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Abstract. The data representation strategy termed “Membership Embedding”
is a type of similarity-based representation that uses a set of data items in an
input space as reference points (probes), and represents all data interms of their
membership to the fuzzy concepts represented by the probes. The technique has
been proposed as a concise representation for improving the data clustering task.
In this contribution, it is shown that this representation strategy yields a spectral
clustering formulation, and this may account for the improvement in clustering
performance previously reported. Then the problem of selecting an appropriate
set of probes is discussed in view of this result.

1 Introduction

Exploratory analysis of large-dimensional data sets usingunsupervised clustering tech-
niques is often affected by problems due to the small cardinality and high dimensional-
ity of the data set. These are not merely of a computational nature, but have effects on the
performance of the data analysis process itself. A way to alleviate those problems lies
in performing clustering in an embedding space where each data point is represented
by a vector of its memberships to fuzzy sets characterized bya set of reference points
termed “probes”, selected from the data set. This approach has been demonstrated to
lead to significant improvements with respect the application of clustering algorithms
in the original space and in the distance embedding space. Ina previous paper [5] we
have proposed a constructive technique based on Simulated Annealing to select sets of
probes of small cardinality.

The contribution of the present work lies in proving that this representation tech-
nique is formally analogous to a spectral clustering problem. This suggests a possible
explanation of the observed increase in performance, and also suggests some possible
strategies for performing the selection of probes.

2 Clustering in distance-based representations

Many clustering approaches suffer from being applied in high-dimensional spaces, as
common clustering algorithms often seek for areas where data is especially dense. Data
sparsity observed with high-dimensional problems and a loss in significance of a large
class of metrics [2, 1] are other possible issues.



A notable complexity reduction in the presence of large-dimensional data sets can
be provided by representations in an embedding space based on mutual distances be-
tween points. If the cardinality of the data set is small compared to the input space
dimensionality, then the matrix of mutual distances or other pairwise pattern evaluation
methods such as kernels [14] may be used to represent data sets in a more compact
way. Pȩkalska and Duin [12] have developed a set of methods based on representing
each pattern according to a set of similarity measurements with respect to other pat-
terns in the data set. In this framework the data set is embedded in a lower dimensional
space calledembedding space, in which, in the presence of large-dimensional data sets,
a notable complexity reduction is achieved.

Following this approach, the data matrix is replaced by a pairwise dissimilarity
matrixD. Let X be a data set of cardinalityn: X= {x1, x2, . . . , xn} .We start by computing
the dissimilarity matrixD:

dik = d(xi , xk) ∀i,k according to an assigned dissimilarity measured(x,y) between
pointsx andy (e.g., using Euclidean distance). Applications of projection into dissimi-
larity embedding spaces to clustering are reported in [6].

As pointed out in [12], the dissimilarity measure should be ametric, since metrics
preserve thereverse of the compactness hypothesis[12]: "objects that are similar in
their representation are also similar in reality and belong, thereby, to the same class".
Often non-metric distances are used as well.

3 The Membership Embedding space

In [11] and [5] we proposed a specific embedding technique based on the space of
memberships to fuzzy sets centered on the probes, that we have termedMembership
Embedding Space(MES).

Let us consider now the Euclidean distance as the dissimilarity measure. In case of
a data set with points in general position and dimensionality of the original data setN
there is the upper bound ofN+1 probes (or support data) that we can use in order to
build the dissimilarity matrix. This upper bound is often un-realistic (as in the case of
genomic data), but for data having some structure we only require that the dimension
of the embedding space is large enough to preserve the reverse of the compactness
hypothesis.

Note that, if the embedding dimensionn is lower thanN+ 1, some points could
have an ambiguous representation and, moreover, clustering will be affected by the
high metrical contribution of farthest points.

In order to avoid the problems previously highlighted, in [5] we have proposed a
different kind of embedding based on the space of memberships to fuzzy sets centered
on the probes.

In the embedding space a point will be represented by a vectorcontaining only
few non-null components (depending on the width of the membership function), in
correspondence of the closest probes in the original feature space.

In our experiments, the memberships of fuzzy sets centered on the probes were
modeled using the following normalized function:νik = exp
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Note that, using this membership function, the parameterβ regulates the spread
of the membership function and can be related to the average distance between the
data points. Its value must be selected in order to improve the overall result (model
selection).

In the Membership Embedding Space each data pointxi is represented as a row of
νik: xi → (νi1, νi2, . . . , νin).

Once a set of probes is selected, it is possible to represent each pattern in the Mem-
bership Embedding Space (MES) and to perform clustering with a suitable method,
exploiting the better structure obtained in the MES to obtain results with higher confi-
dence or better performance. We usually perform clusteringusing the FCM algorithm
[3], but many other clustering algorithms can be employed.

4 The Membership Embedding is a normalized Laplacian

Good clustering performance has been consistently observed when representing data
with the Membership Embedding technique. In this section weshow that the MES
representation yields a clustering problem formulation that is equivalent to a spectral
clustering, i.e., the data structure to be clustered is the Laplacian of an appropriately
defined data graph.

