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Abstract Gaussian Process (GP) models are extensively used in data analysis
given their flexible modeling capabilities and interpretability. The fully Bayesian
treatment of GP models is analytically intractable, and therefore it is necessary to
resort to either deterministic or stochastic approximations. This paper focuses on
stochastic-based inference techniques. After discussing the challenges associated
with the fully Bayesian treatment of GP models, a number of inference strate-
gies based on Markov chain Monte Carlo methods are presented and rigorously
assessed. In particular, strategies based on efficient parameterizations and efficient
proposal mechanisms are extensively compared on simulated and real data on the
basis of convergence speed, sampling efficiency, and computational cost.

Keywords Bayesian inference · Gaussian Processes · Markov chain Monte Carlo ·
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1 Introduction

Gaussian Process (GP) models represent a class of models that are popular in
data analysis due to the associated flexibility and interpretability. Both these fea-
tures are a direct consequence of their rich parameterization. Flexibility is due to
the nonparametric prior over latent variables conditioning observations, whereas
interpretability is due to the parameterization of the structure associated with the
latent variables. Observations are conditionally independent given a set of jointly
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Gaussian latent variables, and are assumed to be distributed according to the par-
ticular type of data being modeled. The covariance structure of the latent variables
is then parameterized by a set of hyper-parameters that characterizes the covari-
ance of the input vectors in terms of length-scales and intensity of interaction.
GP models comprise a large set of models, and this paper focuses in particular
on Logistic Regression with GP priors (LRG) (Rasmussen and Williams, 2006),
Log-Gaussian Cox models (LCX) (Møller et al., 1998), Stochastic Volatility models
with GP priors (VLT) (Wilson and Ghahramani, 2010), and Ordinal Regression
with GP priors (ORD) (Chu and Ghahramani, 2005).

Exact inference in GP models is analytically intractable. Most of the work
to tackle such intractability focuses on deterministic approximations to integrate
out latent variables; those approaches include the Laplace Approximation (LA)
(Tierney and Kadane, 1986), Expectation Propagation (EP) (Minka, 2001), and
mean field approximations (Opper and Winther, 2000) (see, e.g., Rasmussen and
Williams (2006) for an extensive presentation of such approximations, and Kuss
and Rasmussen (2005) for their assessment on LRG models). Deterministic approxi-
mations provide a computationally tractable way to integrate out latent variables,
but it is not possible to quantify the error that they introduce in the quantification
of uncertainty in predictions (although EP for LRG is reported to be very accu-
rate in Kuss and Rasmussen (2005)); also, those methods target the integration of
latent variables only.

In the direction of providing a fully Bayesian treatment of GP models, it is
necessary to integrate out latent variables as well as hyper-parameters, and this is
usually done by quadrature methods (Cseke and Heskes, 2011; Rue et al., 2009),
thus limiting the number of hyper-parameters that can be employed in GP models.

Based on those considerations, this paper focuses on non-deterministic meth-
ods to carry out inference in GP models, and in particular on stochastic based
approximations based Markov Chain Monte Carlo (MCMC) methods. The use of
MCMC based inference methods is appealing as it provides asymptotic guarantees
of convergence to exact inference. In practice, this translates into the possibility
of achieving results with the desired level of accuracy (Flegal et al., 2007). Un-
fortunately, the use of MCMC methods for inference in GP models is extremely
difficult. The aim of this paper is to discuss the challenges associated with MCMC
based inference for GP models, and compare a number of strategies that have been
proposed in the literature to tackle them. A preliminary version of this work can
be found in Filippone et al. (2012)1.

To the best of our knowledge, this work (i) is the first attempt to extensively
assess the state-of-the-art in stochastic-based inference methods for GP models,
and (ii) sets the bar for new MCMC methods for inference in GP models. Along
with those contributions, this paper presents (iii) a variant of the Hybrid Monte
Carlo algorithm that outperforms state-of-the-art methods to sample from the
posterior distribution of the latent variables, and (iv) tests the combination of
parameterizations, as recently proposed in Yu and Meng (2011), in the case of GP
models.

1 An implementation of the methods considered in this paper can be found at:
http://www.dcs.gla.ac.uk/~maurizio/pages/code.html
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1.1 Gaussian Process Models

Let X = {x1, . . . ,xn} be a set of n input vectors described by a set of d covariates
xi ∈ R

d, associated with observed responses y = {y1, . . . , yn}. In GP models, the
generative process modeling the observed data y given X is as follows. Observa-
tions are assumed to be conditionally independent given a set of n latent variables
f = {f1, . . . , fn}, and distributed according to a certain distribution depending on
the particular type of data, e.g., Bernoulli for binary labels and Poisson for obser-
vations in the form of counts. This can be translated into a likelihood function of
the form p(y|f) =

∏n
i=1 p(yi|fi), where for generality the distribution p(yi|fi) is

left unspecified.
In this work, latent variables are assumed to be drawn from a zero mean GP

prior with covariance function k. The GP prior is a prior over functions, and the
covariance structure given by k specifies the characteristics of such functions (i.e.,
degree of smoothness and marginal variance). Let k be parameterized by a vector
of hyper-parameters θ = (σ, ψτ1 , . . . , ψτd), and assume:

k(xi,xj |θ) = σq(xi,xj |ψτ ) = σ exp

[

−1

2

d
∑

r=1

(xi − xj)
2
(r)

exp(ψτr )
2

]

(1)

with exp(ψτr ) defining the length-scale of the interaction between the input vectors
for the rth covariate and σ giving the marginal variance for latent variables. This
type of covariance can be used for Automatic Relevance Determination (ARD)
(Mackay, 1994) of the covariates, as the values τi = exp(ψτi) can be interpreted
as length-scale parameters. This definition of covariance function is adopted in
many applications and is the one we will consider in the remainder of this paper.
Exponentiation of the hyper-parameters is convenient, so that standard MCMC
transition operators can be employed for ψτi thus avoiding dealing with boundary
conditions or non-standard MCMC proposals (Robert and Casella, 2005). Let
Q be the matrix whose entries are qij = q(xi,xj |ψτ ); the covariance matrix K
will then be K = σQ. The model is fully specified by choosing a prior p(θ) for
the hyper-parameters. The model structure is therefore hierarchical, with hyper-
parameters conditioning the latent variables that, in turn, condition observations,
so that p(y, f , θ) = p(y|f)p(f |θ)p(θ).

In a Bayesian setting, the predictive distribution for new input values x∗ can
be written in the following way (for the sake of clarity we drop the explicit condi-
tioning on X and x∗):

p(y∗|y) =
∫ ∫ ∫

p(y∗|f∗)p(f∗|f , θ)p(f , θ|y)df∗dfdθ (2)

The left hand side of Eq. 2 is a full probability distribution characterizing the
uncertainty in predicting y∗ given the GP modeling assumption.

