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Abstract 

Progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and idiopathic 

Parkinson’s disease (IPD) can be clinically indistinguishable, especially in the early 

stages, despite distinct patterns of molecular pathology. Structural neuroimaging 

holds promise for providing objective biomarkers for discriminating these diseases at 

the single subject level but all studies to date have reported incomplete separation of 

disease groups. In this study, we employed multi-class pattern recognition to assess 

the value of anatomical patterns derived from a widely available structural 

neuroimaging sequence for automated classification of these disorders. To achieve 

this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using 

structural MRI along with 19 healthy controls (HCs). An advanced probabilistic 

pattern recognition approach was employed to evaluate the diagnostic value of 

several pre-defined anatomical patterns for discriminating the disorders, including: (i) 

a subcortical motor network; (ii) each of its component regions and (iii) the whole 

brain. All disease groups could be discriminated simultaneously with high accuracy 

using the subcortical motor network. The region providing the most accurate 

predictions overall was the midbrain/brainstem, which discriminated all disease 

groups from one another and from HCs. The subcortical network also produced more 

accurate predictions than the whole brain and all of its constituent regions.  PSP was 

accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia 

compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the 

midbrain/brainstem only. This study demonstrates that automated analysis of 

structural MRI can accurately predict diagnosis in individual patients with 

Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly 

useful for this process.   
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Introduction 

The akinetic-rigid syndromes of progressive supranuclear palsy (PSP), multiple 

system atrophy (MSA) and idiopathic Parkinson’s disease (IPD), can be clinically 

indistinguishable in the early stages[1] despite having distinct characteristic patterns 

of molecular pathology.[2-4] Finding sensitive and specific objective biomarkers for 

predicting disease state in these disorders is an important aim for several reasons: 

first, the disorders have different prognoses, where MSA and PSP are characterised 

by relentless disease progression and carry a life expectancy of only a few years 

after diagnosis, IPD does not convey a substantial reduction in life expectancy. 

Second, the disorders have differential responses to treatment; IPD responds 

moderately well to dopaminergic therapy and deep-brain stimulation, [5] but PSP and 

MSA are both associated with a poor response.[6] Third, objective biomarkers 

predictive of early disease state may be useful to reduce the misdiagnosis rate in 

clinical trials of potential disease-modifying compounds.  However, for any objective 

measure to facilitate clinical decision making in the long term, it must accurately and 

simultaneously discriminate between all the disorders. 

Magnetic resonance imaging (MRI) holds the potential to provide objective 

diagnostic markers for the disorders. However, no published studies have 

demonstrated an automated approach to predict diagnosis in individual subjects with 

accuracy that could be considered clinically useful. Existing studies have employed 

either manual measurements derived from radiological examination of MRI scans 

(rMRI) [7-10] or automated approaches based on voxel-based morphometry 

(VBM).[11-14] Both approaches have disadvantages: rMRI markers are operator-

dependent and time-consuming to construct and are not sufficiently specific for 

discriminating between MSA and PSP despite good sensitivity for discriminating both 
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from IPD.[15] Whilst VBM has been successful in identifying neuroanatomical 

changes associated with these disorders at the group level, it has limited ability to 

predict disease state at the level of individual subjects.  

Pattern recognition (PR) is an analytic approach increasingly being applied in 

clinical neuroimaging studies.[16,17] In contrast to rMRI and VBM, PR aims to 

predict disease state at the single-subject level based on distributed patterns of 

anatomical abnormality. PR has been highly successful for discriminating other 

neurological disorders [16-19], but only two studies have applied PR to Parkinsonian 

disorders and were unable to accurately discriminate all diagnostic groups.[20,21]  

The primary objective of this work was to assess the capability of anatomical 

patterns (networks) of brain regions for automated discrimination of Parkinsonian 

disorders, aiming to discriminate between all disorders simultaneously and identify 

which networks would provide the best discrimination of each disorder. To achieve 

this, networks of subcortical regions were defined prior to the automated analyses, 

based on the known distribution of tau (PSP) or α-synuclein (MSA/IPD) pathology.[2-

4] An advanced multi-class PR approach was then employed to assess the 

diagnostic capability of the full network, each component region and the whole brain. 

