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Abstract

We present a novel approach to online change detection problems when the
training sample size is small. The proposed approach is based on estimating
the expected information content of a new data point and allows an accurate
control of the false positive rate even for small data sets. In the case of the
Gaussian distribution, our approach is analytically tractable and closely re-
lated to classical statistical tests. We then propose an approximation scheme
to extend our approach to the case of the mixture of Gaussians. We evaluate
extensively our approach on synthetic data and on three real benchmark data
sets. The experimental validation shows that our method maintains a good
overall accuracy, but significantly improves the control over the false positive
rate.
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1. Introduction

Novelty detection is an important task in machine learning which plays a
prominent role in many application domains, from fault detection [2, 8, 13]
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to monitoring medical conditions [20, 25]. In its classic formulation, novelty
detection is the identification of data that deviate from the norm using only
knowledge from normality. The goal of novelty detection is twofold: first of
all, one needs to be as accurate as possible in detecting samples which do
deviate from normality (true positives). At the same time, one needs to be
able to predict how many normal examples will be erroneously flagged as
positives (false positives). Given that by definition true positives are rare,
the ability to control the false positive rate is by no means ancillary to the
accuracy in predicting true positives. In order to achieve these goals, one
needs to estimate some characteristics of the distribution of the normal data.
This could be a full estimation of the statistics of the training set distribution
or, usually, some weaker form of this, such as estimating quantiles of the
distribution. This then allows to fix a threshold for acceptance of new data
while having a degree of control over the number of false alarms raised.

Several approaches have been considered to tackle this problem including
neural networks [19, 5], extreme value statistic [21], support vector meth-
ods [22, 7], frequentist [24] and Bayesian [26] non-parametric approaches
(for a good review of statistical approaches for novelty detection see e.g. [4,
18]). In general, for reasonably sized training sets, most of these approaches
achieve very good performance both in terms of accurately identifying nov-
elty and in terms of containing the number of false positives. However, there
are many applications where the size of the training set is very small, or,
equivalently, where the user requirements prohibit a long training phase for
the system. Typical examples might include monitoring the health condi-
tions of patients or the lifestyle of elderly people, where a system which only
requires a short training would clearly be advantageous.

The problem encountered when deploying techniques based on density
estimation when the training set is extremely small is that, in general, there
is little control over the inherent variability introduced by the sparsity of the
training data. In practice, this means that the estimated quantiles can differ
substantially from the true quantiles of the distribution. This may not have
a dramatic effect on the efficacy of the method in detecting true positives,
but it usually results in serious difficulties in accurately predicting the false
positive rate.

In this paper, we recast the novelty detection problem in the framework
of information theory. Our approach focuses on computing the distribution
of the information content carried by a new data point. Namely, given a
distributional assumption for the training data, we compute the Kullback-
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Leibler (KL) divergence between the density estimated with the training set
and the density estimated with the training set and the test point. The basic
idea is that the information content of a new point should naturally depend
on the size of the training set, and hence account for the small-sample vari-
ability introduced in any estimates. We show that the KL divergence in the
univariate and multivariate Gaussian cases does not depend on the estimated
statistics of the training distribution, rather it automatically incorporates the
finite sample variability in the detection criterion. Consequently, the result-
ing method is able to control the false positive rate even when the training set
is small. We then extend the information theoretic approach to the case of
the mixture of univariate and multivariate Gaussians. Such extension allows
to deal with more general forms of generating distributions, thus leading to
a method that can be employed in a wider range of applications [14]. We
present an approximation scheme for the computation of the KL divergence
between the density estimated with the training set and the density esti-
mated with the training set and the test point. From there, we introduce an
efficient Monte Carlo scheme yielding an algorithm able to control the false
positive rate in the case of the mixture of Gaussians.

The paper is organized as follows: in Section 2 we review some basic con-
cepts on statistical testing, in Section 3 we present our method, in Section 4
we show the results on some real and simulated data, and we conclude in
Section 5 by discussing the merits and limitations of our approach.

2. Statistical Testing

In this section we briefly review some basic concepts from the theory of
statistical testing. In particular, we introduce the classic F -test for the Gaus-
sian and multivariate Gaussian distribution, which will play an important
role in the theoretical underpinning of our approach to novelty detection.

2.1. Testing a Univariate Gaussian

Let X = {x1, . . . , xn} be the training set, comprised of i.i.d. points from a
univariate Gaussian with mean m and variance s2, i.e., p(xi) = N (xi|m, s

2).
A simple but widely used approach is to compute the statistics m̂ and ŝ2 by
maximum likelihood (ML), which results in:

m̂ =
1

n

n
∑

i=1

xi ŝ2 =
1

n

n
∑

i=1

(xi − m̂)2
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These quantities are the sample mean and the sample variance, and are the
ML estimates for the mean and the variance. In this framework, we could
consider p(x|m̂, ŝ2) as the predictive pdf, and we could select the rejection
regions on its basis. When the set X has low cardinality, however, this is
not a good choice, since the values of the statistics can strongly deviate from
the true values. In particular, the sample mean is known to be normally
distributed as m̂ ∼ N (m, s2

n
), while the distribution of the sample variance

is a chi-square with degrees of freedom equal to the number of training points
minus one, ŝ2 ∼ s2

n
χ2

(n−1). We can try to exploit these facts to obtain a better
way to identify the rejection regions.

