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Abstract. A key problem in time series prediction using autoregressive
models is to fix the model order, namely the number of past samples re-
quired to model the time series adequately. The estimation of the model
order using cross-validation is a long process. In this paper we explore
faster alternative to cross-validation, based on nonlinear dynamics meth-
ods, namely Grassberger-Procaccia, Kégl and False Nearest Neighbors
algorithms. Once the model order is obtained, it is used to carry out the
prediction, performed by a SVM. Experiments on three real data time
series show that nonlinear dynamics methods have performances very
close to the cross-validation ones.

1 Introduction

Time series prediction is the problem of determining the future values of a given
time series. This problem has great importance in several fields, ranging from
finance (e.g. predicting the future behavior of stock markets) to engineering (e.g.
estimating future electrical consumption). A key problem in time series predic-
tion is to fix the model order, namely the number of past samples required to
model the time series adequately. In principle cross-validation [4] [17] is the sim-
plest solution, just picking the model order which gives the lowest prediction
error. However the computational cost of cross-validation can be very high and
an estimate of the model order is helpful, either to be used directly or to narrow
down the range for cross-validation. In this paper we use nonlinear dynamics
methods, namely Kégl, Grassberger-Procaccia and False Nearest Neighbors al-
gorithms, to estimate the model order. Then the model order is used to carry
out the prediction, performed by a Support Vector Machine (SVM ) [16] [19] [21].
We investigate the effectiveness of nonlinear dynamics methods comparing their
performances with the cross-validation ones. The paper structure is as follow-
ing: in Section 2 a description of the nonlinear dynamics methods investigated
is provided; in Section 3 some experimental results are reported; in Section 4
conclusions are drawn.
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2 Nonlinear Dynamics Methods

We consider a time series x(t), with (t = 1, 2, . . . , N). An autoregressive model
describes a time series as :
x(t) = f(x(t − 1), . . . , x(t − (d − 2)), x(t − (d − 1))) + ǫt. The function f(·) is
called the skeleton of the time series [20] [9], the term ǫt represents the noise.
The key problem in the autoregressive models is to fix the model order (d-1).
Nonlinear Dynamics methods can be used for the model reconstruction of the
time series. This is performed by the method of delays [5] [15]. The time series
can be represented as a series of a set of points {X(t) : X(t) = [x(t), x(t −
1), . . . , x(t− d + 1)]} in a d -dimensional space. If d is adequately large, between
the manifold M obtained by the points X(t) and the attractor U of the dynamic
system that generated the time series, there is a diffeomorphism3. The Takens-
Mañé embedding theorem [12][18] states that to obtain a faithful reconstruction
of the system dynamics, it must be

2S + 1 ≤ d (1)

where S is the dimension of the system attractor U and d is called the em-
bedding dimension of the system. Hence it is adequate to measure S to infer
the embedding dimension d and the model order d − 1. A unique definition
of the dimension has not been given yet. Popular definitions of set dimensions
are the Box-Counting Dimension [14] and the Correlation dimension [6]. In
the next sections we shall discuss two methods to estimate attractor dimen-
sion (Grassberger-Procaccia and Kégl) methods and a method to estimate the
embedding dimension, without using Takens-Mañé embedding theorem (False
Nearest Neighbors methods).

2.1 Kégl algorithm

Let Ω = {x1, x2, . . . , xN} be a set of points in R
n of cardinality N . The Box-

Counting dimension (or Kolmogorov capacity) DB of the set Ω is defined as
follows [14]: if ν(r) is the number of the boxes of size r needed to cover Ω, then
DB is

DB = lim
r→0

ln(ν(r))

ln(1
r
)

(2)

Recently Kégl [11], has proposed a fast algorithm (Kégl algorithm) to estimate
the Box-Counting dimension. The algorithm has originally been proposed for
intrinsic data dimensionality estimation. In this paper we propose a novel appli-
cation of Kégl’s algorithm, consisting in the dimension estimation of an attractor.
Kégl algorithm is based on the observation that ν(r) is equivalent to the cardi-
nality of maximum independent vertex set MI(Gr) of the graph Gr(V,E) with
vertex set V = Ω and edge set E = {(xi, xj)|d(xi, xj) < r}. Kégl has proposed

3
M is diffeomorphic to U iff there is a differentiable map m : M 7→ U whose inverse
m

−1 exists and is also differentiable.
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to estimate MI(G) using the following greedy approximation. Given a data set Ω

we start with an empty set C and in an iteration over Ω we add to C data points
that are at distance of at least r from all elements of C. The cardinality C, after
every point in Ω has been visited, is the estimate of ν(r). The Box-Counting
dimension estimate is given by:

DB = −
ln ν(r2) − ln ν(r1)

ln r2 − ln r1
(3)

where r2 and r1 are values that can be set up heuristically.