A secondary aim was to determine whether MSA subtypes MSA-P and MSA-C 

(predominantly Parkinsonian or cerebellar symptoms) could be discriminated and 

further, whether regarding them as single or distinct entities yields more accurate 

discrimination, since they have different burdens of brainstem and basal ganglia 

pathology.[22]  

We hypothesized that discrimination of PSP and MSA would be achieved with 

high accuracy while discrimination of IPD would be more challenging since most MRI 
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studies report only subtle abnormalities in early- or mid-stage IPD.[13,23] 

Additionally, we hypothesized that: (i) the midbrain and cerebellum would be 

predictive of PSP, because atrophy of the midbrain and superior cerebellar 

peduncles (SCP) are rMRI markers for PSP[7,9,10]; (ii) the cerebellum would be 

predictive of MSA because middle cerebellar peduncle (MCP) width is an rMRI 

marker of MSA[8-10] and (iii) the midbrain/brainstem would be the most predictive 

region for IPD based on its distribution of pathology[4] and a recent report of ponto-

medullary degeneration in early IPD.[23] Finally, we sought to test whether the 

network or any of its components outperformed a whole-brain approach, which is 

important because cortical atrophy has been reported in all disorders [11,13,24]. 

 

Methods 

Case selection 

Seventeen patients with PSP, 19 with MSA and 14 with IPD participated (all 

diagnosed according to established criteria [25-27]) and were recruited according to 

procedures described elsewhere.[28,29] Five PSP patients met diagnostic criteria for 

definite, 11 for probable (clinically definite[1]) and one for possible PSP. All PSP 

patients could be considered to have the classical PSP-Richardson phenotype.[30] 

Twelve MSA patients were categorized as having MSA-P (one patient could be 

considered to have possible-, nine to have probable and two to have definite MSA 

according to recent updates to the diagnostic criteria[31]). Seven MSA patients were 

categorized as having MSA-C (six probable and one definite MSA). All IPD patients 

fulfilled criteria for clinically definite IPD.[25] All 13 IPD patients taking dopaminergic 

medication reported a good or excellent response and the six PSP and 13 MSA 
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patients taking dopaminergic medication all described their response as poor. 

Nineteen healthy controls (HCs; spouses and friends of patients) with no known 

neurological disorder also participated. Disease severity was recorded using the 

Unified Parkinson’s Disease Rating Scale (UPDRS), plus Hoehn and Yahr (HY)[32] 

and Schwab and England Activities of Daily Living (ADL) scales[33]. Cerebellar 

ataxia was assessed using the Parkinson’s plus scale[34] and postural instability 

using the Postural Instability and Gait Disorder (PIGD) scale[35] (Table 1). All 

participants provided informed written consent and the study was approved by the 

Research Ethics Committees of King’s Healthcare NHS Trusts and the Institute of 

Psychiatry. 

 

Neuroimaging data acquisition/preprocessing 

For each subject, a whole-brain T1-weighted 3-dimensional inversion recovery 

prepared spoiled gradient echo (SPGR) structural image was acquired using a 1.5T 

General Electric Signa LX NV/i scanner (General Electric, WI, USA) with parameters: 

repetition time = 18ms, echo time = 5.1ms, inversion time = 450 ms, acquisition 

matrix = 256×152 over a 240×240 field of view, reconstructed as a 256x256 matrix, 

yielding in-plane voxel size of 0.94×0.94mm and 124 1.5 mm thick slices. In addition, 

a 2D T2-weighted structural image (used to screen participants for incidental 

structural lesions) and a diffusion-tensor imaging (DTI) sequence were acquired as 

described elsewhere.[28] Since SPGR images are more widely available and faster 

to acquire than DTI, we focus on these for the present work. The data from a subset 

of the subjects used in the present work were used in a companion paper where we 
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validated the analytic methodology[36] and the DTI images from a different subset 

have been reported separately.[28] 

The SPGR images were used to derive a set of “scalar momentum” 

features[37]  to describe anatomical variability amongst subjects (see supplementary 

material for details). The components of these images corresponding to grey- and 

white- matter were masked anatomically to constrain them to either: (i) the whole 

brain, (ii) a subcortical motor network comprising bilateral cerebellum, brainstem 

(including midbrain and decussations of SCP but excluding the MCP), caudate, 

putamen, pallidum and accumbens or (iii) each of the these component regions, 

separately. Both components were concatenated and used as classifier inputs.  