In this work we will focus on stochastic approximations for obtaining samples
from the posterior distribution of f and θ, so that we can obtain a Monte Carlo
estimate of the predictive distribution as follows:

p(y∗|y) ≃ 1

N

N
∑

i=1

∫

p(y∗|f∗)p(f∗|f (i), θ(i))df∗ (3)
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where N denotes the number of samples used to compute the estimate. In Eq. 3
we denoted the ith samples from the posterior distribution of f and θ obtained
by means of MCMC methods by f (i) and θ(i). Note that the remaining integral is
univariate and it is generally easy to evaluate.

1.2 Challenges in MCMC based inference for GP models

Sampling from the posterior of latent variables and hyper-parameters by joint
proposals is not feasible; it is extremely unlikely to propose a set of latent variables
and hyper-parameters that are compatible with each other and observed data. This
forces one to consider schemes such as Gibbs sampling, where groups of variables
are updated one at time, leading to the following challenges:

(i) Due to the hierarchical structure of GP models, chains converge slowly and
mix poorly if the coupling effect between the groups of variables is not dealt with
properly. This requires some form of reparameterization or clever proposal mech-
anism that efficiently decouples the dependencies between the groups of variables.
This effect has drawn a lot of attention in the case of hierarchical models in gen-
eral (Yu and Meng, 2011), and recently in GP models Knorr-Held and Rue (2002);
Murray and Adams (2010). In Knorr-Held and Rue (2002) a joint update of latent
variables and hyper-parameters is proposed with the aim of avoiding proposals for
hyper-parameters to be conditioned on the values of latent variables. In Murray
and Adams (2010) a parameterization based on auxiliary data is proposed that
aims at reducing the coupling between the two groups of variables. Other ideas
involve the use of reparameterizations based on whitening the latent variables;
in the terminology of Yu and Meng (2011), this corresponds to employing the so
called Ancillary Augmentation (AA) parameterization. Recently, Yu and Meng
(2011) proposed to interweave parameterizations characterized by complementary
features in order to boost sampling efficiency. Parameterizations can be comple-
mentary in the sense that they offer better performance in either strong or weak
data limits; the idea of combining parameterizations is to achieve high sampling
efficiency in both strong and weak data scenarios. We are interested in comparing
the methods in Knorr-Held and Rue (2002); Murray and Adams (2010) and Yu
and Meng (2011) applied to GP models. Another possibility would be to approxi-
mately integrate out latent variables and obtain samples from the corresponding
approximate posterior of hyper-parameters. For GP classification this might be
a sensible thing to do, as the Expectation Propagation approximation has been
reported to be very accurate Kuss and Rasmussen (2005); however, this is peculiar
to GP classification and for general GP models it may not be the case.

(ii) Sampling hyper-parameters and latent variables cannot be done using ex-
act Gibbs steps, and it requires proposals that are accepted/rejected based on a
Hastings ratio, leading to a waste of expensive computations. Transition operators
characterized by acceptance mechanisms embedded in a Gibbs sampler, are usu-
ally referred to as Metropolis-within-Gibbs operators. Designing proposals that
guarantee high acceptance and independence between samples is extremely chal-
lenging, especially because latent variables can have dimensions in the order of
hundreds or thousands. We will compare several transition operators, for different
steps of the Gibbs sampler, with the aim of gaining insights about ways to strike a
good balance between efficiency and computational cost. We will consider transi-
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tion operators characterized by proposal mechanisms with increasing complexity,
and in particular the Metropolis-Hastings (MH) operator which is based on ran-
dom walk types of proposals, Hybrid Monte Carlo (HMC) which uses the gradient
of the log-density of interest, and manifold methods (Girolami and Calderhead,
2011) which use curvature information (i.e., second derivatives of the log-density).

The paper is organized as follows: Sections 2 and 3 report the parameterization
strategies and the transition operators considered in this work. Sections 4 and 5
report an extensive comparison of those strategies and transition operators, on
simulated and real data, on the basis of efficiency, convergence speed and com-
putational complexity; section 6 concludes the paper. For the sake of readability,
most of the technical derivations can be found in the appendices.

2 Dealing with the hierarchical structure of GP models

2.1 Sufficient and Ancillary Augmentation

From a generative perspective, the model structure is hierarchical with latent
variables representing sufficient statistics for the hyper-parameters. This parame-
terization is referred to as Sufficient Augmentation (SA) in Yu and Meng (2011)
and allows one to express the joint density as

SA p(y, f , θ) = p(y|f)p(f |θ)p(θ) (4)

It is also possible to introduce the decomposition of the matrix Q into the
product of two factors LLT, and view the generation of the latent variables as
f =

√
σLν with ν ∼ N (ν|0, I), which implies that f ∼ N (f |0,K). In the remainder

of this paper, we will consider L to be the lower triangular Cholesky decomposition
ofK, but in principle any square root ofK could be used. In this way, ν is ancillary
for θ and it is possible to express the joint density as

AA p(y,ν, θ) = p(y|ν, θ)p(ν)p(θ) (5)

This parameterization is called Ancillary Augmentation (AA) in the terminology
of Yu and Meng (2011). In Murray and Adams (2010) SA and AA are referred
to as unwhitened and whitened parameterizations respectively. Weak and strong
data limits can influence the efficiency in sampling using either parameterization.
For this reason, it is important to choose an efficient parameterizations for the
particular problem under study and for the available amount of data, as both
these aspects can dramatically influence efficiency and convergence speed of the
chains.

2.2 Ancillarity-Sufficiency Interweaving Strategy - ASIS

In this section we briefly review the main results presented in Yu and Meng (2011)
on the combination of parameterizations to improve convergence and efficiency of
MCMC methods, and we will illustrate how these results can be applied to GP
models. Intuitively, combining parameterizations seems promising to take the best
from them in both weak and strong data limits, or at least, to avoid the possibility
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that chains do not converge because of the wrong choice of parameterization.
Alternating the sampling in the SA and AA parameterizations is the most obvious
way of combining the two parameterizations, but as recently investigated in Yu
and Meng (2011), interweaving SA and AA is actually a more promising way
forward. From a theoretical perspective, the geometric rate of convergence r of
the scheme when the parameterizations are interweaved, is related to the rates of
the two schemes r1 and r2 by r ≤ R1,2

√
r1r2, where R1,2 is the maximal correlation

between the latent variables for the two schemes. Given that the former expression
implies r ≤ max(r1, r2), combining the two parameterizations leads to a scheme
that is better than the worst. This is already an advantage compared to using a
single scheme when one is in doubt on which scheme to use. However, the key result
is the fact that R1,2 can be very small depending on the two parameterizations,
so it is possible to make the combined scheme converge quickly even if neither
of the individual schemes do. In general, this result is quite remarkable, as once
different reparameterizations are available, combining them using the interweaving
strategy is simple to implement, and can dramatically boost sampling efficiency.
In GP models, the ASIS scheme amounts to interweaving SA and AA updates,
that following Yu and Meng (2011) yields:

f |y, θ −→ θ|f −→ ν = σ
−1/2

L
−1

f −→ θ|y,ν (6)

2.3 Knorr-Held and Rue (KHR)

The idea underpinning KHR, is to jointly sample parameters and latent variables
as follows. Firstly, a set of hyper-parameters θ′|θ is proposed and secondly a set of
latent variables conditioned on the new set of hyper-parameters, namely f ′|y, θ′, is
proposed. The proposal (θ′, f ′) is then jointly accepted or rejected according to a
standard Hastings ratio. The key idea is to avoid making the proposal θ′ accepted
on the basis of f to avoid the strong coupling effect due to the hierarchical nature
of the model. KHR was proposed in applications making use of Gaussian Markov
Random Fields, and we will discuss the application of this idea for GP models
in the section reporting the experiments. In order to avoid difficulties in devising
a proposal for sampling from f ′|y, θ′), here we set the proposal as the Gaussian
obtained by constructing a Laplace approximation to p(f |y, θ′).

