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Abstract

Due to the difusion of large-dimensional data sets (e.g., in DNA microarray or document
organization and retrieval applications), there is a growing interest inecing methods
based on a proximity matrix. These have the advantage of being basedatm strdcture
whose size only depends on cardinality, not dimensionality. In this pageprapose a
clustering technique based on fuzzy ranks. The use of ranks helpgtoome several
issues of large-dimensional data sets, whereas the fuzzy formulatioafig usencoding

the information contained in the smallest entries of the proximity matrix. Comparative
experiments are presented, using several standard hierarchidaficgigechniques as a
reference.
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1 Introduction

Data clustering is traditionally studied in the hypothessmetimes implied, that
data themselves are available in large quantities, or,ast,léhat cardinality is
larger than dimensionality. In recent years, however, naata acquisition tech-
niques able to produce large quantities of variables fon @laservation have been
made available. Therefore, the cardinality-dimensiapaklation has sometimes
been inverted. Two prominent examples of high-throughpahiques are DNA
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microarrays and document collections for informationiestl. In this situation,
as it had already happened for classification with featasedgproaches [10] and
kernel methods [12], there is a growing interest in clustgnnethods based on
a proximity matrix, which share the obvious advantage oh@pdiased on a data
structure whose size only depends on cardinality, not demo@ality. Among these
approaches, we can mention primarily the traditional maviaal agglomerative
techniques [15] and the more recent spectral methods [9].

Proximity- (or dfinity-)based methods rely on an appropriate definition ofricet

or distance, and it is known [3,1] that in high dimensionyiite behaviour of large

classes of metrics is not as intuitive as it may appear. Rsrréason, we propose
to base our data representation on distance ranks rathedigtance values.

2 The proximity matrix approach

We adopt a proximity matrix representation, whereby the aaatrix is replaced
by a pairwise dissimilarity matriD. Let X be a data set of cardinality, X =
{X1,X2,...,%n}. We start by computing the dissimilarity matmt, = d(X;, xx) Vi, k
according to the dissimilarity measuiléx,y) between pointx andy (e.g, the Eu-
clidean distance). The dissimilarity matrix may as well beeg as input (for in-
stance when obtained from subjective measurements by hgfaneerts, or from
experiments in the behavioral sciences, or from measursnpenformed through
uncalibrated sensor arrays), in which case it could not &eem symmetric matrix
and no explicit functiord(x,y) may exist. The matribD may now be used as the
representation of all points of the s¢in a space with dimensiom Dissimilarity-
based clustering algorithms can be applied even to nonigwietta, e.g. categorical
or mixed.

3 Clustering with ranks

Problems may arise in high dimensionality also for otHegets, especially (but not
exclusively) with Minkowski norms as dissimilarity [1]. Ajpical countermeasure
also found in traditional statistics is moving from the as#& of values (in our
case, distances) to the analysis of tmaitks Rank is the position of a given value
in the ordered list of all values. In this work, however, w@jpida fuzzy definition
of the concept of ranks. This definition has already been ts@tprove image
reconstruction after lossy compression [11]; here it igls®a starting point for a
data analysis procedure.

Let d; be thei-th row of D (storing the dissimilarities of points X from x; € X).
The corresponding ranks, or positions in the list of compt®mefd; when sorted



in ascending order, are then stored in the vegter|pi1, ..., pin]. We call these the
D-ranksfor point x;. A D-rank can be written in an algebraic fashion as:

Z dlj _dlk (1)
k=1

where the functior®(x) is an extended Heaviside step, taking on the values 0 for
x<0,1forx>0, and 05 for x=0, sopjj € [0,...,n—-1] Vi e {1,...,n}. This exten-
sion of the Heaviside step represents the standard way twvdldies in rank-order
statistics. (Note that we define ranks to start at 0, so thiatriB-1 refers to the near-
est neighbour.) It is now possible to measure the closerfakg@ pointsxy, ..., Xy

by the concordance of their respective D-rank vecters .,r. Therefore for this
purpose a data poin is represented by the vector of its D-ranks.

This definition has several advantages. It embeds the prable a space of dimen-
sion n, which, by assumption, is smaller than the cardinality @ ¢higinal data.

Metric and non-metric cases are treated alike, since thenmeagure is numeric in
both cases. Using this representation of data, any metrgtazing algorithm can
be applied. In the experiments, we will refer to the specifacpdure illustrated in
the following section.

Obviously, ranks also discard information, and this is marielent when the dis-
tribution of points is uneven. In this case, points in a demggon and points in
a sparse region may be represented with similar rank pattémnthe following
section, we introduce a fuzzy definition of rank that is ablpreserve more infor-
mation in these cases.

4 Fuzzy ranks

In a fuzzy set-theoretic perspective, it is more naturalefone the relation “larger”
among two numbers as a degree to which one number is largeati@her. The
problem of ranking fuzzy quantities has been reviewed fstiaince by Bortolan and
Degani [4] and, more recently, by Wang and Kerre [16,17].iRetance, suppose
that we are to compare (e) = 3 with dy = 4, and (b)d; = 3 withd, = 3.01. Clearly
in both case (a) and case (b) we can rightfully say that d;, but it is also clear
that in (a) this is “more true” than in (b). Therefore, we caake the following
substitution:

1
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where:
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ﬁh_)rg+ 1+ eGi—G)/B — 6 (clj — ) 3)

So the computation of fuzzy rank can be expressed as

1

1 + eldij—di)/B ()

n
pij =
k=1

The parametes is a fuzziness parameter: for largehe ranking function is def-
initely fuzzy, while forg = 0 we obtain the original, crisp ranking function. The
two expressions (1) and (4) for the rank function are congare simple exam-
ple, illustrated in Figure 1, where we assudje- [d, 2, 3,5] and the first valueli;
sweeps from 0 to 7. We plot the corresponding(in the two expressions, crisp
and fuzzy). Two fuzzy plots are shown, one fo& 0.05 and another fg = 0.25
(smoother).