 

Pattern Recognition Analysis 

Nearly all applications of PR to neuroimaging have employed pair-wise categorical 

classification, but here we employed a multi-class probabilistic approach. This is 

preferable for Parkinsonian disorders because: (i) it aims to separate all disease 

classes simultaneously, thus more closely resembling the clinical decision-making 

process and (ii) provides quantitative measures of diagnostic confidence. The PR 

approach employed here is described in detail in a companion methodological 

report[36] and is outlined in supplementary material. Four contrasts were applied to 

discriminate different combinations of disease groups: classifier I aimed to separate 

disease groups, replicating the decision process employed clinically (i.e. PSP vs. 

IPD vs. MSA; chance level=33%); classifier II aimed to separate disease groups and 

HCs (PSP vs. IPD vs. HCs vs. MSA; chance=25%); classifiers III and IV were similar 

to classifiers I and II respectively, except the MSA class was separated into distinct 
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MSA-P and MSA-C groups (classifier III: PSP vs. IPD vs. MSA-P vs. MSA-C; 

chance=25%. Classifier IV: PSP vs. IPD vs. HCs vs. MSA-P vs. MSA-C; 

chance=20%). All four classifiers were applied to the whole-brain and subcortical 

motor network and Classifier II was applied to assess the diagnostic value of 

regional features because it can be used to examine the relationship of each disease 

group to HCs. The discriminative value of different brain regions was also assessed 

at a finer scale than was afforded by the anatomical network by examining the 

pattern of predictive voxel weights for classifier II. This represents a multi-class 

generalisation of an approach employed elsewhere for binary classification [38-42] 

(see supplementary material for details). 

To estimate the generalisability of each model for new cases, it is crucial to 

evaluate it using data that has not been used in any way to build the model (e.g. to 

infer parameters). Leave-one-out cross-validation, which provides approximately 

unbiased estimates of the true generalizability, was used to achieve this (see 

supplementary material for details). Note that all data preprocessing steps were 

embedded within this cross-validation loop, including the creation of a study-specific 

template for volumetric normalisation. Thus, the training and test sets were entirely 

independent during all stages of model construction and assessment, 

 

Classifier assessment  

Each classifier’s errors can be summarised using confusion matrices, which indicate 

the ease, or difficulty with which classes could be separated. In the binary case, 

these give rise to the sensitivity, specificity and positive/negative predictive value 

(PV). Here, straightforward multi-class generalisations were derived for the 
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sensitivity and PV, which describe the performance for each class (Figure 1). The 

(balanced) accuracy and overall predictive value (OPV) were then computed by 

averaging these over all classes. Note that the class specificity as typically employed 

in the binary context does not straightforwardly generalise to multi-class cases, since 

more than one type of misclassification can occur. However, the PV indirectly 

measures specificity for each class. Significance of each metric was assessed using 

Monte Carlo testing (see supplementary material). 

 

Results 

Demographic variables 

Diagnostic groups did not differ significantly with respect to age (F3,65=1.8, p=0.17), 

sex (Χ2=0.62; p=0.89) or disease duration (F2,47=1.9; p=0.15) (Table 1). 

 

Classification performance: subcortical motor network 

All subcortical network classifiers (Table 2) exceeded chance accuracy and OPV (p 

< 0.001, Monte Carlo test). Classifier I discriminated all classes with high sensitivity 

and PV, (Figure 2), making only four errors: one IPD case was predicted as PSP and 

three PSP cases were predicted as IPD. The MSA class was predicted perfectly 

(Figure 3).  

