
Soft Ranking in Clustering

Stefano Rovettaa , Francesco Masullia,b , Maurizio Filipponea,c

a CNISM and Dipartimento di Informatica e Scienze dell’Informazione, Università di
Genova, Via Dodecaneso 33, I-16146 Genova, Italy

b Center for Biotechnology, Temple University, BioLife Science Bldg. 1900 N 12th Street
Philadelphia PA 19122, USA

c Department of Computer Science, University of Sheffield, Regent Court 211 Portobello
Sheffield, S1 4DP. United Kingdom

Abstract

Due to the diffusion of large-dimensional data sets (e.g., in DNA microarray or document
organization and retrieval applications), there is a growing interest in clustering methods
based on a proximity matrix. These have the advantage of being based on a data structure
whose size only depends on cardinality, not dimensionality. In this paper, we propose a
clustering technique based on fuzzy ranks. The use of ranks helps to overcome several
issues of large-dimensional data sets, whereas the fuzzy formulation is useful in encoding
the information contained in the smallest entries of the proximity matrix. Comparative
experiments are presented, using several standard hierarchical clustering techniques as a
reference.
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1 Introduction

Data clustering is traditionally studied in the hypothesis, sometimes implied, that
data themselves are available in large quantities, or, at least, that cardinality is
larger than dimensionality. In recent years, however, manydata acquisition tech-
niques able to produce large quantities of variables for each observation have been
made available. Therefore, the cardinality-dimensionality relation has sometimes
been inverted. Two prominent examples of high-throughput techniques are DNA
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microarrays and document collections for information retrieval. In this situation,
as it had already happened for classification with featureless approaches [10] and
kernel methods [12], there is a growing interest in clustering methods based on
a proximity matrix, which share the obvious advantage of being based on a data
structure whose size only depends on cardinality, not dimensionality. Among these
approaches, we can mention primarily the traditional hierarchical agglomerative
techniques [15] and the more recent spectral methods [9].

Proximity- (or affinity-)based methods rely on an appropriate definition of metrics
or distance, and it is known [3,1] that in high dimensionality the behaviour of large
classes of metrics is not as intuitive as it may appear. For this reason, we propose
to base our data representation on distance ranks rather than distance values.

2 The proximity matrix approach

We adopt a proximity matrix representation, whereby the data matrix is replaced
by a pairwise dissimilarity matrixD. Let X be a data set of cardinalityn, X =
{x1, x2, . . . , xn}. We start by computing the dissimilarity matrixdik = d(xi , xk) ∀i,k
according to the dissimilarity measured(x,y) between pointsx andy (e.g, the Eu-
clidean distance). The dissimilarity matrix may as well be given as input (for in-
stance when obtained from subjective measurements by a panel of experts, or from
experiments in the behavioral sciences, or from measurements performed through
uncalibrated sensor arrays), in which case it could not evenbe a symmetric matrix
and no explicit functiond(x,y) may exist. The matrixD may now be used as the
representation of all points of the setX in a space with dimensionn. Dissimilarity-
based clustering algorithms can be applied even to non-metric data, e.g. categorical
or mixed.

3 Clustering with ranks

Problems may arise in high dimensionality also for other effects, especially (but not
exclusively) with Minkowski norms as dissimilarity [1]. A typical countermeasure
also found in traditional statistics is moving from the analysis of values (in our
case, distances) to the analysis of theirranks. Rank is the position of a given value
in the ordered list of all values. In this work, however, we adopt a fuzzy definition
of the concept of ranks. This definition has already been usedto improve image
reconstruction after lossy compression [11]; here it is used as a starting point for a
data analysis procedure.