Let’s study the distribution of the following random variable:

ẑ2 =
(x∗ − m̂)2

ŝ2

Assuming that x∗ comes from the same distribution as the training points,
we can study the distribution of ẑ2. Since m̂ ∼ N (m, s2

n
), x∗ ∼ N (m, s2),

and x∗ and m̂ are independent, the difference:

(x∗ − m̂) ∼ N

(

0, s2

(

1 +
1

n

))

Its square is a random variable distributed as:

(x∗ − m̂)2 ∼ s2

(

1 +
1

n

)

χ2
(1)

We also know that:
nŝ2 ∼ s2χ2

(n−1)

Then, dividing the last two expressions, we see that [1]:

ẑ2 ∼

(

n+ 1

n− 1

)

F(1,n−1)

where F is the F -distribution, the distribution of the ratio of two chi-square
variates. We can use this result to test if a new point is an outlier by checking
that the ẑ2 variable, computed for a test point, is below the selected quantile
of the F distribution. We note that this test is valid for all the Gaussian
distributions, since it does not depend on the estimated statistics. In the
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rest of this paper, we will refer to this novelty detection method as the F -
test. We emphasize here that under the null hypothesis that x∗ comes from
the same N (m, s2), the distribution of ẑ2 is known exactly. Therefore, the
F -test is the optimal test in the sense that allows to set precisely the rejection
regions corresponding to the selected false positive rate.

2.2. Multivariate Gaussian

We can extend the F -test to the multivariate case. Let X = {x1, . . . ,xn}
be the training set, where each data point xi ∈ R

d is drawn from a multivari-
ate d-dimensional Gaussian N (x|m, S) with mean m and covariance matrix
S. The multivariate counterpart of the ẑ2 score is the following:

ẑ2 = (x∗ − m̂)TŜ−1(x∗ − m̂) (1)

In order to find the distribution of this score, we use a result from statistics [1]
stating that given y ∼ N (0, aS), and A ∼ Wν(S) (a ∈ R, S a positive
semidefinite covariance matrix, ν the number of degrees of freedom of the
Wishart distribution W ):

yTA−1y ∼
ad

ν − d+ 1
F(d,ν−d+1)

Since the sample mean m̂ ∼ N (x|m, S/n), and n times the sample covariance
nŜ ∼ W(n−1)(S), we obtain:

ẑ2 ∼ (n+ 1)
d

n− d
F(d,n−d) (2)

It is important to notice that this is a univariate test for a multivariate pdf,
that leads to a considerable computational advantage. We analyze directly ẑ2

for a test point, comparing it with the quantiles of the F distributed random
variable. Again, this test is independent from the estimated statistics of the
pdf.

3. Information Theoretic Measure for Novelty Detection

In this section, we describe the main theoretical material underpinning
our approach to the novelty detection problem. Let X = {x1, . . . , xn} be the
training set and let x∗ be a new point to test for anomaly (the generalization
to test sets with multiple points is trivial). We assume that the training
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set is generated from a probability distribution p(x|w) of known functional
form but unknown parameters. As stated before, one could use this para-
metric assumption to obtain ML estimates ŵ of the parameters and then
fix a threshold for acceptance of the new point x∗ based on the estimated
statistics. We will refer to this method as the ML method; notice that the
ML statistics summarize all the information of the training set, and do not
explicitly depend on its size.

We instead propose to update the ML estimates of the parameters using
the test point and then compute the similarity of the two distributions ob-
tained. The rationale for doing this is that the new estimates ŵ∗ will depend
explicitly on the old estimates, on the test point and on the size of the train-
ing set. Intuitively, for small training sets we will expect the information
content of a new point, even drawn from the same distribution, to be quite
high. As a measure of (dis)similarity between the two distributions we will
use the Kullback-Leibler (KL) divergence (see, e.g., [6] Section 1.6)

KL [p(x)‖q(x)] =

∫

p(x) log

[

p(x)

q(x)

]

dx. (3)

It can be easily shown that the KL divergence is always non-negative and is
zero if and only if the two distributions coincide. However, it is not a metric,
since is not symmetric and does not obey to the triangular inequality.

We note here that a similar approach has been proposed for the computa-
tional theory of surprise [17], where the KL divergence was used to measure
the dissimilarity between prior and posterior distribution in Bayesian infer-
ence.

3.1. Novelty Detection for Univariate Gaussians

Let’s assume the training data is generated by a Gaussian probability
distribution p(x|m, s2) = N (x|m, s2) with mean m and variance s2, and let
m̂ and ŝ2 be their respective ML estimates. When a new point x∗ is drawn,
the estimates of the mean and the variance can be updated in the following
way:

m̂∗ =
n

n+ 1
m̂+

1

n+ 1
x∗ ŝ2

∗
=

n

n+ 1
ŝ2 +

n

(n+ 1)2
(x∗ − m̂)2 (4)

To evaluate the amount of information carried by the new point x∗, we com-
pute the KL divergence between the probability distribution N (x|m̂, ŝ2) and
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the updated one N (x|m̂∗, ŝ
2
∗
). The KL divergence between two normal dis-

tributions with parameters (m1, s
2
1) and (m2, s

2
2) is readily obtained from

Eq. (3) as [15]