Classifier II exceeded chance sensitivity and PV for all classes except IPD 

which was significant for sensitivity only at trend level (Figure 2). This was due to 

several IPD cases being mistaken for HCs; MSA and PSP remained well classified, 
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one MSA case  was mistakenly predicted as a control and two PSP cases were 

predicted as IPD (Figure 3). For MSA, the incorrectly labelled subject was an MSA-P 

patient (thus, MSA-P = 91.7% sensitivity). All MSA-C cases were correctly classified 

(MSA-C = 100% sensitivity).  

Classifier III exceeded chance sensitivity and PV for all classes (Figure 2). 

Notably, MSA-P and MSA-C were accurately discriminated, although there was 

some overlap between them (Figure 3). The MSA-P class was relatively poorly 

discernable, being frequently mistaken for PSP or MSA-C (Figure 3). For all three 

classifiers described above, all pathologically confirmed cases were correctly 

classified. 

Classifier IV displayed similar characteristics to the other classifiers: all 

disease groups except IPD were discriminated above chance (Figure 2) and 

misclassifications were mainly between either IPD and HCs or MSA-P and MSA-

C/PSP (Figure 3). For this classifier, all pathologically confirmed cases were 

correctly classified except one PSP case (predicted as MSA-C). 

 

Classification performance: regional classifiers  

Classifier II exceeded chance accuracy and OPV in all regions except the nuclei 

accumbens (Table 3). The region producing the most accurate predictions overall 

was the midbrain/brainstem, achieving only slightly lower accuracy (-1.7%) and OPV 

(-2.0%) than the subcortical motor network (Table 3). For PSP, all regions were 

predictive (Figure 4). For MSA, the cerebellum and midbrain/brainstem were highly 

predictive and the putamina were moderately predictive. The cerebellum and 



Marquand et al 

11 
 

midbrain/brainstem were predictive of both variants of MSA (cerebellum: MSA-P = 

83.3% sensitivity, MSA-C = 100%; midbrain/brainstem: MSA-P = 66.7%, MSA-C = 

100%), but the putamina were only predictive of MSA-P (MSA-P: 50.0%, MSA-C: 

0.0%). The only region that discriminated IPD from HCs with high sensitivity and PV 

was the midbrain/brainstem and was thus the only region that simultaneously 

discriminated all disease classes from one another and HCs (Figure 4). Overall, the 

patterns of predictive weights are congruent with the effects described above 

(supplementary material).  

 

Classification performance: whole-brain  

While all whole-brain classifiers exceeded chance accuracy and OPV (p < 0.001), 

they were consistently poorer predictors than the subcortical motor network (mean 

difference of 12.1% accuracy and 14.3% OPV) and were also consistently poorer 

across classes (supplementary material). Thus, they will not be considered further.  

 

Comparison of MSA subtypes 

As described, the sensitivity and PV for MSA-P were consistently higher when MSA-

P and MSA-C were considered to be the same class (Table 2; Figure 2). Although 

the sensitivity for MSA-C was 100% for all classifiers, the PV for MSA-C was also 

consistently improved by considering MSA-P and MSA-C together. 
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Discussion 

In this study, we employed multi-class PR for single-subject classification of 

Parkinsonian disorders using structural MRI.  In contrast to voxel-wise approaches 

that describe focal group-level effects across brain regions, PR predicts disease 

state at the single subject level using distributed patterns of atrophy. This provides 

the advantages that it is objective, fully automated and free from operator bias. We 

demonstrated nearly perfect diagnostic classification of PSP, MSA and IPD using a 

subcortical motor network. Our approach produced only four misclassifications from 

50 predictions (91.7% accuracy, 91.5% OPV) and accurately discriminated all 

disease classes. To our knowledge, this provides the first demonstration of accurate 

simultaneous discrimination between these disorders at an individual patient level 

using MRI measures.   

All disease classes were accurately discriminated from one another with 

predictive performance that can be considered excellent relative to: (i) rMRI and 

semi-automated VBM  studies,[7,9,12] (ii) measures derived from DTI[15] and (iii) 

studies applying PR to structural MRI, to which they are most directly 

comparable[20,21,36]. Amongst these latter studies, one study reported accurate 

discrimination between typical and atypical Parkinsonian syndromes after pooling 

MSA and PSP but did not attempt to discriminate between PSP and MSA[20]. 

