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Supplementary Methods 

Neuroimaging data preprocessing 

Structural images were segmented into different tissue types via the “new segment” tool in 

the SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/, release 4667).[1] Rigidly aligned grey 

and white matter maps, down-sampled to 1.5 mm isotropic voxel size, were then used to 

diffeomorphically register all subjects to their common average (i.e. study-specific template), 

using a matching term that assumed a multinomial distribution.[2] Registration involved 

estimating a set of initial velocities, from which the deformations were computed by a 

geodesic shooting procedure.[3] As described in the main text, classification was based on a 

set of “scalar momentum” image features derived from this registration, which describe 

anatomical variability amongst subjects.[4] These comprise three components 

(corresponding to grey matter, white matter and other), but since they sum to zero at each 

voxel, they can be reduced to only two components (grey and white matter). These images 

contain all information necessary to reconstruct the original images (in addition to the 

template) and therefore provide a parsimonious representation of shape difference. The 

scalar momentum images for grey and white matter were spatially smoothed with an 

isotropic 10mm Gaussian kernel and masked anatomically to constrain them to either the 

whole brain, a subcortical motor network (bilateral cerebellum, midbrain/brainstem, caudate, 

putamen, pallidum and accumbens), or each of these regions, separately. All masks were 

defined anatomically using the atlas tools in the FSL software (http://www.fmrib.ox.ac.uk/fsl/, 

version 4.1). This choice of feature construction method and smoothing level was based on 

previous work, where smoothed scalar momentum images yielded greater accuracy than a 

range of alternative features (including Jacobian determinants, rigidly aligned grey matter, 

spatially normalised grey matter and Jacobian scaled spatially normalised grey matter) for 

predicting subject age and sex in a publicly available dataset (unpublished data). This finding 

was confirmed for the primary diagnostic classifier in this study (Classifier I) by comparing 

the accuracy obtained by a classifier based on the scalar momentum images to classifiers 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/
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based on: (i) the Jacobian determinants and (ii) a concatenation of modulated grey- and 

white-matter images, which are both commonly used in neuroimaging (Table S-1). 

 

Pattern Recognition approach 

The multi-class classification approach employed in the present work is described in detail 

elsewhere.[5] Briefly, class memberships were modelled probabilistically using a multinomial 

likelihood with Gaussian process (GP) priors. The starting point for the  -class classification 

problems considered here is a dataset denoted by   {     }   
 , where    are  -

dimensional data vectors and    are  -dimensional vectors of class labels. As described in 

the main text, for the present application, each data vector was constructed by 

concatenating grey- and white- matter scalar momentum components. We use the notation 

    to denote the membership of sample   to class   and assume „one-of- ‟ coding, where 

      if sample   belongs to class   and zero otherwise. For notational convenience, we 

collect data vectors into an     matrix   with the   subjects stacked in rows and the class 

labels into a     -dimensional vector   [                     ] . The multinomial 

likelihood function used to model class memberships, can then be specified as: 

 
 (    |    )      

         

∑          
 
   

 (1) 

Here,     are latent function variables that model relationships between the data points, 

separately for each class. We use      [         ]
  to denote the latent functions for all 

classes for a given subject and      [         ]
  to denote the latent functions for all 

subjects for a given class. We further collect all latent function values into a vector   

[    
        

 ]
 
. The model is completed by specifying an independent GP prior for each class, 

i.e.:  (    )         , where        is a linear covariance between samples. In other 

words, we employed a simple dot product covariance function, having no parameters. The 

main goal of this model is to make predictions (  ) for unseen data points (  ), which can be 
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achieved by applying the rules of probability calculus and integrating out the latent function 

variables, i.e.: 

     |             |       |     |          (2) 

In (2), it can be seen that the class labels are conditionally independent of the data vectors, 

given the latent functions and    |     denotes the posterior distribution over the latent 

functions. This posterior is analytically intractable but can be estimated using Markov chain 

Monte Carlo (MCMC) methods – the reader is referred elsewhere for full details.[5,6] After 

computation of (2), predictions were calibrated nonparametrically to compensate for the 

variance inflation characteristic of high-dimensional neuroimaging data.[7] 

 

Classifier assessment using cross-validation 

The main goal of any classification model is to estimate how well the classifier will make 

predictions for new data samples. As noted in the main text and is well known in the 

statistical literature, it is essential that this is performed using a dataset that has not been 

used to construct the model, otherwise performance measures may be overly optimistic.[8] 