KL(m1,m2, s
2
1, s

2
2) =

1

2

[

log

(

s2
2

s2
1

)

− 1 +
s2
1

s2
2

+
(m1 −m2)

2

s2
2

]

. (5)

Inserting the update rule (4) one obtains

KL(y, ẑ2) =
1

2

[

log
(

1 + y + yẑ2
)

− 2 log (1 + y) − 1 +
1 + y

1 + y + yẑ2
+ y

]

(6)

where we have defined y = 1
n

and ẑ2 = (x∗−m̂)2

ŝ2 for brevity. This result is
remarkable. From the analysis of the former section, we have seen that ẑ2 is
distributed as an F variable, depending only on the cardinality of X. This
means that the information content of a new data point coming from the
true distribution, in the univariate Gaussian case, does not depend on the
estimated statistics. Therefore, under the null hypothesis that x∗ comes from
the same distribution as the training set, we know exactly the distribution of
KL(y, ẑ2). Obtaining the quantiles of this distribution will enable us to set
thresholds at specific false positive rates. In fact, this procedure corresponds
to the test of ẑ2 directly, in the sense that they lead to the same results. This
is the link between statistical testing and the information theoretic approach
in the univariate Gaussian case. In particular, the proposed approach leads
to a method able to control the false alarm rate to the desired level, since, as
in the F -test, it takes into account the variability of the estimated statistics.

We note here that Eguchi and Copas [10] established a connection be-
tween Neyman-Pearson lemma and the KL divergence; however, they did
not, to our knowledge, analyze the novelty detection scenario where no al-
ternative hypothesis is provided.

3.2. Novelty Detection for Multivariate Gaussians

These results can be extended to the multivariate Gaussian case in d
dimensions N (x|m, S). However, the calculations involved, while totally
analogous to the univariate case, are somewhat intricate; for presentation’s
sake we will only outline them here, referring the reader to Ref. [11] for the
details. Using the same notation as in the previous section, let

x̃∗ = x∗ − m̂ A = x̃∗x̃
T
∗
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When a new point x∗ is drawn, the updated versions of the mean and the
covariance matrix are

m̂∗ =
n

n+ 1
m̂ +

1

n+ 1
x∗ Ŝ∗ =

n

n+ 1
Ŝ +

n

(n+ 1)2
A (7)

where m̂ and Ŝ are the ML estimates of the mean and covariance of the
distribution obtained from the training set. The KL divergence between the
training distribution and the updated distribution is computed as the KL
divergence between two multivariate Gaussians [15]

KL =
1

2

[

log
(

det Ŝ∗Ŝ
−1

)

+ tr
(

Ŝ−1
∗
Ŝ
)

+ (m̂ − m̂∗)
TŜ−1

∗
(m̂ − m̂∗) − d

]

.

(8)
Inserting Eq. 7 into Eq. 8, and using repeatedly the properties of traces

and determinants, we obtain, after some algebra, the following expression for
the KL divergence

KL(y, ẑ) =
1

2

[

log
(

1 + y + yẑ2
)

− (d+ 1) log (1 + y) − 1 +
1 + y

1 + y + yẑ2
+ yd

]

.

(9)
Here again we have introduced y = 1

n
and ẑ2 = x̃T

∗
Ŝ−1x̃∗.

3.3. Novelty Detection for Mixtures of Gaussians

As we have seen, the information theoretic approach for novelty detection
is analytically tractable in the case of univariate and multivariate Gaussian
distributions. The result is a method which is closely related to the classical
F -test, which is known to be the optimal test for Gaussian distributions.
However, the Gaussian assumption may be often overly restrictive, implying
a limited applicability of the method. In this subsection, we present an
extension of our approach to the case of the mixture of Gaussians. As any
distribution can be in principle approximated as a mixture of Gaussians, this
guarantees a much greater flexibility and applicability for the method. The
price to pay for this greater flexibility is that the computation of the KL
divergence is no longer analytically feasible. We will however introduce an
approximation scheme which allows a fairly accurate closed-form solution.

Let us consider a mixture of c Gaussian distributions as the pdf gener-
ating the data. For clarity’s sake we will start with a mixture of univariate
distributions; at the end of this section, we will report the extension to the
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multivariate case. We collect a data set X = {x1, . . . , xn}, with xi ∼ p(x|w),
where:

p(x|w) = p(x|π1, . . . , πc,m1, . . . ,mc, s
2
1, . . . , s

2
c) =

c
∑

k=1

πkN (x|mk, s
2
k)

In order to apply our method, we would need the ML estimate ŵ of the
parameter vector w that comprises the proportions πk, the means mk, and
the variances s2

k of the c components. Then, we would need an expression for
ŵ∗ that is the updated version of the parameters obtained by computing the
ML estimates on the augmented set X ∪ {x∗}. Finally, we would compute
the KL divergence between the two pdf parameterized by ŵ and ŵ∗.