2.4 Surrogate Method (SURR)

In the SURR method (Murray and Adams, 2010), a set of auxiliary latent vari-
ables g is introduced as a noisy version of f ; in particular, p(g|f , θ) = N (g|f , Sθ).
This construction yields a conditional distribution for f of the form p(f |g, θ) =
N (f |m, R), with R = Sθ −Sθ(Sθ +K)−1Sθ and m = RS−1

θ g. After decomposing
R = DDT, the sampling of θ is then conditioned on the variables η defined as
f = Dη +m. The covariance Sθ is constructed to be diagonal with elements ob-
tained by matching the posterior for each latent variable individually or by Taylor
approximations (see Murray and Adams (2010) for details).
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3 MCMC transition operators considered in this work

This section presents the transition operators considered in this work. We are in-
terested in understanding whether and to what extent employing proposal mech-
anisms making use of gradient or curvature information of the target density im-
proves sampling efficiency and speed of convergence with respect to computational
complexity. We therefore consider transition operators with increasing complexity,
and in particular the Metropolis-Hastings (MH) operator which is based on ran-
dom walk types of proposals, the Hybrid Monte Carlo (HMC) operator which uses
gradient information, and the Simplified Manifold Metropolis Adjusted Langevin
Algorithm (SMMALA) operator which is one of the simplest manifold MCMC
methods proposed in Girolami and Calderhead (2011) using curvature informa-
tion.

For the sake of clarity, we will focus on the transitions operators for f , but the
same operators can be easily applied to θ. We will first present MH, HMC, and
SMMALA, and we will then discuss Elliptical Slice Sampling and a few variants
of MH and HMC that have been specifically proposed for sampling f , and do
not have counterparts for θ. In the case of latent variables, the operators aim
to leave the posterior p(f |y, θ) invariant; in the remainder of this work, W (f) is
defined as log[p(y|f)p(f |θ)], which equals the log of the desired target density up to
constants. In the case of hyper-parameters we can define the invariant distribution
according to the chosen parameterization and apply the operators presented here
for sampling θ rather than f .

3.1 Metropolis-Hastings - MH

The Metropolis-Hastings transition operator employs a proposal mechanism g(f ′|f)
based on a random walk (Robert and Casella, 2005). A common choice is to use
a multivariate Gaussian proposal with covariance Σ centered at the former posi-
tion f , thus taking the form g(f ′|f) = N (f ′|f , Σ). For such a symmetric proposal
mechanism, f ′ is then accepted with probability min

{

1, exp(W (f ′)−W (f))
}

.

3.2 Hybrid Monte Carlo - HMC

In Hybrid Monte Carlo (HMC) the proposals are based on the analogy of a physical
system, where a particle is simulated moving in a potential field (Neal, 1993). An
auxiliary variable p, that plays the role of a momentum variable, is drawn from
N (p|0,M), where the covariance matrix M is the so called mass matrix. The
joint density of f and p factorizes as p(f ,p) = exp(W (f))p(p), and the negative
log-joint density reads

H(f ,p) = −W (f) +
1

2
log(|M |) + 1

2
p
T
M

−1
p+ const. (7)

This is the Hamiltonian of the simulated particle, where the potential field is given
by −W (f) and the kinetic energy by the quadratic form in p. In order to draw
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proposals from p(f |y, θ), we can simulate the particle for a certain time interval,
introducing an analogous of time t and solving Hamilton’s equations

df

dt
=
∂H

∂p
=M

−1
p

dp

dt
= −∂H

∂f
= ∇fW (8)

Given that there is no friction, the energy will be conserved during the mo-
tion of the particle. Solving Hamilton’s equations directly for general potential
fields, however, is analytically intractable, and therefore it is necessary to resort
to schemes where time is discretized. The leapfrog integrator discretizes the dy-
namics in λ steps, also known as leapfrog steps, and is volume preserving and
reversible (see Neal (1993) for details). The leapfrog integrator yields an update of
(f ,p) into (f(λ),p(λ)). The discretization introduces an approximation such that
the total energy is not conserved, so a Metropolis accept/reject step of the form
min{1, exp(−H(f(λ),p(λ))+H(f ,p))} is needed to ensure that HMC samples from
the correct invariant distribution. The HMC transition operator is reported in Al-
gorithm 1.

Algorithm 1 HMC transition operator when M = LML
T
M

1: f(0) = f ; p(0) ∼ N (p(0)|0,M) ⊲ z ∼ N (0, I); p(0) = LMz

2: λ = sample[1, . . . , λmax]
3: for (t = 0 to λ− 1) do

4: p(t+1/2) = p(t) +
ε
2
∇fW (f(t))

5: f(t+1) = f(t) + εM−1p(t+1/2) ⊲ M−1p = bcksub(LT
M , (fwdsub(LM ,p)))

6: p(t+1) = p(1/2) +
ε
2
∇fW (f(t+1))

7: end for

8: r = min
{

0, H(f(0),p(0))−H(f(λ),p(λ))
}

⊲ log |M | = 2
∑

i log(LM )ii
⊲ pTM−1p = ‖fwdsub(LM ,p)‖2

9: u ∼ Exp(u|1)
10: if (r > −u) then return f(λ)
11: else return f(0)

3.3 Manifold MCMC - Simplified Manifold MALA - SMMALA

Manifold MCMC methods (Girolami and Calderhead, 2011) were proposed to
have an automatic mechanism to tune parameters in MALA and HMC, and are
based on the use of curvature through the Fisher Information (FI) matrix. The FI
matrix and the Christoffel symbols are the key quantities in information geometry
as they characterize the curvature and the connection on the statistical manifold
respectively. Consider a statistical model S = {p(y|ψ)|ψ ∈ Ψ} where y denotes
observed variables and ψ comprises all model parameters. Under conditions that
are generally satisfied for most commonly used models (Amari and Nagaoka, 2000),
S can be considered a C∞ manifold, and is called statistical manifold. Let L =
log[p(y|ψ)]; the FI matrix G of S at ψ is defined as:

G(ψ) = Ep(y|ψ)

[

(∇ψL) (∇ψL)T
]

= −Ep(y|ψ)[∇ψ∇ψL] (9)
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By definition, the FI matrix is positive semidefinite, and can be considered as the
natural metric on S.

