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Abstract. The data representation strategy termed “Membership Embedding”
is a type of similarity-based representation that uses a set of data items in an
input space as reference points (probes), and represents all detenof their
membership to the fuzzy concepts represented by the probes. Tivtezhas

been proposed as a concise representation for improving the datainysask.

In this contribution, it is shown that this representation strategy yields drapec
clustering formulation, and this may account for the improvement in ciagte
performance previously reported. Then the problem of selecting piropipate

set of probes is discussed in view of this result.

1 Introduction

Exploratory analysis of large-dimensional data sets ugirsgipervised clustering tech-
niques is often fiected by problems due to the small cardinality and high dsiteral-
ity of the data set. These are not merely of a computationatezbut have ects on the
performance of the data analysis process itself. A way gvilte those problems lies
in performing clustering in an embedding space where eathpt#nt is represented
by a vector of its memberships to fuzzy sets characterizea $8t of reference points
termed “probes”, selected from the data set. This approastbken demonstrated to
lead to significant improvements with respect the applicaetf clustering algorithms
in the original space and in the distance embedding spa@eptevious paper [5] we
have proposed a constructive technigue based on Simulateealing to select sets of
probes of small cardinality.

The contribution of the present work lies in proving thasthépresentation tech-
nique is formally analogous to a spectral clustering pnobl€his suggests a possible
explanation of the observed increase in performance, audsaiggests some possible
strategies for performing the selection of probes.

2 Clusteringin distance-based representations

Many clustering approachestger from being applied in high-dimensional spaces, as
common clustering algorithms often seek for areas whereida&specially dense. Data
sparsity observed with high-dimensional problems and siilosignificance of a large
class of metrics [2, 1] are other possible issues.



A notable complexity reduction in the presence of largeatisional data sets can
be provided by representations in an embedding space baseditoial distances be-
tween points. If the cardinality of the data set is small camneg to the input space
dimensionality, then the matrix of mutual distances or pffa@rwise pattern evaluation
methods such as kernels [14] may be used to represent datan setmore compact
way. Pekalska and Duin [12] have developed a set of methasgisdbon representing
each pattern according to a set of similarity measuremeittsraspect to other pat-
terns in the data set. In this framework the data set is endakithoa lower dimensional
space calleeémbedding spa¢é which, in the presence of large-dimensional data sets,
a notable complexity reduction is achieved.

Following this approach, the data matrix is replaced by awsé dissimilarity
matrix D. Let X be a data set of cardinality X = {X1, X2,..., Xn}. We start by computing
the dissimilarity matrixD:

dik = d(x, x«) Vi,k according to an assigned dissimilarity measiey) between
pointsx andy (e.g., using Euclidean distance). Applications of prag@tinto dissimi-
larity embedding spaces to clustering are reported in [6].

As pointed out in [12], the dissimilarity measure should beetric, since metrics
preserve theeverse of the compactness hypothg$l: "objects that are similar in
their representation are also similar in reality and beJdhgreby, to the same class".
Often non-metric distances are used as well.

3 TheMembership Embedding space

In [11] and [5] we proposed a specific embedding techniquedas the space of
memberships to fuzzy sets centered on the probes, that veetbamedMembership
Embedding Spac@MES).

Let us consider now the Euclidean distance as the dissitgilaeasure. In case of
a data set with points in general position and dimensionafithe original data sel
there is the upper bound &f + 1 probes (or support data) that we can use in order to
build the dissimilarity matrix. This upper bound is often-tgalistic (as in the case of
genomic data), but for data having some structure we onlyireghat the dimension
of the embedding space is large enough to preserve the ecgéithe compactness
hypothesis.

Note that, if the embedding dimensionis lower thanN + 1, some points could
have an ambiguous representation and, moreover, clugteilhbe afected by the
high metrical contribution of farthest points.

In order to avoid the problems previously highlighted, if e have proposed a
different kind of embedding based on the space of membershipgp $ets centered
on the probes.

In the embedding space a point will be represented by a vectaiaining only
few non-null components (depending on the width of the mesitip function), in
correspondence of the closest probes in the original feafpeace.

In our experiments, the memberships of fuzzy sets centemeithe probes were
modeled using the following normalized functior = exp[—ﬁdﬁk]/& exp[—ﬁdfl].



Note that, using this membership function, the parameteggulates the spread
of the membership function and can be related to the aversggnde between the
data points. Its value must be selected in order to improgeotrerall result (model
selection).

In the Membership Embedding Space each data pgiistrepresented as a row of
Vik: X = (Vi1,vi2, .- ., Vin)-

Once a set of probes is selected, it is possible to repreaehtgattern in the Mem-
bership Embedding Space (MES) and to perform clustering wisuitable method,
exploiting the better structure obtained in the MES to abtasults with higher confi-
dence or better performance. We usually perform clustargigg the FCM algorithm
[3], but many other clustering algorithms can be employed.