Another study aimed to discriminate MSA-P, PSP, IPD and HCs in a pair-wise 

manner, reporting: (i) high accuracy (66-97%) discrimination of PSP from HCs and 

IPD; (ii) marginal discrimination of MSA-P from HCs and IPD and (iii) no 

discrimination of other classes[21].   In future studies, it will also be important to 

validate performance of the classifier in the presence of other disorders that have 
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similar symptoms (e.g. corticobasal degeneration), although MSA and PSP are more 

common than CBD, accounting for 80% of cases misdiagnosed with IPD.[43,44]  

An important feature of our approach is that it provides estimates of how 

accurately each model will make predictions for new cases, which is of direct 

diagnostic relevance. This was achieved through the cross-validation approach that 

we employed, which is well known to provide approximately unbiased estimates of 

the true generalizability. This provides a more appropriate assessment of diagnostic 

value than simply postulating a discriminatory cut-off using the same data that was 

used to construct the model (which yields overly optimistic estimates of 

generalisability). 

We acknowledge that a limiting factor in our study is the modest number of 

patients for whom pathological confirmation of diagnosis could be obtained (eight out 

of 50 cases).   This proportion of patients where diagnosis could be confirmed 

pathologically is comparable to or greater than in most previous neuroimaging 

studies (e.g. [7-14,20,21] and references in [15]).  In all eight patients where 

diagnosis was pathologically confirmed, the model accurately predicted the 

diagnosis.  In our study, lack of pathological diagnosis occurred as some patients did 

not consent to autopsy and some are still living.   This is a problem frequently 

encountered in neuroimaging studies.  Although the modest rate of pathological 

confirmation must be taken into consideration when interpreting our results, we do 

not believe that this invalidates our findings.  Each patient had the typical clinical 

syndrome for their particular diagnosis, fulfilling stringent clinical diagnostic criteria. 

Another potential limitation is the moderate overall sample size, which motivates 

future replication of these findings in a larger sample. This sample is smaller than 

many pattern recognition studies in other disorders (e.g. dementia), but is 
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nevertheless substantially larger than nearly all published studies investigating 

Parkinsonian disorders with MRI (reviewed in [15]). 

For PSP accurate predictions were derived from all subcortical regions, 

reflecting the known distribution of pathology in cerebellum, midbrain and basal 

ganglia.[2] Of these regions, predictions with the highest sensitivity and PV were 

derived from the midbrain/brainstem, caudate nuclei and pallidum. Midbrain atrophy 

is the most consistent finding in VBM studies of PSP,[12,13] and atrophy of the 

caudate nuclei has been reported in some[13,24] but not all studies.[12] Indeed, the 

magnitude of focal effects in the basal ganglia were modest in relation to those in the 

midbrain (supplementary material), but the overall pattern in each region was 

nevertheless highly predictive of PSP. The cerebellum was a poorer predictor of PSP 

than the other regions, which is surprising considering the use of SCP atrophy for 

identifying PSP in rMRI.[7,9] This is probably attributable to the small size of the SCP 

relative to the voxel size of MRI, making it less suited to detection by automated 

approaches, although atrophy of the decussations of the SCP (which are larger and 

contained within the brainstem mask) are probably more useful and were assigned 

high predictive weight (supplementary material).   However, when these single 

structures were considered together within the subcortical motor network, this 

yielded superior sensitivity and PV to every component region, (and to the whole-

brain classifier), indicating that a network approach is better suited than single 

regions for detecting PSP. 

The cerebellum and brainstem were highly predictive of MSA, in accordance 

with: (i) their degree of pathological involvement in MSA,[3] (ii) their utility as markers 

in rMRI[8,9] and (iii) VBM studies that report extensive pontocerebellar damage in 

MSA-C and MSA-P.[14] Accordingly, the pontocerebellar degeneration we observed 
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was widespread and severe in MSA (supplementary material). Our results suggest 

that to optimally discriminate MSA, a focussed subcortical network containing the 

cerebellum, brainstem and putamen may be better suited than the more extensive 

subcortical network that optimally predicts PSP. The ability of the model to predict 

either MSA-P or MSA-C was improved when they were considered together.  This 

suggests that the characteristics of MSA-P and MSA-C may overlap sufficiently at 

the network level for it to be advantageous for them to be considered together when 

building an analysis model for automated discrimination using MRI.  