In the case of GP models that are hierarchical we need to consider the statistical
manifolds associated with the two levels of the hierarchy separately. Let’s focus
on the statistical manifold associated with the model for y given f . The manifold
MALA (MMALA) algorithm (Girolami and Calderhead, 2011) defines a Langevin
diffusion with stationary distribution p(f |θ,y) on the Riemann manifold of density
functions, characterized by a metric tensor denoted as Gf ,f . By employing a first
order Euler integrator to solve the diffusion, a proposal mechanism with density
g(f ′|f) = N (f ′|µ(f , ǫ), ǫ2G−1

f ,f ) is obtained, where ǫ is the integration step size, a
parameter which needs to be tuned, and the dth component of the mean function
µ(f , ǫ)d is

µ(f , ǫ)d = fd +
ǫ2

2

(

G
−1
f ,f∇fW (f)

)

d
− ǫ

2
n
∑

i=1

n
∑

j=1

(G−1
f ,f )i,jΓ

d
i,j

where Γ di,j are the Christoffel symbols of the metric in local coordinates (Amari
and Nagaoka, 2000). Similarly to MALA (Roberts and Stramer, 2002), due to the
discretization error introduced by the first order approximation, convergence to the
stationary distribution is not guaranteed anymore and thus a standard Metropolis
accept/reject step is employed to correct this bias.

In the same spirit, it is possible to extend HMC to define Hamilton’s equations
on the statistical manifold. This was proposed and applied in Girolami and Calder-
head (2011) and called Riemann manifold Hamiltonian Monte Carlo (RM-HMC).
In this work, we will not consider RM-HMC or MMALA, as they both require
the derivatives of the FI matrix that would require several expensive operations.
Instead, we will consider a simplified version of MMALA (SMMALA), where we
assume a manifold with constant curvature, that effectively removes the term de-
pending on the Christoffel symbols, so that the mean of the proposal of SMMALA
becomes

µs(f , ǫ) = f +
ǫ2

2
G

−1
f ,f∇fW (f) (10)

Furthermore, in the last subsection of this section we will present two variants of
HMC that bear some similarities with RM-HMC but are computationally cheaper.
The SMMALA transition operator is sketched in Algorithm 2.

Algorithm 2 SMMALA transition operator

1: µs(f , ǫ) = f + ǫ2

2
G−1

f ,f ∇fW (f) ⊲ Gf ,f = LGL
T
G

⊲ G−1
f ,f ∇fW (f) = bcksub(LT

G, (fwdsub(LG,∇fW (f))))

2: f ′ ∼ N (f ′|µs(f , ǫ), ǫ
2G−1

f ,f ) ⊲ z ∼ N (0, I); f ′ = ε bcksub(LT
G, z) + µs(f , ǫ)

3: r = min {0,W (f ′)−W (f) + log [g(f |f ′)]− log [g(f ′|f)]} ⊲ log |Gf ,f | = 2
∑

i log(LG)ii
⊲ (f ′ − µs(f , ǫ))

TG−1
f ,f (f

′ − µs(f , ǫ)) = ‖fwdsub(LG, (f ′ − µs(f , ǫ)))‖2
4: u ∼ Exp(u|1)
5: if (r > −u) then return f ′

6: else return f
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3.4 Elliptical Slice sampling - ELL-SS

Elliptical Slice Sampling (ELL-SS) has been proposed in Murray et al. (2010) to
draw samples for f in GP models, and is based on slice sampling (Neal, 2003). Due
to the fact that latent variables are Gaussian, it is possible to derive this particular
version of slice sampling, when constrained on an ellipse. For completeness, we
report the transition operator in Algorithm 3 and we refer the reader to Murray
et al. (2010) for further details. Note that ELL-SS is quite appealing as it returns

Algorithm 3 ELL-SS transition operator

1: z ∼ N (0,K)
2: u ∼ Exp(u|1) η = log p(y|f)− u ⊲ Set a threshold on the log-likelihood
3: α ∼ U [0, 2π] [αmin, αmax] = [α− 2π, α] ⊲ Define the bracket
4: f ′ = f cos(α) + z sin(α)
5: if (log p(y|f ′) > η) then return f ′

6: else ⊲ Shrink the bracket
7: if (α < 0) then αmin = 0
8: else αmax = 0

9: α ∼ U [αmin, αmax]
10: Go to 4

a sample which does not need to be accepted or rejected (in fact, a rejection
mechanism is implicit within step 5), and the proposal mechanism does not have
any free parameters that need tuning.

3.5 Scaled versions of MH - MH v1 and MH v2

Due to the strong correlation of latent variables imposed by the GP prior, employ-
ing a MH operator with an isotropic covariance to sample latent variables leads to
extremely poor efficiency. In order to overcome this problem, Neal (1999) proposed
two versions of MH that we will denote by MH v1 and MH v2. In MH v1, a set of
latent variables z is drawn from the GP prior z ∼ N (z|0,K), and the proposal is
constructed as follows:

f
′ = f + α z (11)

where the parameter α controls the degree of update. In MH v2, instead, the
proposal is as follows:

f
′ =

√

1− α2 f + α z (12)

In the latter case, given that the proposal satisfies detailed balance with respect
to the prior, the acceptance has to be based on the likelihood alone.

3.6 Scaled versions of HMC - HMC v1 and HMC v2

By a similar argument as in MH, it is possible to introduce scaled versions of HMC
that reduce the correlation between latent variables. This can be done by setting
the mass matrix of HMC according to the precision of the posterior distribution of
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latent variables. Similarly, from an information geometric perspective, it is sensible
to whiten latent variables according to the metric tensor of the statistical manifold.
We notice that the metric tensor associated to the model for y given f isK−1 plus a
diagonal matrix which is a function of f (see appendix A for full details). Whitening
with respect to that metric tensor would be computationally very expensive for
GP models, as it would require the simulation of the Hamiltonian dynamics on a
manifold with a position-dependent curvature; this is implemented by RM-HMC
which requires the derivatives of the metric tensor as well as implicit leapfrog
iterations (Girolami and Calderhead, 2011). In order to reduce the computational
cost, we propose the following two options: (i) to approximate the diagonal term to
be independent of f so that M−1 = (K−1 +C)−1 = C−1 −C−1(K +C−1)−1C−1

with C diagonal and independent of f ; we call this variant HMC v1. (ii) to ignore
the diagonal part of the metric tensor and set M−1 = K; we call this variant
HMC v2. In HMC v1, one simple way to make C independent of f is to compute
it for the GP prior mean (which is zero), as proposed, e.g., in Christensen et al.
(2005); Vanhatalo and Vehtari (2007).

In both cases, it is possible to employ a standard and computationally efficient
HMC proposal that captures part of the curvature of the statistical manifold. This
is achieved by introducing a variant of HMC that, rather than using the Cholesky
decomposition of the mass matrix, uses the decomposition of its inverse. We report
this variant of the HMC transition operator in Algorithm 4.

In HMC v1, employing this formulation of HMC is convenient as computing
the inverse of M is more stable than computing M = K−1 + C, that requires
a potentially unstable inversion of K. HMC v1 requires the computation of the
inverse of the mass matrix and its factorization each time a new value of θ is
proposed. In HMC v2, instead, no extra operations in O(n3) are required given
that K is already factorized, thus making it computationally very convenient.