4 TheMembership Embeddingisanormalized L aplacian

Good clustering performance has been consistently ol$evien representing data
with the Membership Embedding technique. In this sectionsivew that the MES
representation yields a clustering problem formulaticat ik equivalent to a spectral
clustering, i.e., the data structure to be clustered is tyaldcian of an appropriately
defined data graph.

The patterngxi, ..., X,} mapped in the membership embedding space by the trans-
formationvic = h(x;,yi)/ X_, h(x. y1) , for instance using the Gaussian proximity func-
tion: vy = e/ 51¢ | el form anx ¢ matrix V which can be extended in
the following way. Define thax n matrix Ly as:

1. Lwij = —Vik for yk = xj, that is, for all patterns which have been selected as pyobes
2. Lwij = Liwji, thatis, the same as above appliegit X;;
3. Lwii = 1.

ThenLyy is equivalent to the normalized Laplacian as defined in the&th Malik
[15] spectral clustering algorithm, and its eigenvecttis,solutions of the eigenprob-
lemLwz= Az , can be used as indicators of clusters in the data. To prosg.thi can
be decomposed as follows:

Lw=DL=D}D-W)=1-D'w (1)

whereD andW are defined as follows. FaW:
wii =0 )
wij =wji =h(x, %)) if 3y Xj =k, (3)

that is, data points are vertices in a graph and there is aineateld edge connecting
each probe to all other points, with weight given by the pmuty function adopted,;

wij =w;ji =0 if VKX # Yk (4)

that is, there is no edge between data points which are nbeprd@he matrixV thus
defined is the adjacency matrix of the graph described.



D is a diagonal matrix whose diagonal terms are defined;by >
therefore the degree matrix of the graph.

It is easy to see that these definitions are equivalent to grabership embedding,
that is, for pointx; and probeyk = X;, Lrwij = Lwji = Vik

Therefore, with respect to the reduced connectivity gragfindd above, the mem-
bership embedding carries the same information that is tasperform clustering with
the Shi and Malik spectral algorithm.

This equivalence is interesting because this particuléinitien of a normalized
Laplacian is related to random walk probabilities and teuirtheoretical properties
of networks, for instance Kirchtiis current law (KCL). These in turn highlight infor-
mation that is not purely local. One proof of this is provided10] where it is shown
that theresistance distange measure of connectivity not just for pairs, but for sets of
nodes, can be directly computed frdgg,.

Given the equivalence just proven, an explanation of thedgdostering perfor-
mance observed with the MES technique can be stated obgehan the first eigen-
values of a Laplacian incorporate the most significant imfation for clustering. If the
Laplacian itself is subject to clustering, as proposed; ihiequivalent to highlighting
the block structure of the Laplacian. The reasons for ffertveness of this procedure
have been studied in [4].

n - i
j=1,j= Wij- DS

5 Theprobe selection problem

Once proven that auitableset of probes can yield arffgient MES transformation,

the problem that immediately follows is how to select thetgrats that should act as
probes. In principle, probes need not be parts of the trgis@t. However, to obtain a
computational advantage, this is a sensible choice, beaathsrwise the probe selec-
tion problem itself turns out to be a clustering problem i@ thiginal data space, which
is what we want to avoid from the start.

Probes should also be reasonably related to clusters, sthéhpattern of member-
ships can discriminate well between points belongingfi@cént clusters. This does not
mean that they should belong or be close to clusters therseals suggested by results
presented in [13], neither that their number should apgrdae number of clusters.

Several selection techniques have been proposed, inglato random selection.
We have previously proposed a method based on the Simulatedating (SA) tech-
nique [9], a well-known global search method techniquewveerifrom Statistical Me-
chanics. SA models the behavior and small fluctuations ofsteay of atoms starting
from an initial configuration, by the generation of a seqeeoiciterations.

This model is generalized to the solution of quite arbitrapyimization problems
[9] by using anad hocselected cost functiorgéneralized energyinstead of the phys-
ical energy. In our case, the generalized endtdy computed as a linear combination
between an assigned clustering quality measued the number of selected protses
E = ¢+ 1s. The measure can be a function of either the cost function associatedeo th
clustering algorithm, a clustering validation index, orthe case of labeled data sets,
the Representation ErrofRE). RE is the count of data points in each cluster disagree-



ing with the majority label in that cluster, summed over #listers and expressed as a
percentage.

The introduction of the number of selected proba@sthe computation of leads to
the minimization of the cardinality of the set of probes ablachieve a good clustering
quality measure. The balance between these two terms iotledtby 1.

This method has the advantage to be able to suggest the whaigise of the probe
set, i.e., both the number of probes and the data points tedikas probes. Performance
is usually good. A drawback is the computational cost of thAet&hnique itself, so
that the whole procedure is justified only in view of the perfance improvement in
the final clustering solution.

An alternate technique that we are starting to investigatesists in actually per-
forming clustering in the original data space, but with ayvefficient and suboptimal
algorithm. Experiments are ongoing with a variation on Kavle clustering where cen-
troids are selected from the training set. Runs are limibelbw number of iterations,
which nevertheless provides sensible solutions.