Let di be thei-th row of D (storing the dissimilarities of points inX from xi ∈ X).
The corresponding ranks, or positions in the list of components ofdi when sorted
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in ascending order, are then stored in the vectorri =
[

ρi1, . . . ,ρin
]

. We call these the
D-ranksfor point xi . A D-rank can be written in an algebraic fashion as:

ρi j =

n
∑

k=1

θ
(

di j −dik

)

, (1)

where the functionθ(x) is an extended Heaviside step, taking on the values 0 for
x< 0, 1 for x> 0, and 0.5 for x= 0, soρi j ∈ [0, . . . ,n−1] ∀i ∈ {1, . . . ,n}. This exten-
sion of the Heaviside step represents the standard way to deal with ties in rank-order
statistics. (Note that we define ranks to start at 0, so that D-rank 1 refers to the near-
est neighbour.) It is now possible to measure the closeness of data pointsx1, . . . , xn

by the concordance of their respective D-rank vectorsr1, . . . ,rn. Therefore for this
purpose a data pointxi is represented by the vector of its D-ranks.

This definition has several advantages. It embeds the problem into a space of dimen-
sion n, which, by assumption, is smaller than the cardinality of the original data.
Metric and non-metric cases are treated alike, since the newmeasure is numeric in
both cases. Using this representation of data, any metric clustering algorithm can
be applied. In the experiments, we will refer to the specific procedure illustrated in
the following section.

Obviously, ranks also discard information, and this is moreevident when the dis-
tribution of points is uneven. In this case, points in a denseregion and points in
a sparse region may be represented with similar rank patterns. In the following
section, we introduce a fuzzy definition of rank that is able to preserve more infor-
mation in these cases.

4 Fuzzy ranks

In a fuzzy set-theoretic perspective, it is more natural to define the relation “larger”
among two numbers as a degree to which one number is larger than another. The
problem of ranking fuzzy quantities has been reviewed for instance by Bortolan and
Degani [4] and, more recently, by Wang and Kerre [16,17]. Forinstance, suppose
that we are to compare (a)d1 = 3 with d2 = 4, and (b)d1 = 3 with d2 = 3.01. Clearly
in both case (a) and case (b) we can rightfully say thatd2 > d1, but it is also clear
that in (a) this is “more true” than in (b). Therefore, we can make the following
substitution:

θ
(

di j −dik

)

−→
1

1+e(di j−dik)/β
(2)
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where:

lim
β→0+

1

1+e(di j−dik)/β
= θ
(

di j −dik

)

(3)

So the computation of fuzzy rank can be expressed as

ρi j =

n
∑

k=1

1

1+e(di j−dik)/β
(4)

The parameterβ is a fuzziness parameter: for largeβ the ranking function is def-
initely fuzzy, while forβ = 0 we obtain the original, crisp ranking function. The
two expressions (1) and (4) for the rank function are compared in a simple exam-
ple, illustrated in Figure 1, where we assumedi = [d,2,3,5] and the first valuedi1

sweeps from 0 to 7. We plot the correspondingρi1 (in the two expressions, crisp
and fuzzy). Two fuzzy plots are shown, one forβ = 0.05 and another forβ = 0.25
(smoother).

This new definition of rank allows us to integrate into a rank-based clustering ap-
proach the notion that two ranks may be clearly defined (this happens when com-
paring very different values), and in this case the soft rank behaves similarly to the
standard, crisp definition of ranks; or they may be less clearly defined (when the
values to be compared are not very different), and in this case the soft rank takes
into account the degree of closeness between the values. Theclustering algorithm
we applied in the new representation is theagnesprocedure [7] that is an agglom-
erative hierarchical clustering algorithm.

5 Experiments

The proposed soft rank clustering algorithm was tested on two synthetic problems
and then applied to a publicly available bioinformatics dataset: the Colon data by
Alon et al. [2]. Data sets are described in Table 5. The synthetic problems have
been used to check the properties and consistency of the approach.

The tests were performed according to the proposed method for a number of dif-
ferent fuzziness levelsβ, and diagrams were compared for several linkage meth-
ods. Specifically, the linkage methods used are [6,18]: single (or nearest neigh-
bor linkage); average (UPGMA); complete (or farthest neighbor linkage); weighted
(WPGMA); ward (Ward’s method with analysis of cluster variance). We focus on
the results obtained by the Ward method only, since it is known to yield small and
compact clusters not affected by the “chaining” effect, and this was fully confirmed
by the experimental analysis.
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For the purpose of this study, values ofβ have been selected by hand-tuning on the
basis of experimental results (we used the available test data). More sound tech-
niques may be based on the quality of clustering obtained, asmeasured for instance
by the coefficient of agglomeration or other citeria.