Algorithm 4 HMC transition operator when M−1 = LM−1LT
M−1

1: f(0) = f ; p(0) ∼ N (p(0)|0,M) ⊲ z ∼ N (0, I); p(0) = bcksub(LT
M−1

, z)

2: λ = sample[1, . . . , λmax]
3: for (t = 0 to λ− 1) do

4: p(t+1/2) = p(t) +
ε
2
∇fW (f(t))

5: f(t+1) = f(t) + εM−1p(t+1/2) ⊲ M−1p = LM−1 (LT
M−1

p)

6: p(t+1) = p(1/2) +
ε
2
∇fW (f(t+1))

7: end for

8: r = min
{

0, H(f(0),p(0))−H(f(λ),p(λ))
}

⊲ log |M | = −2
∑

i log(LM−1 )ii
⊲ pTM−1p = ‖LT

M−1
p‖2

9: u ∼ Exp(u|1)
10: if (r > −u) then return f(λ)
11: else return f(0)

4 Results on simulated data

In this section, we first report a study on the efficiency and speed of convergence of
different transition operators in sampling from posterior distribution of individual
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groups of variables in the SA and AA parameterization. Secondly, we report the
same analysis to compare different parameterizations to obtain samples from the
joint posterior distribution of f and θ.

4.1 Experimental setup

We simulated data from the four GP models considered in this work, namely: LRG,
LCX, VLT, and ORD. We generated 10 data sets simulating from each of the four
models for all combinations of n = 100, 400, and d = 2, 10, for a total of 160 distinct
data sets. In order to isolate the effect of different likelihood functions in the results,
we seeded the generation of the input data matrix X, hyper-parameters, and latent
variables so that these were the same across different models. Covariates were
generated uniformly in the unit hyper-cube, and the parameters used to generate
latent variables were σ = exp(2), ψτi ∼ U [−3,−1]. We imposed Gamma priors on
the length-scale parameters with shape a and rate b, p(τi) = Gam(τi|a = 1, b = 1).
We imposed an inverse Gamma prior p(σ) = invGam(σ|a = 1, b = 1), where a and
b are shape and scale parameters respectively on σ to exploit conjugacy in the SA
parameterization.

In all the experiments we collected 20000 samples after a burn-in phase of
5000 iterations; during the burn-in we also had an adaptive phase to allow the
samplers reach recommended acceptance rates (for example around 25% for MH).
The transition operators for f had the following tuning parameters: α for MH v1
and MH v2, and ε for SMMALA and the variants of HMC which used a maximum
of 10 leapfrog steps. The transition operators for θ employed the following pro-
posals: MH used a covariance Σ = αI, HMC used a mass matrix M = αI and 10
maximum leapfrog steps, and SMMALA used a step-size ε. Convergence analysis
was performed using the R̂ potential scale reduction factor (Gelman and Rubin,
1992), which is a classic score used to assess convergence of MCMC algorithms.
The computation of the R̂ value is based on the within and between chain vari-
ances; a value close to one indicates that convergence is reached. The R̂ value was
computed based on 10 chains initialized from the prior to study what efficiency
can be achieved without running preliminary simulations; this is different from
the initialization procedure suggested in Gelman and Rubin (1992) that requires
locating the modes of the target density. Due to the fairly diffuse priors on the
length-scale parameters, we noticed difficulty in achieving convergence in some
cases; we therefore initialized ψτi randomly in the interval [−3,−1]. The value of
R̂ was checked at 1000, 2000, 5000, 10000, 20000 iterations. We use the following
procedure to compactly visualize the speed of convergence; we threshold the me-
dian value of R̂ across 10 data sets at each checkpoint and use the following visual
coding to report speed of convergence: < 1.1 < < 1.3 < < 2 < , so that indi-
cates that R̂ < 1.1, indicates that 1.1 < R̂ < 1.3, and so on. We then stack the
rectangles associated to each checkpoint where we computed the value of R̂, thus
producing a sort of histogram of the median of R̂ over the iterations. Efficiency
of MCMC methods is compared based on the minimum of the Effective Sample
Size (ESS) (Robert and Casella, 2005) computed across all the sampled variables.
We then report its mean and standard deviation across the 10 chains and the 10
different data sets for each combination of size of the data set, dimensionality, and
type of likelihood.
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Table 1 Breakdown of the number of operations in O(n3) required to apply the transition
operators considered in this work. #M, #I and #C represent number of multiplication of n×n
matrices, inversions of n × n matrices, and number of Cholesky decompositions respectively.
Counts are reported as functions of the number of iterations T and number of covariates d. In
HMC, λ̄ denotes the average number of leapfrog steps in one iteration.

f |θ,y θ|f θ|ν,y
#M #I #C #M #I #C #M #I #C

MH 0 0 1 0 0 T 0 0 T

HMC 0 0 1 0 T λ̄ T 0 0 T + Tdλ̄
SMMALA 0 1 T Td T T 0 0 T + Td
ELL-SS 0 0 1 − − − − − −
MH v1 0 0 1 − − − − − −
MH v2 0 0 1 − − − − − −
HMC v1 0 1 2 − − − − − −
HMC v2 0 0 1 − − − − − −

We are also interested in statistically assessing which methods achieve faster
convergence. In order to do so, we perform pairwise Mann-Whitney tests with
significance level of 0.05 comparing the value of R̂ at the last checkpoint for all
the chains across 10 data sets. This allows us to obtain an ordering of methods in
terms of convergence speed. In each table we include a row at the bottom reporting
the result of such a test. We denote by 1|2 situations where the method in row 1
of the corresponding table converges significantly faster than the method in row 2.
Instead, the notation 1, 2 is used when the method in row 1 does not converge
significantly faster than the method in row 2.

As a measure of complexity, we counted the number of operations with com-
plexity in O(n3), namely number of Cholesky factorizations of n × n matrices
(#C), number of inversions of n × n matrices (#I)2, and number of multiplica-
tions of n × n matrices (#M). We believe that this is a more reliable measure
of complexity with respect to running time, as running time can be affected by
several implementation details and other factors that are not directly related to
the actual complexity of the algorithms.

4.2 Assessing the efficiency of samplers for individual groups of variables

In this section, we present an assessment of the efficiency of different transition
operators for each group of variables using both SA and AA parameterizations.
Computational complexity for all the operators considered in the next sections is
summarized in Tab. 1, where T represents the number of iterations, d the number of
covariates and λ̄ the average number of leapfrog steps in HMC transition operators.
In the following sub-sections we present results about the sampling of the latent
variables and hyper-parameters separately.
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Table 2 Comparison of transition operators to sample f |y, θ for data generated from models
with four different likelihoods. Minimum ESS is averaged over 10 chains for 10 different data
sets for each value of n and d. The last row in each sub-table reports the result of the statistical
test to assess which operators achieve significantly faster convergence.