Cross-validation is the standard statistical approach to estimate generalizability with 

moderately sized datasets and is well known to yield approximately unbiased estimates of 

the true generalisability.[9] In the present work, leave-one-out cross-validation was employed 

whereby the dataset was repeatedly repartitioned into disjoint training- and test datasets. At 

each iteration, a single subject from each group was excluded simultaneously (test dataset), 

and all model parameters were inferred from the remaining data (training dataset). Class 

predictions were then derived from the test dataset as described above and compared to 

their true values. This procedure was repeated excluding each subject once and overall 

performance measures were computed by averaging over all cross-validation folds. Note 

that all preprocessing was embedded within the cross-validation loop so a different study-

specific template was constructed for each cross-validation fold.  
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Significance testing of classifier assessment metrics 

A Monte Carlo test was employed to assess significance of each measure of classifier 

performance (i.e. the sensitivity and predictive value for each class and the accuracy and 

overall predictive value; Figure 1, main text). This provides a non-parametric alternative to 

conventional approaches, suitable for multi-class problems.[10] To achieve this, 10,000 

randomized confusion matrices were generated, each having identical class distributions to 

the true sample. Classifier assessment metrics were computed and p-values were derived 

by computing the proportion of permutations where the randomized statistic exceeded the 

true statistic. 

 

Visualization of discriminating brain regions 

To visualize the relative contribution of different brain regions to the prediction of each class, 

we present a multi-class generalization of an approach we have employed elsewhere for 

binary classification.[11-13] For this purpose, it is convenient to adopt an alternate but 

equivalent perspective for GP models known as the “weight space” view (c.f. the “function 

space” view presented above).[14] From this perspective, and under the assumption of 

linear covariance, the latent function values can be expressed as       
   , where    is a 

 -dimensional vector of weights predictive of class  . In a corresponding manner to the 

presentation above, the predictive weights can be collected by:   [  
      

 ]
 
 and the 

predictive distribution for unseen data can be rewritten as: 

     |             |        |       (3) 
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where    |     is the posterior over the predictive weights. As is typical in neuroimaging 

applications, for the present application    , so computing the predictive distribution from 

the weight-space view is computationally much more expensive than the function space 

view. However, this framework is still of interest because each    can be visualized in the 

voxel space. For this purpose it is convenient to derive the weight-space representation from 

the function space representation. Under the MCMC approach employed here, the expected 

value of the predictive weights can be easily computed from the latent function values by a 

Monte Carlo sum, i.e.: 

 
  ̂  

 

 
∑ ̃     
 

   

 (4) 

 

where      denotes the  -th sample from the Markov chain, the   symbol denotes the 

(Moore-Penrose) pseudo-inverse,   is the total number of steps in the chain and  ̃ is an 

augmented data matrix, given by block concatenating the data matrix   times. 

 

Supplementary Results 

Classification performance: alternative classification features 

Relative to the scalar momentum image features, the accuracy of the primary diagnostic 

classifier (Classifier I) was lower when either the Jacobian determinants or concatenated 

modulated grey and white matter were used as classification features (Table S-1; c.f. Table 

2, main text). Therefore these feature construction methods will not be considered further. 
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Table S-1: Balanced accuracy and overall predictive value (OPV) for Classifier I (trained to 

discriminate MSA, IPD and PSP) using alternative data features. Values in brackets are 95% 

confidence intervals for the accuracies, derived by an obvious multiclass generalization of 

the method presented in [15]. 

Classifier 

no. 

Classes Features Accuracy 

[95% C.I.] 

OPV 

I PSP, IPD, MSA Jacobian determinants 83.7% 

[69.2 – 89.2] 

83.3% 

I PSP, IPD, MSA Modulated grey/white matter 79.4% 

[67.2 – 88.0] 

81.5% 

 

 

Classification performance: whole-brain  

The whole-brain classifiers were not only less accurate overall relative to the classifiers 

trained using the subcortical motor network (Table S-2), but they also had consistently lower 

accuracy and predictive value (PV) for each class (Figure S-1; c.f. Figure 2, main text).  
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Table S-2: Balanced accuracy and overall predictive value (OPV) for classifiers trained 

using the whole brain. Values in brackets are 95% confidence intervals for the accuracies, 

derived by an obvious multiclass generalization of the method presented in [15]. 