The first synthetic problem consists in classifyng two-dimensional points obtained
from two Gaussian distributions. Noise is added to each point coordinates to obtain
a sequence of increasingly random data sets. The method was applied for several
values ofβ and for distances (not distance ranks). We obtain a number ofexper-
imental results, one for each noise level, representing theerror percentage as a
function ofβ. These results are shown in Fig. 2 for selected, values of noise level,
namelyσ = 0.5 andσ = 1. The values are not shown directly, but as ratio of error
reduction with respect to the results on distances, used as abaseline. The box-and-
wiskers plot has been obtained on the basis of 100 different runs, with varying
random generation. From the plot, it can be seen the error reduction over the base-
line.

The second synthetic data set is composed of two 10-dimensional Gaussian dis-
tribution centered respectively in (−1, . . . ,−1) and (1, . . . ,1). Both the distributions
have standard deviation 2. Ten unformly distributed features have been added to the
data set. We tested the proposed method on different subsamples of the features. In
Fig. 3 we report the box-and-wiskers plot obtained for different numbers of selected
features over 100 trials. Fig. 3 shows the results for two values ofβ, namelyβ = 0.1
andβ = 1. Also in this situation, it is possible to see that the use offuzzy ranks
outperforms the clustering of the distances on different subsamples of the data set.

The Colon cancer data is a collection of expression levels for2000 genes measured
with the DNA microarray technique. They have been selected as those having the
highest minimum intensity across all samples. The ratio between classes is approx-
imately 2 tumor to 1 normal. Here we focus on what has been called the “class dis-
covery” problem (unsupervised categorization, i.e., clustering), but we exploit the
diagnostic information to assess the goodness of the clustering obtained, thereby
evaluating clustering in a transductive setting. This diagnostic information is the
distinction between normal and cancer tissue labels. From the analysis of the den-
drogram on crisp ranks, we decided to set the number of cluster to 3. We scaled the
data setting the maximum of the norm of the patterns to one. InFig. 4 we show the
reduction in the error achieved by the use of fuzzy ranks in comparison with the
clustering of the distances (thick dotted line) and the clustering using crisp ranks
(light dotted line).

The results on the Colon data set are resumed in Fig. 4 where theclustering using
fuzzy ranks achieves better classification errors with respect to the methods used
for comparison. In particular the figure shows that the use ofranks (crisp and fuzzy)
performs better with respect to the clustering of patterns in input space and in many
cases with respect to the clustering of distances. Here the use of the fuzzy ranks
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Table 1
Data sets used for experiments

Dimensionality Cardinality Class balance

Synthetic data 1 2 100 1:1

Synthetic data 2 20 100 1:1

Colon cancer 2000 62 2:1

improves the classification error achieved by the crisp ranks.

6 Conclusions

We have presented a technique to perform clustering of high-dimensional data sets
by mapping these data in a lower dimensional space, the spaceof fuzzy D-rank vec-
tors. Several clustering techniques can be applied, and we used the standardagnes
procedure to obtain an indication of the best value for the fuzziness parameterβ.
The analysis confirms the quality of the proposed procedure by comparison to the
knowledge available in the literature, and its superiorityto the other methods ex-
perimented. The overall method is closely related to non-metric multidimensional
scaling (MDS) techniques based only on dissimilarity ranksas opposed to metric
distances[8,13,14]. The fuzzy rank mapping itself in the proposed method plays
the role of a multidimensional embedding. One difference is that MDS provides
a mapping by pointing out possibly interesting relationships, and the subsequent
data analysis is left to the researcher, whereas clusteringaims directly at outlining
a structure in the form of suggested categories.
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Fig. 1. Comparing crisp and fuzzy rank functions.
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Fig. 2. Synthetic 1 – Left:σ = 0.5; right:σ = 1
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Fig. 3. Synthetic 2 – Left:β = 0.1; right:β = 1
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Fig. 4. Results on the Colon data set. Vertical bars: error level as a function of the fuzziness
parameterβ. Thin dotted line: the error obtained by clustering in the data space directly.
Thick dotted line: the error obtained by clustering in the space of distances.
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