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We congratulate the Authors for an interesting and thought provoking
paper that compares different MCMC strategies for the class of generalized
linear Dirichlet process random effects models. In our discussion we focus
on the logistic regression model presented in Section 3.2 and would like to
propose two alternative sampling schemes related to manifold methods that
are quite general and could be employed every time a Metropolis-Hastings
step is used within an MCMC simulation and the target distribution has
closed form Fisher Information (FI). In particular we have implemented
the same sampling scheme as presented by the Authors, but have sampled
the parameters β using Simplified Manifold Metropolis Adjusted Langevin
Algorithm (S-MMALA) and Riemann Manifold Hamiltonian Monte Carlo
(RM-HMC), both presented in [1].

The starting point to apply these methods is the joint density of the
observations and the parameters of interest, given by the likelihood of the
model along with the prior distribution for β. The gradient of the logarithm
of this joint density and the FI (the expectation, taken with respect to the
observed variables y, of the negative Hessian of the log-likelihood) are then
computed.

In order to keep the notation uncluttered, we define the logistic elements

l+i = logistic(Xiβ + (Aη)i) =
1

1 + exp[−Xiβ − (Aη)i]

and similarly

l−i = 1− l+i =
1

1 + exp[Xiβ + (Aη)i]
.

The logarithm of the joint density of observations y and parameters β is:

Lβ =
n∑

i=1

[
yi log(l+i ) + (1− yi) log(l−i )

]
− βTβ

2d∗σ2
.
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Using the property of the logistic function, for which ∇βl
+
i = l+i l

−
i Xi,

the gradient with respect to β is easily evaluated as

∇βLβ =
n∑

i=1

Xi

(
yi − l+i

)
− β

d∗σ2
.

The Hessian of Lβ reads

∇β∇βLβ = −
n∑

i=1

(
l+i l

−
i

)
XiXT

i −
1

d∗σ2
,

where there is no dependence from y anymore. As a consequence, the ex-
pectation with respect to y of the negative Hessian is equal to the negative
Hessian itself, and therefore the FI, along with the negative Hessian of the
prior, is

G =
n∑

i=1

(
l+i l

−
i

)
XiXT

i +
1

d∗σ2

with derivatives with respect to the βr, given by:

∂G

∂βr
=

n∑
i=1

XiXT
i

(
l+i l

−
i

) (
l−i − l

+
i

)
Xir.

In S-MMALA we set an integration step size of ε = 1, whereas for RM-
HMC we set a maximum number of leapfrog steps to 10 with integration step
ε = 0.75. The autocorrelation for the components of β are reported in Fig. 1,
where it can be seen that the autocorrelation is lower than the one obtained
by the Authors and reported in the right panel of Fig. 2 in the paper.
The use of a Metropolis-Hastings step within the Gibbs sampler avoids the
use of any auxiliary variable in sampling β, that in the expression of the
likelihood are effectively integrated out. As pointed out by the Authors in
section 3.3.2, one of the challenges in setting up efficient MCMC methods
using Metropolis-Hastings steps, however, is how to tune the parameters
of the proposal. Here, by using the idea presented in [1], the proposal is
automatically tuned based on the geometry of the underlying statistical
model, whereby only the integration step ε and/or the number of leapfrog
steps need to be tuned. Such a proposal mechanism allows to efficiently
deal with multivariate correlated posterior distributions as confirmed by the
results.
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Figure 1: Autocorrelation of the samples for β obtained by the KS mixture
representation by the Authors (first row or right panel of Fig. 2 in the
paper), S-MMALA (second row), and RM-HMC (third row)
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