While IPD could be accurately discriminated from MSA and PSP, it was only 

possible to discriminate IPD from HCs using the midbrain/brainstem. This was 

expected, given that early- and mid-stage IPD pathology is largely restricted to the 

midbrain,[4] and the brains of IPD patients usually appear normal in rMRI.[15] VBM 

studies have only reported subtle focal differences in early or mid-stage IPD relative 

to HCs[13,23] although more extensive cortical damage may occur in late-stage or 

demented IPD patients.[45] Our results accord with these findings and indicate that 

although midbrain/brainstem changes in IPD are subtle, they are sufficiently 

informative to accurately discriminate IPD from all other classes. Accordingly, our 

results suggest that a region-of-interest approach restricted to midbrain/brainstem 

may be better suited to discriminate IPD than a network approach. 

For all disorders, the whole-brain approach yielded lower performance than 

using only the core network. This does not exclude the possibility that cortical 

pathology is predictive of any of the disorders if the component regions are more 

carefully specified a priori, but indicates that if anatomical hypotheses cannot be 

clearly formulated it is preferable to focus classification on a smaller network of core 

regions where degeneration is known to occur rather than employ an exploratory 
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classification approach. Similar findings have been reported for dementia, where PR 

approaches are also more accurate using a set of core regions relative to the whole 

brain, despite widespread cortical involvement.[46] An advantage of the multi-class 

approach employed here is that an independent predictive function is used to model 

each class, so the framework accommodates distinct sets of features for identifying 

each disease. 

In summary, we demonstrated highly accurate, fully automated single subject 

classification of MSA, PSP and IPD from one another and from healthy controls 

using a conventional MRI sequence that could easily be obtained as part of a clinical 

protocol. We identified different sets of regional features optimal for predicting each 

disorder, which are important because (i) they define an objective set of biomarkers 

predictive of disease state and (ii) can guide future studies aiming to automatically 

classify these disorders using MRI.  The next step is to validate these findings in a 

larger sample of patients at an earlier stage in the disease process with histological 

confirmation of diagnosis.  
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Figure Legends 

Figure 1: Example confusion matrix for an m-class classification problem. Ci,j 

denotes the number of predictions in row i, column j. The sensitivity and predictive 

value measure the performance of each class. The accuracy and overall predictive 

value are constructed by averaging the sensitivity and predictive value over all 

classes. Note that the accuracy and overall predictive value are balanced in that they 

avoid potential bias arising from variable numbers of samples in each class.   

 

Figure 2: Sensitivity (Sens) and predictive value (PV) for each class within each 

diagnostic classifier based on the subcortical motor network features (classifiers I-IV 

in panels A-D respectively). Bars denote the chance levels determined by the 

proportion of samples in the training set. * = p < 0.01, # = p < 0.05 + = p < 0.1 

 

Figure 3: Confusion matrices for each diagnostic decision (classifiers I-IV in panels 

A-D respectively). Numbers in each cell describe the total number of predictions.  

 

Figure 4: Sensitivity (Sens) and predictive value (PV) for each region in the 

subcortical motor network for the four-class classifier contrasting PSP, IPD, HC and 

MSA (Classifier II). A: cerebellum; B: brainstem; C: caudate; D: putamen; E: 

pallidum; F: accumbens. Bars denote the chance levels determined by the proportion 

of samples in the training set. * = p < 0.01, # = p < 0.05 + = p < 0.1 
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Tables 

Table 1: Demographic and clinical information. For patients taking levodopa, scores 

are given in the “on” state. Scales: HY: Hoehn and Yahr; ADL: Schwab and England 

Activities of Daily Living; UPDRS-III: Unified Parkinson’s Disease Rating Scale-part 

3, PIGD: Postural instability and gait disorder. Cerebellar scores are taken from the 

Parkinson’s Plus Scale (maximum = 24). 