The patterns{x1, . . . , xn} mapped in the membership embedding space by the trans-
formationvik = h(xi ,yk)/

∑c
l=1h(xi ,yl) , for instance using the Gaussian proximity func-

tion: vik = e(−β||xi−yk||)/
∑c

l=1e(−β||xi−yc||) , form an×c matrixV which can be extended in
the following way. Define then×n matrix Lrw as:

1. Lrwi j = −vik for yk = x j , that is, for all patterns which have been selected as probes;
2. Lrwi j = Lrw ji , that is, the same as above applies ifyk = xi ;
3. Lrwii = 1.

ThenLrw is equivalent to the normalized Laplacian as defined in the Shi and Malik
[15] spectral clustering algorithm, and its eigenvectors,the solutions of the eigenprob-
lem Lrwz= λz , can be used as indicators of clusters in the data. To prove this, Lrw can
be decomposed as follows:

Lrw = D−1L = D−1(D−W) = I −D−1W (1)

whereD andW are defined as follows. ForW:

wii = 0 (2)

wi j = w ji = h(xi , x j) if ∃yk : x j = yk , (3)

that is, data points are vertices in a graph and there is an undirected edge connecting
each probe to all other points, with weight given by the proximity function adopted;

wi j = w ji = 0 if ∀k : x j , yk (4)

that is, there is no edge between data points which are not probes. The matrixW thus
defined is the adjacency matrix of the graph described.



D is a diagonal matrix whose diagonal terms are defined bydii =
∑n

j=1, j,i wi j . D is
therefore the degree matrix of the graph.

It is easy to see that these definitions are equivalent to the membership embedding,
that is, for pointxi and probeyk = x j , Lrwi j = Lrw ji = vik

Therefore, with respect to the reduced connectivity graph defined above, the mem-
bership embedding carries the same information that is usedto perform clustering with
the Shi and Malik spectral algorithm.

This equivalence is interesting because this particular definition of a normalized
Laplacian is related to random walk probabilities and to circuit-theoretical properties
of networks, for instance Kirchhoff’s current law (KCL). These in turn highlight infor-
mation that is not purely local. One proof of this is providedin [10] where it is shown
that theresistance distance, a measure of connectivity not just for pairs, but for sets of
nodes, can be directly computed fromLrw.

Given the equivalence just proven, an explanation of the good clustering perfor-
mance observed with the MES technique can be stated observing that the first eigen-
values of a Laplacian incorporate the most significant information for clustering. If the
Laplacian itself is subject to clustering, as proposed, this is equivalent to highlighting
the block structure of the Laplacian. The reasons for the effectiveness of this procedure
have been studied in [4].

5 The probe selection problem

Once proven that asuitableset of probes can yield an efficient MES transformation,
the problem that immediately follows is how to select the patterns that should act as
probes. In principle, probes need not be parts of the training set. However, to obtain a
computational advantage, this is a sensible choice, because otherwise the probe selec-
tion problem itself turns out to be a clustering problem in the original data space, which
is what we want to avoid from the start.

Probes should also be reasonably related to clusters, so that the pattern of member-
ships can discriminate well between points belonging to different clusters. This does not
mean that they should belong or be close to clusters themselves, as suggested by results
presented in [13], neither that their number should approach the number of clusters.

Several selection techniques have been proposed, including also random selection.
We have previously proposed a method based on the Simulated Annealing (SA) tech-
nique [9], a well-known global search method technique derived from Statistical Me-
chanics. SA models the behavior and small fluctuations of a system of atoms starting
from an initial configuration, by the generation of a sequence of iterations.

This model is generalized to the solution of quite arbitraryoptimization problems
[9] by using anad hocselected cost function (generalized energy), instead of the phys-
ical energy. In our case, the generalized energyE is computed as a linear combination
between an assigned clustering quality measureε and the number of selected probess:
E = ε+λs. The measureε can be a function of either the cost function associated to the
clustering algorithm, a clustering validation index, or, in the case of labeled data sets,
theRepresentation Error(RE). RE is the count of data points in each cluster disagree-



ing with the majority label in that cluster, summed over all clusters and expressed as a
percentage.

The introduction of the number of selected probess in the computation ofE leads to
the minimization of the cardinality of the set of probes ableto achieve a good clustering
quality measure. The balance between these two terms is controlled byλ.

This method has the advantage to be able to suggest the whole structure of the probe
set, i.e., both the number of probes and the data points to be used as probes. Performance
is usually good. A drawback is the computational cost of the SA technique itself, so
that the whole procedure is justified only in view of the performance improvement in
the final clustering solution.

An alternate technique that we are starting to investigate consists in actually per-
forming clustering in the original data space, but with a very efficient and suboptimal
algorithm. Experiments are ongoing with a variation on K-Means clustering where cen-
troids are selected from the training set. Runs are limited to a low number of iterations,
which nevertheless provides sensible solutions.