In order to do that, we need to overcome some computational problems.
First, it is known that there is no closed form solution for the ML problem
of the mixture of Gaussians. Second, there is no closed form for the KL
divergence between two mixture distributions. We propose a way to overcome
these limitations by resorting to some approximations; the main steps are
summarized here as:

1. computing a ML solution to the model on X;

2. updating the parameters performing one EM step on X ∪ {x∗};

3. writing the first order approximation of p(x|ŵ∗) based on p(x|ŵ) and
the updated parameters;

4. expand the logarithm in the expression of the KL divergence up to the
second order and compute the expectation over p(x|ŵ).

(Step 1). To obtain a ML solution for the mixture, we can employ the
Expectation Maximization (EM) algorithm [6]. The EM algorithm on the
set X yields a maximum likelihood estimation ŵ of the parameters via an
iterative scheme that maximizes the likelihood. We note here that using EM
to solve the model on X, while convenient, is not necessary for our method.

(Step 2). The update of the parameters when we add a new test point x∗
would require to start from the ML solution, and restart the iteration on the
augmented set X ∪{x∗}. Since this update of the parameters is not in closed
form, we consider a single iteration of the EM algorithm on the augmented
set X ∪ {x∗}. Under the assumption that augmenting the set leads to a
small change in the ML statistics, we can assume that a single EM step
might already give a good estimate of the correct statistics. An interesting
online method for the update of the parameters can be found in Ref. [23].
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The E step will not affect the responsibilities of the points belonging to X,
while the responsibilities of x∗ will be computed as:

u∗k =
π̂kN (x∗|m̂k, ŝ

2
k)

∑c
r=1 π̂rN (x∗|m̂r, ŝ2

r)
=

π̂k

ŝk

exp
(

− (x∗−m̂k)2

2ŝ2

k

)

∑

r
π̂r

ŝr
exp

(

− (x∗−m̂r)2

2ŝ2
r

)

In the M step the parameters ŵ will be updated into ŵ∗. Introducing nk =
∑

j ujk as the cardinality of the k-th component, the update equations for
the M step are the following:

m̂∗

k =
m̂knk + x∗u∗k
nk + u∗k

ŝ∗k
2

=
nk

nk + u∗k
ŝ2

k +
nku∗k

(nk + u∗k)2
(x∗ − m̂k)

2

π̂∗

k =
n

n+ 1
π̂k +

u∗k
n+ 1

Let’s rewrite the former equations in an incremental form:

m̂∗

k = m̂k + ∆m̂k = m̂k +
(x∗ − m̂k)u∗k
nk + u∗k

ŝ∗k
2

= ŝ2
k + ∆ŝ2

k = ŝ2
k +

nku∗k
(nk + u∗k)2

(x∗ − m̂k)
2 −

ŝ2
ku∗k

(nk + u∗k)

π̂∗

k = π̂k + ∆π̂k = π̂k +
u∗k − π̂k

n+ 1

(Step 3). We are interested in the KL divergence between p(x|ŵ) and
p(x|ŵ∗):

KL[p(x|ŵ)‖p(x|ŵ∗)] =

∫

p(x|ŵ) log

[

p(x|ŵ)

p(x|ŵ∗)

]

dx (10)

We compute a first order approximation of p(x|ŵ∗) =
∑c

k=1 π̂
∗

kN (x|m̂∗

k, ŝ
∗

k

2
).

First of all:

π̂∗

kN (x|m̂∗

k, ŝ
∗

k

2
) ≃ π̂kN (x|m̂k, ŝ

2
k) + π̂kN (x|m̂k, ŝ

2
k)∆ψk

where:

∆ψk =

[

∆m̂k
(x− m̂k)

ŝ2
k

+
∆ŝ2

k

2

(

(x− m̂k)
2

ŝ4
k

−
1

ŝ2
k

)

+
∆π̂k

π̂k

]
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Thus:
p(x|ŵ∗) ≃ p(x|ŵ) +

∑

k

π̂kN (x|m̂k, ŝ
2
k)∆ψk

Now let’s compute the KL divergence KL[p(x|ŵ)‖p(x|ŵ∗)]. First of all:

log

(

p(x|ŵ)

p(x|ŵ∗)

)

= − log

(

1 +

∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

p(x|ŵ)

)

(Step 4). Expanding the logarithm up to the second order, we obtain:

− log

(

1 +

∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

p(x|ŵ)

)

≃−

∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

p(x|ŵ)
+

+
1

2

[
∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk]

2

[p(x|ŵ)]2

The expectation of the first term of the former equation over p(x|ŵ) turns
out to be zero, leading to the following result:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∫

[
∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk]

2

p(x|ŵ)
dx (11)

We can rewrite the former equation:

[
∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk]

2

p(x|ŵ)
=

∑

r

∑

j

π̂rN (x|m̂r, ŝ
2
r)uj∆ψr∆ψj

where uj is the responsibility function of x for the class j. Here we make a
further approximation by neglecting the terms when j 6= r. In other words,
we replace ujN (x|m̂r, ŝ

2
r) with zero when j 6= r, and with N (x|m̂r, ŝ

2
r) when

j = r. This leads to:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∑

k

π̂k

∫

N (x|m̂k, ŝ
2
k)∆ψ

2
kdx

The integral can be computed easily, yielding:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∑

k

π̂k

[

∆m̂2
k

ŝ2
k

+
(∆ŝ2

k)
2

2ŝ4
k

+
∆π̂2

k

π̂2
k

]
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This is a closed form approximation of the KL divergence, and is a function
of x∗. We define:

ẑ2
k =

(x∗ − m̂k)
2

ŝ2
k

n∗

k = nk + u∗k

We can rewrite the former equation by substituting the expressions of the
updates of the parameters and rearranging the terms, thus obtaining:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

4

∑

k

π̂k
u2
∗k

(n∗

k)
4

[

n2
kẑ

4
k + 2u∗k(n

∗

k)ẑ
2
k + (n∗

k)
2
]

+
1

2

∑

k

(u∗k − π̂k)
2

π̂k(n+ 1)2

(12)

We can also rewrite u∗k in terms of ẑ2
k:

u∗k =

π̂k

ŝk

exp
(

−
ẑ2

k

2

)

∑

r
π̂r

ŝr
exp

(

− ẑ2
r

2

)

that depends from the proportions and the variances. Therefore, the approx-
imated expression of the KL divergence depends on the ẑ2

k variables as well
as the ML estimates of the proportions π̂k and the variances ŝ2

k:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃ f(ẑ1, . . . , ẑc, π̂1, . . . , π̂c, ŝ
2
1, . . . , ŝ

2
c)

Unfortunately, the dependence from the ML estimates of the proportions
and the variances remains, and will result in a deviation from the expected
results.

We evaluate the quality of the proposed approximation by means of an
illustrative example. In Fig. 1 (left panel), we show the pdf generating the
data composed by three Gaussian. From that, we sample 100 data points
and we plot the KL divergence obtained by adding a test point correspond-
ing to the value on the x∗-axis. The curves in the right panel show the
quality of the approximations. The solid line represents the exact value
of KL[p(x|ŵ)‖p(x|ŵ∗)] computed by integrating numerically Eq. 10 (ŵ∗ has
been computed performing a single EM step). The dashed line represents the
approximated value of the KL divergence after expanding the logarithm up
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Figure 1: Left: Mixture distribution composed by three Gaussians. Right: Quality of the
approximation of the KL divergence with respect to the values of x∗.

to the second order (Eq. 11); again, the integral has been computed numer-
ically. Finally, the dashed-dotted line represents the approximated value of
the KL divergence in Eq. 12, that is what we use as the final approximation.
In the multivariate case, following the same derivation, we obtain the same
expression as in Eq. 12. The details for the derivation of the multivariate
case can be found in Ref. [11]. In this case, the variables ẑ2

k read:

ẑ2
k = (x∗ − m̂k)

TŜ−1
k (x∗ − m̂k)

and the responsibilities for the test point:

u∗k =
π̂k|Ŝk|

−1/2 exp
(

−
ẑ2

k

2

)

∑

r π̂r|Ŝr|−1/2 exp
(

− ẑ2
r

2

)

We note here that other approximation schemes of the KL divergence
between mixtures have been proposed [15]. Our contribution is to devise an
asymptotic expansion for the online update case.

3.3.1. Sampling rejection thresholds

Assessing whether a new point is novel or normal usually involves the def-
inition of a rejection region based on the training data. This can be a difficult
task for complex multivariate distributions such as a mixture of multivariate
Gaussians. One of the major advantages of the proposed approach is that
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the problem is reduced to estimating rejection regions for the distribution on
the KL divergence, which is intrinsically a one dimensional problem. Recall
that the KL divergence results in a function of this form:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃ f(ẑ1, . . . , ẑc, π̂1, . . . , π̂c, Ŝ1, . . . , Ŝc)

We are interested in evaluating the quantile of this random variable corre-
sponding to a specific rejection rate. To do this, we can employ a Monte
Carlo simulation. In principle we could sample directly x∗, if we knew the
true pdf generating the data, and compute the quantiles of the resulting
histogram of the KL divergence. This would mean sampling from each com-
ponent of the mixture the right proportions of points with the true mean and
variances. Since we only have an estimate of such parameters, it is better
to sample directly the values of ẑ2

k with the estimated proportions for all the
components. This would allow to include the uncertainty on the estimated
statistics in the method, given that we would sample ẑ2

k from an F distri-
bution instead that x∗ from the predictive pdf. We use the ML estimate of
the proportions, and we assume that in the mixture case the ML estimates
of the mean and the covariance are distributed as in the unimodal case. We
will see in the experimental part that these simplifying assumptions do not
lead to a drop in performance in practice.

What we need to do is then trying to obtain a sampling scheme where
all the quantities are expressed in terms of ẑ2

k. For the sake of presentation,
let’s focus on two of the components of the mixture that we will denote as
i and j; also, let’s consider the multivariate case. When we sample points
from the i-th component, we need to compute their contribution to the KL
divergence with respect to the other components of the mixture. Sampling
a value of x∗ would correspond to set the value of both ẑ2

i and ẑ2
j , since:

ẑ2
k = (x∗ − m̂k)

TŜ−1
k (x∗ − m̂k) = ẑT

k ẑk ∀k = 1, . . . , c

where we introduced ẑk = Ŝ
−

1

2

k (x∗ − m̂k). The last expression shows also
that sampling directly ẑ2

i , for example, corresponds to selecting values of x∗

that correspond to values of ẑ2
j . Rewriting the expression for ẑ2

j , indeed:

ẑ2
j = ‖ẑj‖

2 = ‖Ŝ
−

1

2

j (x∗ − m̂j)‖
2 = ‖Ŝ

−
1

2

j (x∗ − m̂i + m̂i − m̂j)‖
2

ẑ2
j = ‖Ŝ

−
1

2

j Ŝ
1

2

i Ŝ
−

1

2

i (x∗−m̂i)‖
2+‖Ŝ

−
1

2

j (m̂i−m̂j)‖
2+2(m̂i−m̂j)

TŜ−1
j Ŝ

1

2

i Ŝ
−

1

2

i (x∗−m̂i)
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Table 1: Pseudo-code of the information theoretic novelty detection method for the mix-
ture of Gaussians.