 HCs  

(n=19) 

PSP  

(n=17) 

IPD 

(n=14) 

MSA (n=19) 

[MSA-P, n=12; MSA-C, n=7] 

Age, mean ± SD 63.9 ± 

7.8 

68.6 ± 

6.5 

64.6 ± 

6.9 

64.0 ± 7.7  

[64.0 ± 6.7; 60.6 ± 8.3] 

Sex, M:F 10:9 7:10 7:7 10:9 

[4:8 ; 6:1] 

Disease duration, 

mean ± SD 

- 5.3 ± 2.4 6.6 ± 2.0 4.9 ± 2.3  

[4.4 ± 2.2; 5.5 ± 2.5] 

HY,  

mean (range) 

- 4.0 

(3.0-4.0) 

2.5  

(2.0-3.0) 

3.0 (2.5-5.0) 

[3.0 (2.5-5.0); 4.0 (3.0-4.0)] 

ADL,  

median (range) 

- 50%  

(20-80) 

90% 

(80-100) 

70% (40-80)  

[70% (40-80); 70% (60-80)] 

UPDRS-III,  

mean ± SD 

- 34.8 ± 7 21.7 ± 

9.6 

35.7 ± 13.8  

[42.6 ± 12.3; 25.0 ± 8.0] 

PIGD score, 

mean (range) 

- 11.0  

(7.0-18.0) 

3.0  

(1.0-6.0) 

9.0 (5.0-14.0) 

[8.0 (5.0-14.0); 9.0 (8.0-11.0)] 

Cerebellar, 

median (range) 

- 2.0  

(0.0-6.0) 

0.0  

(0.0-2.0) 

8.5 (0.0-13.0)  

[4.0 (0.0-10.0); 10.0 (0.0-13.0)] 
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Table 2: Balanced accuracy and overall predictive value (OPV) for all classifiers 

trained using voxels derived from the subcortical motor network. * = p < 0.01, # = p < 

0.05. Values in brackets are 95% confidence intervals for the accuracies, derived by 

an obvious multiclass generalization of the method presented in [47].  

Classifier  Classes Region Accuracy 

[95% C.I.] 

OPV 

I PSP, IPD, MSA Subcortical 

network 

91.7%* 

[77.8 – 94.5] 

91.5%* 

 

II PSP, IPD, HCs, MSA Subcortical 

network 

73,6%* 

[61.9 – 80.2] 

73,9%* 

 

III PSP, IPD, MSA-P, MSA-C Subcortical 

network 

84.5%* 

[68.7 – 88.2] 

85.0%* 

 

IV PSP, IPD, HCs, MSA-P, 

MSA-C 

Subcortical 

network 

66.2%* 

[53.7 – 72.8] 

63.3%* 
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Table 3: Balanced accuracy and overall predictive value (OPV) for the four-class 

classifiers trained to discriminate PSP, IPD, HCs and MSA (Classifier II) using voxels 

derived from each constituent region. All regions were defined bilaterally using 

anatomical masks (see supplementary material). * = p < 0.01, # = p < 0.05. Values in 

brackets are 95% confidence intervals for the accuracies, derived by an obvious 

multiclass generalization of the method presented in [47]. 

Classifier  Classes Region Accuracy 

[95% C.I.] 

OPV 

II PSP, IPD, HCs, MSA Cerebellum 60.0%* 

[49.3 – 69.1] 

60.7%* 

 

II PSP, IPD, HCs, MSA Midbrain/ 

Brainstem 

71.7%* 

[59.2 – 79.1] 

71.9%* 

 

II PSP, IPD, HCs, MSA Caudate 38.6%* 

[30.8 – 49.6] 

37.3%# 

II PSP, IPD, HCs, MSA Putamen 46.7%* 

[37.0 – 57.6] 

45.8%* 

II PSP, IPD, HCs, MSA Pallidum 40.1%* 

[32.6 – 50.3] 

36.8%* 

II PSP, IPD, HCs, MSA Accumbens 37.1% 

[27.3 – 45.6] 

32.3% 

 

 