2.2 Grassberger-Procaccia algorithm

The Correlation dimension [6] of a set Ω is defined as follows. If the correlation
integral Cm(r) is defined as:

Cm(r) = lim
N→∞

2

N(N − 1)

N∑

i=1

N∑

j=i+1

I(‖xj − xi‖ ≤ r) (4)

where I is an indicator function4, then the Correlation dimension D of Ω is:

D = lim
r→0

ln(Cm(r))

ln(r)
(5)

It can be proved that Correlation Dimension is a lower bound of the Box-
Counting Dimension. The most popular method to estimate Correlation dimen-
sion is the Grassberger-Procaccia algorithm [6]. This method consists in plotting
ln(Cm(r)) versus ln(r). The Correlation dimension is the slope of the linear part
of the curve (see Figure 1a). For increasing increasing values of d one can notice
a saturation effect. The limit value is the correlation dimension.

2.3 Method of False Nearest Neighbors

Kégl and Grassberger-Procaccia algorithms estimate the attractor dimension
and permit to estimate the model order of the time series by means of the
Takens-Mañé embedding theorem. An alternative approach is proposed by the
False Nearest Neighbors method [2] [10]. This method estimates directly the
embedding dimension without using the Takens-Mañé theorem. False Nearest
Neighbors method is based on a simple geometric concept. If the dimension d

used to reconstruct the attractor is too small, many points that appear near
will become widely separated when d + 1 dimensions are used in the attractor
reconstruction. Nearest neighbor points that show this wide separation when
comparing their distance in dimension d and d + 1 are called False Nearest
Neighbors in dimension d. Conversely, true nearest neighbors will remain near
each other in attractor reconstructions of both d and d + 1 dimensions. More

4
I(λ) is 1 iff condition λ holds, 0 otherwise.
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formally a pair of points are considered False Nearest Neighbors in dimension

d if
R2

d+1(j)

R2
d
(j)

> α where Rd(j) Rd+1(j) are respectively the Euclidean distance

between the jth point and its nearest neighbors in d and d+1 dimensions and α

is an heuristic threshold. Typical values for α are suggested in [2]. The adequacy
of dimension d for reconstructing an attractor can be evaluated by calculating
for each data point of the attractor the nearest neighbors in dimension d and
then evaluating the percentage of False Nearest Neighbors. Then the percentage
of False Nearest Neighbors is plotted versus the dimension d. The lowest dimen-
sion corresponding to this minimum value of the percentage of False Nearest
Neighbors is the embedding dimension.

3 Experimental Results

False Nearest Neighbors, Grassberger-Procaccia and Kégl algorithms have been
tried on three benchmarks of real data, e.g. the data set A [7] of the Santa Fe
time series competition; the Paris-14E Parc Montsouris5[22] time series and the
DSVC1 6 [1] [22] time series.

3.1 Data Set A

Data Set A is a real data time series, formed by 1000 samples, generated by a
Lorenz-like chaotic system, implemented by NH3-FIR lasers. Firstly the model
order of the time series has been estimated by means of False Nearest Neighbors,
Grassberger-Procaccia and Kégl algorithms. The estimates of the attractor di-
mension using Grassberger-Procaccia and Kégl algorithms are respectively 2.00
and 2.02. Since the attractor dimension of data set A is 2.06, the estimates of
both algorithms can be considered quite satisfactory. Applying the equation (1)
of the Takens-Mañé theorem we see that the embedding dimension estimate, pro-
vided by Grassberger-Procaccia and Kégl algorithms, is ∼ 5. Hence the model
order is 4. Then we have estimated the model order using False Nearest Neigh-
bors method. As shown in Figure 1b, the percentage of False Nearest Neighbors
is negligible for an embedding dimension value of 3. Hence the model order es-
timated by False Nearest Neighbors is 2. Then the model order, estimated by
three different algorithms, has been used to carry out one-step ahead prediction,
i.e the prediction of the next value of the time series. The former half of time
series has been used for the training set, while the latter one has been used for
the validation and test set, respectively formed by 200 and 300 samples. The
prediction stage has been performed using SVM-Light [8], an implementation
of SVM for Regression [13] [16]. In our experiments we have used the gaussian
kernel and the kernel variance has been set up using cross-validation. Finally, as
a comparison we have set up the model order by means of the cross-validation.