A clustering algorithm which lends itself well to this task is the recently proposed
“Affinity Propagation Clustering” algorithm [7], which inherently selects significant
data points as cluster prototypes, again suggesting both number and position of probes.
This technique is not as computationally light as the simpler K-Means, and there is an
on-going project about finding solutions efficiently by providing approximations to the
original algorithm.

6 Experiments and results

The method was tested on the publicly available Leukemia data by Golub et al. [8]. The
Leukemia problem consists in characterizing two forms of acute leukemia, Acute Lym-
phoblastic Leukemia (ALL) and Acute Mieloid Leukemia (AML). The original work
proposed both a supervised classification task (“class prediction”) and an unsupervised
characterization task (“class discovery”). Here we obviously focus on the latter, but we
exploit the diagnostic information on the type of leukemia to assess the goodness of the
clustering obtained.

The training data set contains 38 samples for which the expression level of 7129
genes has been measured with the DNA microarray technique (the interesting human
genes are 6817, and the other are controls required by the technique). These expression
levels have been scaled by a factor of 100. Of these samples, 27 are cases of ALL and
11 are cases of AML. Moreover, it is known that the ALL class isin reality composed
of two different diseases, since they are originated from different cell lineages (either
T-lineage or B-lineage). In the data set, ALL cases are the first 27 objects and AML
cases are the last 11. Therefore, in the presented results, the object identifier can also
indicate the class (ALL if id≤ 27, AML if larger).

The experimentation compares the following approaches:

1. FCM on the original data set (RD);
2. FCM in the Distance Embedding Space (DES) with different probe/data ratios;
3. FCM in the Membership Embedding Space (MES) with different probe/data ratios.



Method β Mean error rateprobe/data ratio
RD - 17.2 /

DES - 24.9 0.1
MES 10−6 11.1 0.4
MES 5 ·10−7 10.9 0.5
MES 10−7 9.5 0.7
MES 10−8 9.1 0.8

Table 1. Comparison of the best mean error rate for the tested methods: FCM on row data (RD),
FCM on Distance Embedding Space (DES), FCM on Membership Embedding Space (MES)

Each experiment corresponds to 1000 independent trials, each of them using a dif-
ferent random initialization of the membership in the FCM algorithm.

In all trials, the number of clusters was set to 3, and the fuzziness parameterm
of FCM was set to 2. The first approach (standard FCM on original data) obtains a
mean error rate of 17.2%. The projection into the distance embedding space (second
approach) leads to worse results than the previous one: the error rate is more than 25.0%
for all probe/data ratios in the range [.1,1.0]. The last approach, projecting the data set
into the membership embedding space, leads to better results.

Moreover, increasing the parameterβ from 10−8 to 10−6 we obtain for increasing
probe/data ratios (from.8 to .4) the shift of the optimal error ratio. The average distance
between the data points is 106. A reasonable choice is then to takeβ = 10−8 that is about
one hundred times the inverse of the average distance between the data points.

The membership vectors (the rows of theνik matrix) have a number of non null
components related to the spread of the membership function. The minimum of the
error rate is achieved for situations for which we have a goodcompromise between the
number of probes and the width of the membership function.

A comparison of the best mean error rate for the tested methods is reported in Tab. 1.
The following results are related to experiments about probe selection. Each inde-

pendent run of the SA-PS algorithm finds a different small subset of probes leading to
a clustering Representation Error equal 0. In Fig. 1, the Representation Error and the
number of selected bits ofg are plotted versus the iteration number during a run of the
SA-PS algorithm, where each iteration corresponds to a different value of temperature
T. In this case, at iterations 31, 33, 34 and 35 we obtained 4 different sets of 3 probes
giving clustering RE equal 0.

The preliminary experiments with the “rough clustering” approach show that, as
expected, the whole procedure takes a much shorter time, of the order of tenths of
second (the implementation is in C) which is much better thanthe time required for SA.

The experimental results are still to be analyzed. However,an interesting fact has
been observed: the performance of the clustering algorithmused is not directly related
to the number of probes. This can open the way to iterative procedures whereby the
number of probes (and with it the dimensionality of the embedding space) is progres-
sively reduced, while maintaining a given accuracy level. An example of this behaviour
is presented in Table 2.
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Fig. 1. RE (a) and number of probes selected (b) during a run of the SA-PS algorithm.
Number of probes RE

50 73.68%
25 81.58%
3 73.68%

Table 2. Example of error rate with varying number of probes.

7 Conclusions

A way to alleviate dimensionality problems in clustering lies in performing clustering in
an embedding space where each data point is represented by a vector of its memberships
to fuzzy sets centered on a set of probes selected from the data set. In previous work, this
approach has been demonstrated to lead to significant improvements with respect the
application of clustering algorithms in the original spaceand in the distance embedding
space, and a constructive technique based on Simulated Annealing has been proposed
to select sets of probes for clustering in the embedding space of fuzzy memberships.

In the present contribution, the MES approach has been proved to yield a spectral
clustering problem, and the general problem of proble selection has been recast to allow
future solutions with a computational, in addition to performance, advantage.
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