1. set the false positive rate ρ, the number of components c, and the
number of points ν for the Monte Carlo simulation;

2. run the EM algorithm on X with c components;

3. compute KL∗ that is the KL value with the test point x∗ using Eq. 12;

4. procedure Monte Carlo:

(a) for (i = 1, . . . , c) repeat

i. generate νπ̂i values of ẑ2
i using Eq. 2

ii. generate νπ̂i vectors v̂i using Eq. 14
iii. Compute ẑ2

j using Eq. 13 ∀j 6= i

(b) compute the distribution of KL using Eq. 12
(c) return the value θρ corresponding to the (100− ρ)-th quantile of

the distribution of KL

5. if (KL∗ > θρ) then flag x∗ as outlier

6. else flag x∗ as normal

ẑ2
j = ‖Ŝ

−
1

2

j Ŝ
1

2

i ẑi‖
2 + ‖Ŝ

−
1

2

j (m̂i − m̂j)‖
2 + 2(m̂i − m̂j)

TŜ−1
j Ŝ

1

2

i ẑi

Now, let ẑi = ‖ẑi‖v̂i =
√

ẑ2
i v̂i, where we introduced the unit norm vector v̂i:

ẑ2
j = ẑ2

i ‖Ŝ
−

1

2

j Ŝ
1

2

i v̂i‖
2 + ‖Ŝ

−
1

2

j (m̂i − m̂j)‖
2 + 2

√

ẑ2
i (m̂i − m̂j)

TŜ−1
j Ŝ

1

2

i v̂i (13)

The last equation shows that when we sample a particular value of ẑ2
i , we

implicitly set the value of ẑ2
j with some uncertainty given by the direction of

v̂i. This effect can be easily seen on the univariate case. If we sample ẑ2
i , we

lose the information on the side of the Gaussian x∗ is coming from. When
we compute the corresponding ẑ2

j , we need to recover the information about
the sign of (x∗ − m̂i) to compute it correctly. The situation is even worse in
the case of multivariate distributions, where v̂i can assume all the possible
directions in a d-dimensional space.

In our case, we want to generate, using a Monte Carlo simulation, sev-
eral values of ẑ2

i , and use them compute the corresponding ẑ2
j . Using the

last equation for ẑ2
j , we see that we can generate independently ẑ2

i and v̂i.
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Since we want v̂i to be uniformly distributed on the unit d-dimensional hy-
persphere, we can generate them in this way:

v̂i =
1

γ

(

N (m = 0, s2 = 1), . . . ,N (m = 0, s2 = 1)
)

(14)

where γ is the normalization term needed to ensure that v̂i has norm 1.
Given ẑ2

i , it is then possible to compute ẑ2
j for all j 6= i by generating

independently c standardized normal Gaussian variables (for v̂i) and an F
distributed variable (for ẑ2

i ). We can repeat this procedure for all the values
of i running from 1 to c, and compute the values of the random variable
KL[p(x|ŵ)‖p(x|ŵ∗)] in Eq. 12. We can finally compute the quantiles of the
histogram of the sampled values, thus obtaining a threshold on the value
of the KL divergence corresponding to a specific rejection rate. When a
test point has to be analyzed, we compute its information content using
the expression of the KL divergence in Eq. 12 and we compare it with the
threshold to assess whether it is novel or not. This scheme takes explicitly
into account the variability of the mean and the covariance of the components
of the mixture, accommodating their intrinsic variability. Table 1 shows the
steps composing the information theoretic novelty detection method for the
mixture of Gaussians.

4. Experimental Validation

In this section, we evaluate the performance of our approach on both
synthetic and real data. We report first some results on synthetic generated
data. In this case, the parametric form of the true density is assumed known
(Gaussian or mixture of c Gaussians); we therefore compare our approach
with the parametric ML approach. The procedure that we use to evaluate
the performances of the proposed method is the following. We generate a
training set X of cardinality n and a test set of cardinality r = 106 from
the same generating distribution. We set the false positive rate that we are
willing to tolerate, and we run the novelty detection algorithms using X for
the training stage. At this point, we compute the false positive rate on the
test, namely the percentage of test points that we flag as outliers. We repeat
this procedure l = 200 times for the unimodal and l = 100 for the mixture
distributions, and for different cardinalities ofX. Finally, we report the mean
and the standard deviation of the false positive rate over different repetitions
and different values of n. For the sake of presentation, in all the experiments
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Figure 2: Comparison of the average (left) and standard deviation (right) of the false
positive rate over 200 repetitions for the KL and the ML methods on the univariate
Gaussian case.

we set the rejection levels to 3%. In Ref. [11] it is possible to find results
using different threshold levels.