LRG

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH v1 67 (15) 47 (3) 22 (7) 8 (1)
MH v2 204 (35) 151 (7) 67 (17) 30 (2)
SMMALA 756 (284) 262 (30) 457 (212) 48 (5)
ELL-SS 321 (61) 241 (11) 104 (25) 50 (2)
HMC v1 3395 (400) 5163 (268) 1352 (380) 2962 (155)
HMC v2 4004 (577) 5225 (224) 1566 (342) 2995 (129)

6|5|3|4|2|1 6|5|3, 4|2|1 6|5|3|4|2|1 6|5|4|3|2|1

LCX

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH v1 18 (16) 6 (2) 6 (5) 1 (0)
MH v2 23 (24) 6 (2) 8 (7) 1 (0)
SMMALA 217 (155) 39 (4) 258 (177) 7 (1)
ELL-SS 39 (42) 11 (4) 11 (11) 2 (0)
HMC v1 372 (277) 188 (123) 199 (200) 81 (30)
HMC v2 254 (197) 188 (125) 64 (37) 80 (30)

6|5|3|4|2|1 6|5|3|4|1, 2 5|3, 6|4|2|1 6|5|3|4|2|1

VLT

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH v1 28 (13) 10 (2) 15 (8) 2 (0)
MH v2 31 (16) 12 (2) 16 (8) 2 (0)
SMMALA 424 (216) 117 (13) 418 (127) 61 (7)
ELL-SS 46 (20) 18 (4) 22 (10) 4 (1)
HMC v1 1494 (667) 449 (42) 1384 (392) 249 (25)
HMC v2 418 (68) 443 (39) 183 (31) 245 (25)

4|3|2|1, 5, 6 3|4|2|1, 5, 6 3, 4|2|1, 5, 6 3|6|4, 5|2|1

ORD

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH v1 14 (8) 6 (2) 7 (5) 1 (0)
MH v2 14 (9) 7 (2) 7 (5) 2 (0)
SMMALA 48 (89) 2 (0) 107 (156) 1 (0)
ELL-SS 21 (11) 10 (2) 9 (5) 2 (0)
HMC v1 539 (650) 472 (39) 176 (200) 257 (23)
HMC v2 175 (54) 483 (37) 61 (22) 255 (24)

6|5|3|4|1, 2 6|5|4|2|1|3 6|5|3|4|1, 2 6|5|2, 4|1, 3

4.2.1 Sampling f |y, θ

In this section we focus on the sampling from the posterior distribution of the
latent variables f . The results can be found in Tab. 2, and they were obtained

2 This is a shorthand notation to denote a back and forward substitution of the identity
matrix using Cholesky factors.
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Table 3 Comparison of transition operators to sample θ|f . Minimum ESS is averaged over
10 chains for 10 different data sets for each value of n and d. The last row reports the result
of the statistical test to assess which operators achieve significantly faster convergence.

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH 2024 (144) 156 (37) 2124 (125) 77 (33)
HMC 11325 (915) 830 (269) 12556 (661) 293 (137)
SMMALA 9592 (2052) 61 (23) 10241 (2672) 47 (17)

1|2, 3 2|1|3 1|2|3 2|1|3

by fixing θ to the values used to generate the data. We notice that different like-
lihood functions heavily affect efficiency and convergence speed; in the examples
considered here, the results show that in LRG it is possible to achieve efficiency
one order of magnitude higher than in other models. The scaled versions of MH
work well in the case of LRG (MH v1 is slightly better than MH v2), but do not
offer guarantees of convergence on other models. ELL-SS achieves better efficiency
and convergence than the scaled versions of MH. SMMALA, which uses gradient
and curvature information, achieves good efficiency and faster convergence than
MH v1, MH v2, and ELL-SS, but at the cost of one operation in O(n3) at each
iteration, as the metric tensor is a function of f and needs to be factorized at each
iteration. Overall, the results suggest that the scaled versions of HMC are the
best sampling methods for f |θ,y. HMC v1 is slightly better than HMC v2, but it
requires one extra inversion and one extra Cholesky decomposition compared to
HMC v2 that does not require any operations in O(n3) once the covariance matrix
of the GP is factorized.

4.2.2 SA parameterization - Sampling θ|f

In this section we present results about the sampling of hyper-parameters from the
posterior distribution θ|f ,y which, given the hierarchical structure of the model, is
simply θ|f independent from the data model. As reported in Tab. 1, the complexity
of applying SMMALA and HMC is quite high compared to MH. MH requires one
Cholesky factorization of Q at each iteration. In HMC, at each leapfrog step, the
gradients of Q with respect to θ are needed and the cheapest way to do this is
by inverting Q first and noticing that all the remaining operations are in O(n2);
this is done λ̄ times on average at every iteration of HMC. Similarly, in SMMALA
the gradient can be computed by inverting Q first; by doing so, the metric tensor
can then be computed by d multiplications with the derivatives of Q and no other
O(n3) operations.

The results are reported in Tab. 3, and were obtained by fixing f to the value
used to generate the data and sampling only the length-scale parameters, as σ can
be efficiently sampled using exact Gibbs steps. HMC improves quite substantially
on efficiency, but not on speed of convergence; it may be worth employing some
rescaling of the hyper-parameters to improve on this as suggested by Neal (1996).
The performance of SMMALA is highly variable in efficiency and it converges
more slowly than MH and HMC. This might be due to the skewness of the target
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Table 4 Comparison of transition operators to sample θ|y, ν for data generated from models
with four different likelihoods. Minimum ESS is computed as the average over 10 chains for 10
different data sets for each value of n and d. The last row in each sub-table reports the result
of the statistical test to assess which operators achieve significantly faster convergence.

LRG

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH 556 (201) 131 (33) 512 (177) 56 (11)
HMC 2572 (1382) 859 (278) 2666 (973) 223 (39)
SMMALA 3833 (2032) 65 (42) 6877 (1584) 47 (21)

1, 3|2 2|1|3 1|3|2 1|2, 3

LCX

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH 818 (386) 6 (4) 1030 (397) 3 (1)
HMC 5169 (3297) 11 (8) 7145 (3852) 4 (3)
SMMALA 6158 (2788) 9 (6) 8377 (1815) 6 (4)

3|1, 2 1, 2|3 1, 2, 3 1, 2|3

VLT

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH 859 (318) 22 (6) 795 (270) 8 (6)
HMC 5680 (2634) 48 (20) 5233 (2482) 11 (11)
SMMALA 6274 (1896) 14 (9) 6950 (2763) 11 (9)

1, 2, 3 1|2|3 1, 2, 3 1|2|3

ORD

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂

MH 689 (159) 14 (7) 552 (168) 9 (6)
HMC 155 (296) 14 (11) 79 (115) 4 (4)
SMMALA 3356 (1661) 11 (8) 2328 (1423) 19 (27)

1, 3|2 1, 3|2 1, 3|2 1, 3|2

distribution, that is known to affect the efficiency of SMMALA (Stathopoulos and
Filippone, 2011). The results indicate that MH strikes a good balance between
efficiency and computational cost.