5 The time series can be downloaded from www.knmi.nl/samenw/eca
6 The time series can be downloaded from

www.cpdee.ufmg.br/∼MACSIN/services/data/data.htm
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Fig. 1. Grassberger-Procaccia (a) and False Nearest Neighbors (b) algorithms on Data
Set A.

Attractor Embedding
Algorithm Dimension Dimension Model Order Quadratic Loss

False Nearest Neighbors 3 2 0.75

Kégl 2.02 ∼5 4 0.65

Grassberger-Procaccia 2.00 ∼5 4 0.65

cross-validation 4 0.65

Table 1. False Nearest Neighbors, Kégl, Grassberger-Procaccia and cross-validation
method on Data Set A. Quadratic Loss has been measured on normalized data.

The results, expressed in terms of quadratic loss [16], are reported in the table
1.

3.2 Paris-14E Parc Montsouris

Paris-14E Parc Montsouris is a real data time series formed by the daily average
temperatures, expressed in tenths of Celsius degrees, in Paris. The time series
covers the whole period from January 1 1958 to December 31 2001 and has
15706 samples. The former half of time series (7853 samples) has been used for
the training set, while the latter one has been used for the validation and test
set, respectively formed by 2190 and 5663 samples. We have estimated the model
order using False Nearest Neighbors, Grassberger-Procaccia and Kégl algorithms
and we have performed the prediction stage using SVM-Light. Even in this case,
we have used the gaussian kernel, setting the variance using cross-validation. As
a comparison we have also estimated the model order by means of the cross-
validation. The results on the test set, expressed in terms of quadratic loss, are
reported in the table 2.
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Attractor Embedding
Algorithm Dimension Dimension Model Order Quadratic Loss

False Nearest Neighbors 5 4 14.55

Kégl 4.03 ∼9 8 14.43

Grassberger-Procaccia 4.91 ∼11 10 14.25

cross-validation 10 14.25

Table 2. False Nearest Neighbors, Kégl, Grassberger-Procaccia and cross-validation
method on the Data Set Paris-14E Parc Montsouris. Quadratic Loss has been measured
on normalized data.

3.3 DSVC1

DSVC1 is a real data time series, formed by 5000 samples, measured from a
hardware realization of Chua’s circuit [3]. The former half of time series (2500
samples) has been used for the training set, while the latter one has been used
for the validation and test set, respectively of 750 and 1750 samples. The model
order was estimated using the three methods (e.g. False Nearest Neighbors,
Grassberger-Procaccia and Kégl) and the prediction stage was performed using
SVM-Light. Even in this case, we have used the gaussian kernel, setting the
variance using cross-validation. The estimates of the attractor dimension using
Grassberger-Procaccia and Kégl algorithms are respectively 2.20 and 2.14. Since
the attractor dimension of data set A is ∼ 2.26, the estimates of both algorithms
can be considered satisfactory. As a comparison the model order was also esti-
mated by means cross-validation. The results expressed on the test set, in terms
of quadratic loss, are reported in the table 3.

Attractor Embedding
Algorithm Dimension Dimension Model Order Quadratic Loss

False Nearest Neighbors 6 5 2.71

Kégl 2.14 5 ÷ 6 4 ÷ 5 3.72 ÷ 2.71

Grassberger-Procaccia 2.20 5 ÷ 6 4 ÷ 5 3.72 ÷ 2.71

cross-validation 5 2.71

Table 3. False Nearest Neighbors, Kégl, Grassberger-Procaccia and cross-validation
method on Chua Time Series. Quadratic Loss has been measured on normalized data.
The model order estimated by Grassberger-Procaccia and Kegl is between 4 and 5,
hence the quadratic loss is between 3.72 (model order = 4) and 2.71 (model order=5).

4 Conclusion

A key problem in time series prediction is to fix the model order, namely the num-
ber of past samples required to model the time series adequately. In this paper
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we have investigated three nonlinear dynamics methods, False Nearest Neigh-
bors, Grassberger-Procaccia and Kégl algorithms to estimate the model order of
a time series. Then the model order has been used to carry out the prediction,
performed by a SVM. The experiments on three real data time series have shown
that the model order estimated by nonlinear dynamics methods is quite close
to the one estimated using cross-validation. Even if the cross-validation remains
the simplest way to set up the model order of a time series, nonlinear dynamics
methods can be useful. They can be effectively used to narrow down the range
for cross-validation, speeding up the crossvalidating process.
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