Classifier no. Classes Accuracy 

[95% C.I.] 

OPV 

I PSP, IPD, MSA 81.1% 

[66.5 – 87.6] 

81.4% 

II  PSP, IPD, HCs, MSA 67.4% 

[56.2 – 75.0] 

68.9% 

III PSP, IPD, MSA-P, MSA-C 63.7% 

[50.7 – 71.4] 

58.2% 

IV PSP, IPD, HCs, MSA-P, MSA-C 55.7% 

[45.3 – 63.2] 

48.17% 
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Figure S-1: Sensitivity (Sens) and predictive value (PV) for each class within each classifier 

based on whole-brain features. Bars denote the chance levels determined by the proportion 

of samples in the training set. A: Classifier I contrasts PSP, IPD and MSA; B: Classifier II 

classifier contrasts PSP, IPD, HC and MSA; C: Classifier III contrasts PSP, IPD, MSA-P and 

MSA-C; and D: classifier IV contrasts PSP, IPD, HC, MSA-P and MSA-C.  * = p < 0.01, # = p 

< 0.05.  
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Predictive weights  

The patterns of predictive weights for each disease class derived from the classifier 

contrasting PSP, IPD, HCs and MSA using the subcortical motor network features (i.e. 

Classifier II described in the main text) are presented in Figure S-2. These broadly show a 

correspondence with the accuracy derived from the regional classifiers in that regions with 

high accuracy individually generally show high magnitude weights (c.f. Figure 3 main text). 

However, it is important to emphasize that the patterns of predictive weights given by (4) do 

not permit statistical inference over individual brain regions in a classical sense. Instead, 

they indicate the relative contribution of different voxels within the discriminative pattern to 

the classifier decision, which is important, given that both the predictive weights and the 

regional effects contribute to the prediction (3). Thus, to assist interpretation of the weights it 

is also desirable to consider classical statistical parametric maps, which are useful to 

quantify the magnitude and indicate the direction of focal effects in each brain region (Figure 

S-3).  

 

Figure S-2 (overleaf): Predictive weights for PSP, IPD, HCs and MSA (subcortical motor 

network features). Upper panels describe the contribution of grey matter scalar momentum 

component to prediction and lower panels describe the contribution of the white matter 

scalar momentum component. Images are scaled so that the maximum weight in each 

image is equal to one.  
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Figure S-3: Univariate statistical parametric maps (t-statistic images) for each disease class 

relative to the HC class. Upper panels describe t-statistics for the grey matter scalar 

momentum component and lower panels describe the white matter scalar momentum 

component. Note that the maps are not thresholded, since it is necessary to quantify the 

magnitude of regional changes in all brain regions, not only in those surviving an arbitrary 

univariate threshold. 
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The predictive weights and statistical parametric maps for the scalar momentum features 

used in this work must be interpreted with some care. The scalar momentum coefficients 

govern the deformation of the images during registration and encode the deviations of each 

image from the template.[4] Informally, coefficient magnitudes can be considered to quantify 

the degree of regional dissimilarity between the template and image and the sign of the 

difference between coefficients in a pair of images is informative about whether a structure 

has undergone relatively greater expansion or contraction to match the template. In other 

words, negative coefficients may be considered to reflect atrophy relative to the template 

(i.e. relative to the average of the study population). 

For PSP, relatively greater atrophy (with respect to the template) of the midbrain, 

caudate and decussations of the superior cerebellar peduncles in relation to HCs (Figure S-

3) were important components of the predictive pattern and were assigned high magnitude 

negative weight (Figure S-2). For MSA, atrophy was widespread throughout the brainstem, 

cerebellar cortex and middle cerebellar peduncles (Figure S-3) where correspondingly high 

magnitude negative weights were distributed. The pattern for IPD is presented primarily for 

completeness, and no interpretation is offered since the classifier discriminating between 

classes using the motor network only identified IPD at trend level. Correspondingly, regional 

effects for IPD with respect to HCs were of low magnitude in all regions (Figure S-2). 

However, as noted in the main text, the pattern of regional effects in the midbrain/brainstem 

– although subtle – accurately discriminated IPD from all other classes (Figure 2, main text). 
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