4.2.3 AA parameterization - Sampling θ|y,ν

In this section we present the sampling of the hyper-parameters from the posterior
distribution θ|y,ν, where we fixed ν to the values used to generate the data. The
analysis of complexity shows that MH requires one Cholesky factorization at each
iteration. In HMC, each leapfrog requires computing L and the gradient of L with
respect to θ and no other operations in O(n3); this can be computed using the
differentiation of the Cholesky algorithm which requires d operations in O(n3)
(Smith, 1995). Likewise, for SMMALA L and the d derivatives of L with respect
to θ are the only operations in O(n3) needed.
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Table 5 Comparison of different strategies to sample f , θ|y for data generated from a
LRG model. The rightmost column reports the complexity of the different methods with re-
spect to number of inversion and Cholesky decompositions. In KHR, κ̄ represents the average
number of iterations to run the Laplace Approximation.

n = 100 n = 400
d = 2 d = 10 d = 2 d = 10

ESS R̂ ESS R̂ ESS R̂ ESS R̂ #I #C
AA 131(57) 117(34) 94(38) 47(17) 0 T
ASIS 138(63) 168(49) 98(39) 60(25) 0 2T
KHR 856(360) 177(48) 481(219) 116(32) 0 κ̄T + 2T
SA 8(6) 59(18) 5(2) 14(6) 0 T
SURR 173(95) 90(32) 157(51) 35(15) T 2T

3|5|1, 2|4 1, 2|3, 4, 5 3|5|1, 2|4 2, 3|1|4, 5

The results can be found in Tab. 4 and are again variable across different
models. In general SMMALA and HMC do not seem to offer faster convergence
with respect to the MH transition operator which is therefore competitive in terms
of efficiency relative to computational cost.

4.3 Assessing the efficiency of different parameterizations

After analyzing the results in the previous section, we decided to combine the
transition operators which achieved a good sampling efficiency with relatively low
computational cost and ease of implementation. We decided that a good combina-
tion to be used in AA, SA, ASIS, and SURR could be as follows: sampling f using
HMC v2 and θ using MH; HMC v2 and MH where adapted during the burn-in
phase and in HMC v2 we set the maximum number of leapfrog steps to 10. For
the sake of brevity, we focus on the LRG model only; the results on efficiency and
speed of convergence in sampling hyper-parameters are reported in Tab. 5.

It is striking to see how challenging it is to efficiently sample from the poste-
rior distribution of latent variables and hyper-parameters. Sampling efficiency is
generally low; this is consistent with our experience in other applications involv-
ing sampling in hierarchical models (Filippone et al., 2012). As expected, the SA
parameterization is the worst among the ones we tested. The AA parameteriza-
tion, ASIS, and SURR generally offer good guarantees of convergence within a few
thousand iterations. SURR seems to be superior in efficiency, which is consistent
with what reported in Murray and Adams (2010), but it requires more operations
in O(n3) compared to AA and ASIS. ASIS slightly improves efficiency and speed
of convergence with respect to the AA scheme but requires double the number of
operations in O(n3). KHR seems effective in breaking the correlation between the
two groups of variables, but it may require several iterations within the approxi-
mation used to sample f . In the experiments considered here κ̄ is around 8, so the
best compromise between computations and efficiency seems to be given by the
AA and ASIS parameterizations.
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Table 6 Comparison of different strategies to sample f , θ|y in four UCI data sets modeled
using a LRG model.

Pima Wisconsin SPECT Ionosphere
n = 768, d = 8 n = 683, d = 9 n = 80, d = 22 n = 351, d = 34

ESS R̂ ESS R̂ ESS R̂ ESS R̂

AA 34 (4) 42 (15) 99 (18) 12 (5)
ASIS 35 (8) 47 (11) 215 (23) 24 (8)
KHR 153 (14) 20 (10) 101 (16) 2 (2)
SA 5 (2) 7 (3) 97 (12) 11 (7)
SURR 76 (10) 25 (14) 84 (14) 9 (4)

5 Results on real data

We repeated the comparison of different parameterizations on four UCI data sets
(Asuncion and Newman, 2007), namely the Pima, Wisconsin, SPECT, and Iono-
sphere data sets, which we modeled using LRG models; the results are reported
in Tab. 6. We used the same priors and experimental setup as in the previous
sections, except that all features were transformed to have zero mean and unit
standard deviation, and latent variables were sampled iterating five updates of
HMC v2. Also, chains were initialized sampling from the prior. Again, the SA
parameterization shows the poorest efficiency and convergence speed, and the AA
parameterization improves on that. Combining the AA and SA parameterizations
using ASIS slightly improves on the AA parameterization, although the improve-
ment is not dramatic. The SURR method improves on the AA parameterization,
which is consistent with what reported in Murray and Adams (2010). The results
of KHR are highly variable across data sets; in cases where the approximation to
sample latent variables is accurate, the chains mix well. In some cases, however,
the approximation is not accurate enough to guarantee a good acceptance rate,
and the chains can spend a long time in the same position before accepting the
joint proposal.

6 Conclusions

In this paper we studied and compared a number of state-of-the-art strategies
to carry out the fully Bayesian treatment of GP models. We focused on four GP
models and performed an extensive evaluation of efficiency, convergence speed, and
computational complexity of several transition operators and sampling strategies.

The results in this paper show that latent variables can be sampled quite
efficiently with little computational effort once the GP covariance matrix is fac-
torized. This can be achieved by a simple variant of HMC that we introduced in
this paper. About sampling hyper-parameters in different parameterizations, the
results presented here indicate that the gain in sampling efficiency given by the
use of complicated proposal mechanisms does not scale as much as their computa-
tional cost. It would be interesting to investigate some recently proposed variants
to slice sampling (Thompson and Neal, 2010) and Hybrid Monte Carlo (Hoffman
and Gelman, 2012) on the sampling of hyper-parameters.

The analysis of the results obtained by different parameterization suggest that
AA is a sensible and computationally cheap parameterization with good conver-
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gence properties. AA performs similarly to ASIS at half the computational cost. It
makes sense, however, to employ ASIS when in doubt about the best parameteri-
zation to use, although GP models with full covariance matrices will generally fall
into the weak data limit as the O(n2) space and O(n3) time complexities constrain
the number of data that can be processed.

In general, the results show how challenging it is to efficiently sample from
the posterior distribution of latent variables and hyper-parameters in GP models
and motivates further research into methods to do this efficiently. Some sampling
strategies, such as the one based on the AA parameterization, are capable of
achieving convergence within a reasonable number of iterations, and this makes
it possible to carry out the fully Bayesian treatment of GP models dealing with
a small to moderate number of samples. We have recently demonstrated that this
is indeed the case in Filippone et al. (2012), but more needs to be done in the
direction of developing robust stochastic based inference methods for GP models.

It would be interesting to investigate how performance is affected by the choice
of the design, which in the simulated data presented here was assumed uniform.
Also, we studied in particular GP models with the squared exponential ARD
covariance function. It would be interesting to compare the method considered
here in models characterized by other covariance functions, such as the Matérn, or
sparse inverse covariance functions as in Rue et al. (2009); the latter would make
it possible to test the strong data limit case. Finally, in this study we have not
included a mean function for the GP prior or extra parameters for the likelihood
function. This would require including the sampling of other quantities that may
further impact on efficiency and speed of convergence.
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A SA and AA parameterizations

A.1 Sufficient Augmentation (SA)

We derive here the quantities needed to apply the transition operators considered in this work
in the SA parameterization. Let L = log[p(y|f)]. The log-joint density is:

log[p(y, f , θ)] = L − 1

2
log(|Q|)− n

2
log(σ)− 1

2σ
fTQ−1f + log[p(θ)] + const.