This new definition of rank allows us to integrate into a rdy@sed clustering ap-
proach the notion that two ranks may be clearly defined (thggpkns when com-
paring very diferent values), and in this case the soft rank behaves siyriitathe
standard, crisp definition of ranks; or they may be less lyledefined (when the
values to be compared are not verytelient), and in this case the soft rank takes
into account the degree of closeness between the valuelUgtering algorithm
we applied in the new representation is #gnesprocedure [7] that is an agglom-
erative hierarchical clustering algorithm.

5 Experiments

The proposed soft rank clustering algorithm was tested ansimthetic problems
and then applied to a publicly available bioinformaticsadat: the Colon data by
Alon et al. [2]. Data sets are described in Table 5. The syiwtipeoblems have
been used to check the properties and consistency of theagpr

The tests were performed according to the proposed methiad iamber of dif-
ferent fuzziness levels, and diagrams were compared for several linkage meth-
ods. Specifically, the linkage methods used are [6,18]:Isi(g nearest neigh-
bor linkage); average (UPGMA); complete (or farthest nbmgHinkage); weighted
(WPGMA); ward (Ward's method with analysis of cluster vadah We focus on
the results obtained by the Ward method only, since it is kntwyield small and
compact clusters nofiected by the “chaining”f@ect, and this was fully confirmed

by the experimental analysis.



For the purpose of this study, valuesgifiave been selected by hand-tuning on the
basis of experimental results (we used the available tea).ddore sound tech-
niques may be based on the quality of clustering obtainemeasured for instance
by the codicient of agglomeration or other citeria.

The first synthetic problem consists in classifyng two-disienal points obtained
from two Gaussian distributions. Noise is added to eachtpoiordinates to obtain
a sequence of increasingly random data sets. The methodppésdcfor several
values off3 and for distances (not distance ranks). We obtain a numbexymér-
imental results, one for each noise level, representingeth@r percentage as a
function of 8. These results are shown in Fig. 2 for selected, values gkrlevel,
namelyo = 0.5 ando = 1. The values are not shown directly, but as ratio of error
reduction with respect to the results on distances, usedasaine. The box-and-
wiskers plot has been obtained on the basis of 1@@mint runs, with varying
random generation. From the plot, it can be seen the erractied over the base-
line.

The second synthetic data set is composed of two 10-dimeaisi@aussian dis-
tribution centered respectively irL,...,—-1) and (1...,1). Both the distributions
have standard deviation 2. Ten unformly distributed fesginave been added to the
data set. We tested the proposed method fimr@int subsamples of the features. In
Fig. 3 we report the box-and-wiskers plot obtained fdfestent numbers of selected
features over 100 trials. Fig. 3 shows the results for twaesbfs, namelys = 0.1
andg = 1. Also in this situation, it is possible to see that the uséuaky ranks
outperforms the clustering of the distances dfiedent subsamples of the data set.

The Colon cancer data is a collection of expression level2000 genes measured
with the DNA microarray technique. They have been selectetth@se having the
highest minimum intensity across all samples. The ratisvbeh classes is approx-
imately 2 tumor to 1 normal. Here we focus on what has beeed#fle “class dis-
covery” problem (unsupervised categorization, i.e., telisg), but we exploit the
diagnostic information to assess the goodness of the diugtebtained, thereby
evaluating clustering in a transductive setting. This daic information is the
distinction between normal and cancer tissue labels. Fhenanalysis of the den-
drogram on crisp ranks, we decided to set the number of clis8 We scaled the
data setting the maximum of the norm of the patterns to oneigrn4 we show the
reduction in the error achieved by the use of fuzzy ranks mmarison with the
clustering of the distances (thick dotted line) and theteliisg using crisp ranks
(light dotted line).

The results on the Colon data set are resumed in Fig. 4 whegdusiering using

fuzzy ranks achieves better classification errors witheesp the methods used
for comparison. In particular the figure shows that the usarmis (crisp and fuzzy)
performs better with respect to the clustering of pattemnsput space and in many
cases with respect to the clustering of distances. Heregbeotithe fuzzy ranks



Table 1
Data sets used for experiments

Dimensionality | Cardinality | Class balance

Synthetic data 1 2 100 1:1
Synthetic data 2 20 100 11
Colon cancer 2000 62 2:1

improves the classification error achieved by the crispsank

6 Conclusions

We have presented a technique to perform clustering of tigtensional data sets
by mapping these data in a lower dimensional space, the spacezy D-rank vec-
tors. Several clustering techniques can be applied, andse thhe standaragnes
procedure to obtain an indication of the best value for thezihess parametg.
The analysis confirms the quality of the proposed proceduminparison to the
knowledge available in the literature, and its superiatatyhe other methods ex-
perimented. The overall method is closely related to notrimmultidimensional
scaling (MDS) techniques based only on dissimilarity raak®pposed to metric
distances[8,13,14]. The fuzzy rank mapping itself in thepmsed method plays
the role of a multidimensional embedding. Onéelience is that MDS provides
a mapping by pointing out possibly interesting relatiopshiand the subsequent
data analysis is left to the researcher, whereas clustainmg directly at outlining
a structure in the form of suggested categories.
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Fig. 1. Comparing crisp and fuzzy rank functions.
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Fig. 4. Results on the Colon data set. Vertical bars: error level as tidaraf the fuzziness
parametes. Thin dotted line: the error obtained by clustering in the data space directly.
Thick dotted line: the error obtained by clustering in the space of distances.