A clustering algorithm which lends itself well to this taskthe recently proposed
“Aflinity Propagation Clustering” algorithm [7], which inhetnselects significant
data points as cluster prototypes, again suggesting botfbb@uand position of probes.
This technique is not as computationally light as the simldeans, and there is an
on-going project about finding solutionfieiently by providing approximations to the
original algorithm.

6 Experimentsand results

The method was tested on the publicly available Leukemia lofatGolub et al. [8]. The
Leukemia problem consists in characterizing two forms otateukemia, Acute Lym-
phoblastic Leukemia (ALL) and Acute Mieloid Leukemia (AMLJhe original work
proposed both a supervised classification task (“classqired’) and an unsupervised
characterization task (“class discovery”). Here we obsigfiocus on the latter, but we
exploit the diagnostic information on the type of leukenti@ssess the goodness of the
clustering obtained.

The training data set contains 38 samples for which the szpe level of 7129
genes has been measured with the DNA microarray technifedr(teresting human
genes are 6817, and the other are controls required by theiter). These expression
levels have been scaled by a factor of 100. Of these samplesgXases of ALL and
11 are cases of AML. Moreover, it is known that the ALL clasiiseality composed
of two different diseases, since they are originated frofiedint cell lineages (either
T-lineage or B-lineage). In the data set, ALL cases are tls¢ 2 objects and AML
cases are the last 11. Therefore, in the presented resudtepfect identifier can also
indicate the class (ALL if ik 27, AML if larger).

The experimentation compares the following approaches:

1. FCM on the original data set (RD);
2. FCM in the Distance Embedding Space (DES) witfiedent probglata ratios;
3. FCM in the Membership Embedding Space (MES) witfiedent probglata ratios.



Method B |Mean error ratgprobedata ratic
RD - 17.2 /
DES - 24.9 0.1
MES | 10°° 11.1 0.4
MES [5-10°7 10.9 0.5
MES | 1077 9.5 0.7
MES | 10°8 9.1 0.8

Table 1. Comparison of the best mean error rate for the tested methods: FCivatata (RD),
FCM on Distance Embedding Space (DES), FCM on Membership Emhg&giace (MES)

Each experiment corresponds to 1000 independent triath, @ahem using a dif-
ferent random initialization of the membership in the FCdaalthm.

In all trials, the number of clusters was set to 3, and theifigzs parametam
of FCM was set to 2. The first approach (standard FCM on origiata) obtains a
mean error rate of 12%. The projection into the distance embedding space (slecon
approach) leads to worse results than the previous onerrthrerate is more than 26%
for all probégdata ratios in the rangel] 1.0]. The last approach, projecting the data set
into the membership embedding space, leads to bettergesult

Moreover, increasing the paramefefrom 108 to 106 we obtain for increasing
probédata ratios (from8 to.4) the shift of the optimal error ratio. The average distance
between the data points is®L0\ reasonable choice is then to take 1078 that is about
one hundred times the inverse of the average distance betiveeata points.

The membership vectors (the rows of the matrix) have a number of non null
components related to the spread of the membership funcioe minimum of the
error rate is achieved for situations for which we have a gmmdpromise between the
number of probes and the width of the membership function.

A comparison of the best mean error rate for the tested metlBodported in Tab. 1.

The following results are related to experiments about @ddection. Each inde-
pendent run of the SA-PS algorithm finds &elient small subset of probes leading to
a clustering Representation Error equal 0. In Fig. 1, ther&ssmtation Error and the
number of selected bits gfare plotted versus the iteration number during a run of the
SA-PS algorithm, where each iteration corresponds tdtarént value of temperature
T. In this case, at iterations 31, 33, 34 and 35 we obtainedfdrdnt sets of 3 probes
giving clustering RE equal 0.

The preliminary experiments with the “rough clustering’pagach show that, as
expected, the whole procedure takes a much shorter timdyeobrder of tenths of
second (the implementation is in C) which is much better thartime required for SA.

The experimental results are still to be analyzed. Howemeiinteresting fact has
been observed: the performance of the clustering algornitbed is not directly related
to the number of probes. This can open the way to iterativegaores whereby the
number of probes (and with it the dimensionality of the entdegl space) is progres-
sively reduced, while maintaining a given accuracy level .ekample of this behaviour
is presented in Table 2.
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Fig. 1. RE (a) and number of probes selected (b) during a run of the SA-PSthigor

Number of probes RE
50 73.68%
25 81.58%
3 73.68%

Table 2. Example of error rate with varying number of probes.

7 Conclusions

A way to alleviate dimensionality problems in clusteringglin performing clustering in
an embedding space where each data point is representeebipaaf its memberships
to fuzzy sets centered on a set of probes selected from tAselain previous work, this
approach has been demonstrated to lead to significant iraprents with respect the
application of clustering algorithms in the original space in the distance embedding
space, and a constructive technique based on Simulatecamgpédas been proposed
to select sets of probes for clustering in the embeddingespfftizzy memberships.

In the present contribution, the MES approach has been griovgield a spectral
clustering problem, and the general problem of proble selebas been recast to allow
future solutions with a computational, in addition to penfance, advantage.
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