Note that σ could be marginalized out, but it would not be possible to get manageable ex-
pressions for the metric tensor with respect to τ ; for f , instead, this would be possible. We do
not pursue this here, and we leave it for future investigation.

By inspecting the log-joint density, we see that we can obtain the conditional density for
σ in the following form

log[p(σ|y, f , τ )] = −n
2
log(σ)− 1

2σ
fTQ−1f + const.

which we recognize as an inverse Gamma. By placing an inverse Gamma prior on σ in the
form invGa(σ|a, b) with shape a and scale b, we can sample directly:

σ ∼ invGa

(

σ

∣

∣

∣

∣

a+
n

2
, b+

1

2
fTQ−1f

)

The gradients of the log-joint density needed to apply gradient based operators are:

∇f log[p(y, f , θ)] = ∇fL − 1

σ
Q−1f

∂ log[p(y, f , θ)]

∂ψτi
= −1

2
Tr

(

Q−1 ∂Q

∂ψτi

)

+
1

2σ
fTQ−1 ∂Q

∂ψτi
Q−1f +

∂ log[p(ψτ )]

∂ψτi

The FI for latent variables and parameters are:

R = FIf ,f = Ey

[

(∇fL)(∇fL)T
]

= −Ey [∇f∇fL]
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FIψ
τ
,ψ

τ

= Ef

[

(∇ψ
τ

log[p(f |ψτ )])(∇ψτ

log[p(f |ψτ )])T
]

Given that the likelihood factorizes with respect to the observations, the Hessian of L with
respect to f is diagonal, so R = FIf ,f is diagonal as well. The metric tensors are the FI matrices
plus the negative Hessian of the priors:

Gf ,f = R+
1

σ
Q−1

Gψτi
,ψτj

= +
1

2
Tr

(

Q−1 ∂Q

∂ψτj
Q−1 ∂Q

∂ψτi

)

− ∂2 log[p(ψτ )]

∂ψτi∂ψτj

A.2 Ancillary Augmentation (AA)

We derive here the quantities needed to apply the transition operators considered in this work
in the AA parameterization. The expression of the log-joint density is the same as in the SA
case, bearing in mind the transformation f =

√
σLν; this yields:

log[p(y, ν, θ)] = L(y|ν, θ)− 1

2
νTν + log[p(θ)] + const.

The gradient with respect to the hyper-parameters can be computed by using the chain
rule of derivation and standard properties of derivatives of vector valued functions:

∂ log[p(y, ν, θ)]

∂ψτi
=

√
σ(∇fL(y|f))T

∂L

∂θi
ν +

∂ log[p(ψτ )]

∂ψτi

The FI matrix is readily obtained as:

FIθi,θj = σνT
∂LT

∂θi
R
∂L

∂θj
ν

With the contribution (negative Hessian) of the prior, the metric tensor used in the manifold
methods results in:

Gθi,θj = σνT
∂LT

∂θi
R
∂L

∂θj
ν − ∂2 log[p(θ)]

∂θi∂θj

B GP models considered in this paper

B.1 Logistic regression with GP priors (LRG)

Let:

l+(f) = logistic(f) =
1

1 + exp(−f) l−(f) = 1− l+(f) = logistic(−f)

In logistic regression, observations follow a Bernoulli distribution with success probability given
by a sigmoid transformation of the associated latent variables:

p(y|f) =
n
∏

i=1

p(yi|fi) =
n
∏

i=1

Bern(yi|l+(fi)) =
n
∏

i=1

l+(fi)
yi l−(fi)

(1−yi)

The gradient with respect to f results in:

(∇fL)j = yj − l+(fj)

The computation of diagonal elements of the FI matrix for f requires the expectations of y2i
which are the same as the expectations of yi, that are l+i ; this leads to Rii = l+(fi)l

−(fi).
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B.2 Log-Gaussian Cox model (LCX)

In this model, observations follow a Poisson distribution with mean computed as an exponen-
tially transformed version of the corresponding latent variables:

p(y|f) =
n
∏

i=1

p(yi|fi) =
n
∏

i=1

Poisson(yi| exp(fi))

The gradient with respect to f and the diagonal elements of R result in:

(∇fL)j = yj − exp(fj) Rii = exp(fi)

B.3 Stochastic Volatility model with GP priors (VLT)

In this model, observations follow a zero mean Gaussian distribution with standard deviation
computed as an exponentially transformed version of the corresponding latent variable:

p(y|f) =
n
∏

i=1

p(yi|fi) =
n
∏

i=1

N (yi|0, exp(fi)2)

The gradient with respect to f and the diagonal elements of R result in:

(∇fL)j = exp(fi)
−2y2j − 1 Rii = 2

B.4 Ordinal Regression with GP priors (ORD)

In this model, latent variables are thresholded at r points that will be denoted by b0, . . . , br,
with b0 = −∞ and br = +∞. Then, y is the index of the interval where the corresponding
latent variable f falls. The likelihood of an observed label yi associated to the ith latent variable
fi is then:

p̄(yi|fi) = 1 if byi−1 < f ≤ byi

and zero otherwise. This model is usually modified to allow for a noise term δ (distributed as
N (δ|0, σ2

δ )) in the latent variables so that:

p(yi|fi) =
∫

p̄(yi|fi + δ)N (δ|0, σ2
δ )dδ = Φ(z

(yi)
i )− Φ(z

(yi−1)
i )

where:

z
(s)
i =

bs − fi

σδ
In particular:

L =
n
∑

i=1

log
[

Φ(z
(yi)
i )− Φ(z

(yi−1)
i )

]

(∇fL)i =
1

σδ

N (z
(yi−1)
i |0, 1)−N (z

(yi)
i |0, 1)

Φ(z
(yi)
i )− Φ(z

(yi−1)
i )

By writing the diagonal elements of Hessian of the log-likelihood computed for yi = s

(∇f∇fL)(s)ii =
1

σ2
δ

z
(s)
i N (z

(s)
i |0, 1)− z

(s−1)
i N (z

(s−1)
i |0, 1)

Φ(z
(s)
i )− Φ(z

(s−1)
i )

− 1

σ2
δ

(

N (z
(s−1)
i |0, 1)−N (z

(s)
i |0, 1)

Φ(z
(s)
i )− Φ(z

(s−1)
i )

)2

it is possible to compute the expectation of the negative Hessian as:

Rii = −
r
∑

s=1

(∇f∇fL)(s)ii p(s|fi) =
r
∑

s=1

(∇f∇fL)(s)ii
[

Φ(z
(s−1)
i )− Φ(z

(s)
i )
]

Note that the formulation in this paper is slightly different from the one in Chu and Ghahra-
mani (2005), where σ is dropped and thresholds are inferred instead.


