -0.23 18.06 -22.07 4.49 Baggingn = 20, k = 800

6 10.51 -2.32 17.01 -38.94 7.47 Baggingn = 20, k = 500

6 10.31 -2.16 19.34 -36.90 7.40 Baggingn = 40, k = 500

TABLE IV

RESULTS OBTAINED WITH ENSEMBLES TESTED ON THE80 PATTERNS OFVEN-TIDES∗ PROBLEM.

cm for tides,2000 Pa for pressures,30 hPa2 for the signed
squared gradients.

Note that the for a successful implementation of the local
learning we must find the optimal value ofk, i.e., we must
find a value ofk trading off between generalization and
learning speed (cardinality selection procedure).

It is worth noting that the local learning allows us to
implicitly implement a model selection approach ofLeave
One-Outtype, both for the training of the learning machine,
and for its validation on the available data set.

For the cardinality selection task we used the following
performance indexes:

• Standard Deviation of the Error:

sdE =

√

∑n

i=1
E2

i

n
, (1)

• Mean Error:

ME =

∑n

i=1
Ei

n
, (2)

• Minimum Error:

min E = min
i=1,...,n

{Ei}, (3)

• Maximum Error:

max E = max
i=1,...,n

{Ei}, (4)

• Mean Absolute Error:

MAE =

∑n

i=1
|Ei|

n
, (5)

whereEi is the difference between forecasted and true tide
level on thei–th pattern andn is the cardinality of the test
set.

B. Results and discussion

The results with the proposed local learning approach and
linear SVMs for problemVEN-TIDESare reported in Table I,
and Fig. 1(a) and (b) show the scatter plots and the linear
regression lines for temporal horizons of2 and 12 hours.
These performances seem to be quite promising.

In Table II we report the results obtained on the selected
temporal horizons by the baseline forecaster MC in theVEN-
TIDES∗ problem.

The results obtained on the same problem, using the
proposed local learning approach with fuzzy selection of
patterns and SVM are reported in Table III. For each different
temporal horizons and for each one we performed cardinality
selection by testing different values ofk (see Fig. 2). The
results are good and compare very favorably with those of
MC. Fig. 1(c) shows the scatter plot and the linear regression
line for a temporal horizon of2 hours.

In Table IV some preliminary results of SVM ensembles
using Bagging and Adaboost are presented (the parameter
n represents the number of SVM base learner used in
each ensemble). No significant improvements with respect
the single SVM are noticeable. Sometimes the Bagging
algorithm obtains a greater value ofsdE than Adaboost, but
gives a slighter better value formin E, max E, and ME.
Fig. 1(d) shows the scatter plot and the linear regression line
for a temporal horizon of6 hours.

The software has been developed in R language [10],
and special attention has been payed to its optimization.
On a Pentium IV at 1.9 Ghz, the forecasting of an event
using the local learning approach and a SVM base learner
costs less that ten seconds, even when we select about
1000 nearest neighbors, and about ten seconds more for the
compilation of the training set. As a consequence the actual
implementation of the systems, allows its utilization on-line
for tide forecasting, even using ensembles of SVM.
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Fig. 1. (a) Scatter plot for linear SVM on the 500 patterns ofVEN-TIDESproblem – Horizon:2 h (c = 1, ε = 0.1, k = 600). (b) Scatter plot for
linear SVM on the 500 patterns ofVEN-TIDESproblem – Horizon:12 h (c = 1, ε = 0.1, k = 500). (c) Scatter plot for linear SVM on the 80 patterns
of VEN-TIDES∗ problem – Horizon:2 h (c = 1, ε = 0.1, k = 800). (d) Scatter plot for bagged ensemble on the the data baseVEN-TIDES∗ – Horizon:
6 h (n = 20, k = 500).
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Fig. 2. Plot of thesdE obtained for thecardinality selectionprocedure in theVEN-TIDESproblem: (a) 2 hours horizon; (b) 6 hours horizon

VI. CONCLUSIONS

Forecasting the tide level is the most compelling task that
the CPSM –Centro Previsioni e Segnalazioni Maree(Tide
Forecasting and Signalling Center) – of Venezia has to deal
with.

In this work we propose a new approach to the learning of
tide level time series based on the the general local learning
procedure of Bottou and Vapnik [1], by considering the use
of a fuzzy method for the selection of closest patterns from
the data set where the locality component is represented by
a suitable triangular fuzzy membership function with one
parameter (the amplitude) dynamically adjusted in such a
way that the neighborhood includes a significant number of
similar sampled patterns. We made use also as learners of
Support Vector Machines and of their ensembles based on
Bagging and AdaBoost.

We performed an extensive experimental assessment using
a time series on the period from January 1, 1966 to December
31, 1990, from which we obtained a data set of153819
valid patterns75 dimensions. The obtained forecasts of 500
randomly selected tide levels seem to be quite promising.
Good performances are also noticed for forecasts of a set
of 80 tide levels corresponding to exceptional periods with
high tide and sea variabilities. The obtained forecasts of80
selected tide levels compare very favorably with those of the
baseline linear regressor model MC.
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