4.1. Gaussian

When the data generating distribution is a Gaussian, we have shown that
our test reduces to a form of the F -test, and therefore has theoretical guar-
antees of optimality. As a sanity check, however, we present some results
showing that the proposed approach does indeed substantially improve on
the ML estimation. For the univariate Gaussian case, we generated the data
using p(x) = N (x|m, s2), with m = 2.3 and s2 = 1.4. The ML approach here
consists in the test of ẑ2 assuming that m̂ and ŝ2 are the true statistics of the
generating distribution; in other words, we assume that ẑ2 ∼ χ(1). In Fig. 2
we can see the comparison between the proposed method (that is equiva-
lent to the F -test) and the ML approach on the average and the standard
deviation of the false positive rate. While the ML approach grossly underes-
timates the false positive rates for small training sets, the KL approach on
average achieves the desired false positive rate for training set as small as
only 5 points. From Fig. 2 (right panel), we notice also that the empirical
standard deviation on the false positive rate is significantly smaller in the KL
case than the ML case, giving a greater reliability as well as higher accuracy
in setting the false positive rate.

In the multivariate Gaussian case, the pdf generating the data is p(x) =
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Figure 3: Comparison of the average (left) and standard deviation (right) of the false
positive rate over 200 repetitions for the KL and the ML methods in the multivariate
Gaussian case.

N (x|m, S); we set the parameters to m = (1.1, 3.2) and S =

(

2 1
1 3

)

. The

ML approach here consists in the test of ẑ2 assuming that m̂ and Ŝ are the
true statistics of the generating distribution; in other words, we assume that
ẑ2 ∼ χ(d). In Fig. 3 we can see the comparison between the proposed method
and the ML approach. Again, the proposed method gives us the expected
false positive rate on average.

4.2. Mixture of Gaussians

We report here the results obtained in the mixture of univariate Gaus-
sians. The generating distribution p(x|w) =

∑c
k=1 πkN (x|mk, s

2
k) has c = 3

components, and the parameters are π1 = 0.35, π2 = 0.40, π3 = 0.25,
m1 = −2.0, m2 = 1.0, m3 = 3.2, s2

1 = 3.0, s2
2 = 0.5, s2

3 = 0.4. The pdf
is plotted in Fig. 4 (left plot). We repeat the same procedure carried out in
the unimodal case. The ML approach consists in computing the quantile of
p(x|ŵ), corresponding to the selected false positive rate, based on the train-
ing set X; then, the test points are flagged as novel when p(x∗|ŵ) is below
that threshold. In Fig. 5, we can see the comparison between the proposed
method and the ML approach.

In the mixture of multivariate Gaussians case, the generating distribu-
tion is p(x|w) =

∑c
k=1 πkN (x|mk, Sk) with c = 3 components; the parame-

ters are π1 = 0.5, π2 = 0.2, π3 = 0.3, m1 = (2.0, 1.3), m2 = (3.2,−3.5),
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Figure 4: Pdfs of the univariate and multivariate mixture of Gaussian used in the experi-
ments comparing KL and ML for novelty detection.
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Figure 5: Comparison of the average (left) and standard deviation (right) of the false
positive rate over 100 repetitions for the KL and the ML methods on the univariate
mixture Gaussian case.
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Figure 6: Comparison of the average (left) and standard deviation (right) of the false
positive rate over 100 repetitions for the KL and the ML methods on the multivariate
mixture Gaussian case.

m3 = (−1.40, 3.15), S1 =

(

3.0 2.1
2.1 2.5

)

, S2 =

(

1.0 −0.3
−0.3 1.0

)

, S3 =
(

2.2 −1.3
−1.3 1.8

)

. The pdf is plotted in Fig. 4 (right plot). The ML ap-

proach consists in computing the quantiles of p(x|ŵ) based on the training
set X; then, the test points are flagged as novel when p(x∗|ŵ) is below the
threshold corresponding to the selected false positive rate. In Fig. 6 we can
see the comparison between the proposed method and the ML approach.

4.3. Real data sets

In this section, we report some results on Iris [12] and Yeast [16] data
sets from the UCI repository [3], and on the Biomed data set [9]. Since
all these data sets are labeled, we use patterns from some of the classes to
compose the normal class, and we use patterns from the remaining classes to
compose the class of the outliers. In all these experiments, we analyze the
performances of our method in terms of scores computed on the confusion
matrix between the real and the predicted class, i.e. normal or outlier. We
repeat the procedure for different subsamples of the normal class.

We compare our method with the ML approach and the Kernel Density
Estimation (KDE) one [18]. In the ML approach we set a threshold on the
probability of the test points by computing the quantiles of the probabilities
of the training points. In the KDE approach, we use a Gaussian kernel with
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standard deviation σ estimated from data in the following way:

σ = γD̄

where D̄ is the mean distance between the patterns in X, and γ is a scaling
factor. The value of γ is chosen on the basis of the performances on the test
data. Because of the limited training set size, we decided to set the threshold
on the probability of the test points by computing the quantiles of the values
of the probability of 104 points generated from the pdf estimated using the
KDE method.

4.3.1. Iris

The data set contains three classes of iris plants (“setosa”, “versicolor”,
and “virginica”) of 50 patterns each. The “setosa” class is linearly separable
from the other two that are overlapped. The features are four: sepal length,
sepal width, petal length, and petal width. We use the union of the classes
“versicolor” and “virginica” as the normal class, and the class “setosa” as
the one containing outliers. In our approach we run the EM algorithm with
the number of components c = 2. In the KDE method, we set γ = 1/7 for
setting the value of the kernel width σ. The results are shown in Fig. 7. The
KL approach performs clearly much better than the ML approach in control-
ling the false positive rate. The improvement over the non-parametric KDE
approach is smaller but still significant for less than 60 training points, where
KDE is at risk of overfitting the data. At the same time, the performance in
terms of overall classification accuracy is almost identical for KL and KDE,
and slightly better than the ML approach.

4.3.2. Yeast

The Yeast data set is composed of 1484 patterns divided in ten classes.
Each class represents the cellular localization site of proteins; each protein is
described by a set of 8 attributes. We decided to consider the union of the
classes “CYT”, “ME3”, “MIT”, and “NUC” as the normal one, and the rest
as the one containing outliers. In this way, the normal class is composed of
1299 patterns, and the outliers class of 185 patterns. Every time we sample n
points from the normal class, we perform PCA in order to project data onto
a lower dimensional space of dimension 2; in this new subspace we perform
novelty detection. This preprocessing is needed to reduce the number of free
parameters; alternatively, one could select other strategies such as imposing
a diagonal covariance structure for each class. In our approach we run the
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Figure 7: Comparison of the average false positive rate (left) and accuracy (right) over
100 repetitions for the KL, ML, and KDE methods on the Iris data set.

EM algorithm with the number of components c = 2, as we noticed that the
projected data could be fit by two Gaussian. In the KDE method, we set
γ = 1/5 for setting the value of the kernel width σ. The results are shown
in Fig. 8. As in the Iris data set, we can observe a very similar performance
in terms of overall accuracy, but a significant improvement in achieving the
desired false positive rate for small training sets.

4.3.3. Biomed

The Biomed data set contains measurements of blood samples of people
involved in a study for the identification of a rare genetic disorder. The pa-
tients are represented by four measurements on their blood samples and are
grouped in two classes, one for the non-carriers and one for the carriers. We
removed from the data set the patterns having missing values; the compo-
sition of the data set results then in 127 patterns for the normal class and
67 for the outliers class. We use the class of the non-carriers as the class of
the normal patterns. In our approach we run the EM algorithm with the
number of components c = 2. In the KDE method, we set γ = 1/4 for set-
ting the value of the kernel width σ. The results are shown in Fig. 9. Again,
performance accuracy is comparable for the three methods, but only the KL
approach achieves the desired false positive rate.
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Figure 8: Comparison of the average false positive rate (left) and accuracy (right) over
100 repetitions for the KL, ML, and KDE methods on the Yeast data set.
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Figure 9: Comparison of the average false positive rate (left) and accuracy (right) over
100 repetitions for the KL, ML, and KDE methods on the Biomed data set.
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5. Conclusion

In this paper we propose a novel method to control the false positives rate
in novelty detection problems. The method is based on estimating the distri-
bution of the information content of a new data point given a training set of
a size n. The rationale for doing this is that it explicitly takes into account
the size of the training set in setting a threshold for novelty. Remarkably, we
show that in the univariate and multivariate Gaussian cases the distribution
of this information content does not depend on the statistics of the data dis-
tribution. This result leads to a natural connection with statistical testing.
In particular, the novelty detection test is able to control the false positive
rate even when the training set size is small.

We also propose an extension of our approach to the mixture of Gaussians
case. The information theoretic approach allows us to use an approximation
scheme for the computation of the information content of a test point, yield-
ing a novelty detection method controlling the false positive rate.

While we believe the method to be novel and potentially useful, it is
important to stress once more its limitations as well. The question we set
ourselves to answer is to produce a novelty detection method that gives good
guarantees of achieving a certain rate of false positives when the training set is
small. As we have seen, the ML method with small training set tends to give
thresholds that typically capture less probability mass than expected, result-
ing in false positives rates well beyond the expected, while non-parametric
methods such as KDE suffer from overfitting and difficulties in setting hy-
perparameters. Our method is quite accurate in setting thresholds which
capture the desired fraction of the mass of the unknown data distribution.
However, the flip-side of this is that, if the distribution of the anomalous
points is not far from the training distribution, it will inevitably let more ab-
normal cases slip through the net. This might result in a lower accuracy in
detecting true positives. In some applications this behavior is not desirable,
since the cost of letting an abnormal case go undetected is much higher than
the cost of raising a false alarm.

The fact that our method performs well in the mixture of Gaussians case
is encouraging, since this gives the chance to model a broader class of dis-
tributions. The method illustrated here relies on using the EM algorithm,
and for high dimensional data or when the distribution involves several com-
ponents it may become computationally demanding or unfeasible for small
training sets. In these cases, non-parametric methods such as [7] are prefer-
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able and may result in better performance. It should be pointed out though
that non-parametric methods generally depend on the value of hyperparam-
eters which can be problematic to determine. It is clearly a very interesting
question whether it is possible to extend this information theoretic approach
to non-parametric methods.
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