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Abstract

We propose a new method to perform novelty detection in dynamical systems governed by linear
autoregressive models. The method extends information theoretic concepts recently introduced for
i.i.d. data to the time-series scenario. It is based on a perturbative expansion whose leading term is
the classical F -test, and whose O( 1

n
) correction can be computed analytically. We demonstrate on

several synthetic examples that the first correction to the F -test can already dramatically improve
the control over the false positive rate of the system.
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1 Introduction

Novelty detection is the problem of identifying unexpected/abnormal events in data sets based solely
on normal examples. Due to its practical importance, the problem has drawn much attention and
many approaches have been proposed, including neural networks [4, 19], extreme value statistic [23],
information theory [10, 9], support vector methods [24, 5], frequentist [25] and Bayesian [28] non-
parametric approaches (for a good review of statistical approaches for novelty detection see e.g. [3,
18]).

Most approaches rely on estimating some characteristics of the data distribution for the normal
class from training data, and then use this distribution to define a measure of how novel a test point
is. Due to the absence of information on the distribution of novel events, any novelty detection system
will necessarily label some normal data as novel (false alarms), and an important characteristic of the
system is its ability to accurately predict the rate with which false alarms will be raised. Depending
on the application, it is important to balance the costs of letting some novelties to be undetected,
and the cost of raising too many false alarms.

Of particular interest is the problem of identifying novelties in time series due to its many ap-
plications ranging from condition monitoring in healthcare [22, 26] to fault detection in engineer-
ing [2, 7, 12, 27]. We can distinguish between two subtly different goals when dealing with novelties.
One is identifying novelties in order to mitigate their effect on parameter estimation. In other words,
the outliers are assumed to contaminate the series under study and the goal is to cope with that in
the modeling stage. In this kind of approach, the learning system can be set up off-line, and is often
referred to outlier detection. In the context of time series, many approaches have been proposed with
this aim [6, 11, 13, 14, 15, 20]. Another goal, instead, is learning a model from a set of data that is
considered normal. In this case, the assumption is that the data used to train the learning system
constitute the basis to build a model of normality and the decision process on test data is usually on-
line and based on the model of normality [1, 8, 16, 17, 21]. Another important distinction is between
event-based and model-based novelties. Event-based novelties, also known as Additive Outliers (AO),
are single observations that deviate from the norm. Model-based novelties, also known as Innovation
Outliers (IO), instead, arise when the system changes its behavior over time. Typically, when a model
is constructed, this problem is translated in the identification of changes in the model parameters.

In this paper, we consider the online identification of event-based novelties in stationary linear
autoregressive models with Gaussian noise. These constitute an important and broadly used class of
dynamical systems where each observation is modeled as a linear combination of previous observations
plus a normally distributed noise term. We approach this problem by recasting the novelty detection
problem for temporal data in the framework of information theory, extending our previous work on
i.i.d. data [10, 9]. We compute an approximation to the distribution of the information content of a
new element of the series by considering the Kullback-Leibler divergence between the estimates of the
distributions of the stochastic term. The approximation is carried out by expanding in powers of the
inverse of the sample size the estimated parameters with respect to their true values. This procedure
yields a modified F -test which is able to accurately control the false positive rate even after a very
short training phase.

The paper is organized as follows: in Section 2 we sketch the derivation of the proposed statistical
test for novelty detection for linear autoregressive models; in Section 3 we show some experiments on
synthetic and real data sets; in Section 4 we draw the conclusions. The full derivation of the method
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is reported in the Appendix.

2 Statistical Testing for AR(d) time series with i.i.d. Gaussian noise

Let’s consider a time series:
X = {x1, x2, . . . , xn}

A linear autoregressive model of order d (AR(d)) describes each observation as a linear combination
of d past observations plus a stochastic term. In other words, an AR(d) model can be written as:

xt+1 =

d
∑

j=1

αjxt+1−j + εt+1 + µ = αT
xt + εt+1 + µ (1)

having introduced the vectors:
xt = (xt, xt−1, . . . , xt−d+1)

The d coefficients of the linear combination are contained in the vector α = (α1, . . . , αd). The terms
εt+1 are i.i.d. and distributed as a N (0, γ2). The value µ allows to model series with non-zero mean.

By imposing the stationarity of E[xt], that is m = E[xt] ∀t:

E[xt+1] =
d
∑

i=1

αiE[xt+1−i] + E[εt+1] + µ

we obtain:
m =

µ

1 −
∑d

i=1 αi

In the proposed approach to novelty detection, we use the Yule-Walker method for estimating the
parameters of the model. In particular, we define the following expectations:

ck = E[(xi+1 − m)(xi+1−k − m)] =
d
∑

j=1

αjc|j−k| ∀k = 1, . . . , d

Introducing the vector c = (c1, c2, . . . , cd)
T and the matrix C:

C =











c0 c1 . . . cd−1

c1 c0 . . . cd−2
...

...
. . .

...
cd−1 cd−2 . . . c0











we see that:
c = Cα

The inversion of the former equation yields:

α = C−1
c
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When we observe a time series X comprising n observations, we can estimate α by using the last
equation by substituting c and C with their respective estimates from the series itself:

ĉk =
1

n − d

n−1
∑

i=d

(xi+1 − m̂)(xi+1−k − m̂)

where m̂ is the mean value of the series. At this point we can pose the problem of estimating the
parameters in this way:

ĉ = Ĉα̂

Once we have α̂, we can estimate the other parameters of the model µ and γ.

µ̂ = m̂(1 −
d
∑

i=1

α̂i)

γ̂2 =
1

n − d

n−1
∑

i=d

(

xi+1 − α̂
T
xi − µ̂

)2

Let’s now consider the update of the parameters when we add a new data point x∗. We denote
such parameters by α̂∗, µ̂∗, and γ̂2

∗ . We are interested in evaluating the information content of x∗ in
the null hypothesis that it has been generated from the same model. In order to do that, we evaluate
the Kullback-Leibler divergence between the distribution of the stochastic term when estimated with
and without x∗. In particular, we are interested in computing:

KL
[

N (ε|0, γ̂2)‖N (ε|0, γ̂2
∗)
]

=

∫

N (ε|0, γ̂2) log

[

N (ε|0, γ̂2)

N (ε|0, γ̂2
∗)

]

dε

The KL divergence between two Gaussian distribution is readily obtained from its definition and
yields:

KL
[

N (ε|0, γ̂2)‖N (ε|0, γ̂2
∗)
]

=
1

2

[

log

(

γ̂2
∗

γ̂2

)

− 1 +
γ̂2

γ̂2
∗

]

= f

(

γ̂2
∗

γ̂2

)

For this reason, from now on we will focus on the ratio γ̂2
∗

γ̂2 as a measure of information content. If
x∗ deviates from the normality, its information content will be unexpectedly high. Setting a threshold
on the distribution of the information content would allow to flag such situations. The threshold can
be set on the basis of the false positive rate that we are willing to tolerate. The information content
measured through the KL divergence will be a distribution with respect to the training set X and
the test point x∗. The threshold can be set on the basis of the quantiles of such distribution.

Let’s analyze the variance of the stochastic term when we add x∗:

γ̂2
∗ =

1

n − d + 1

n
∑

i=d

(

xi+1 − α̂
T
∗ xi − µ̂∗

)2

The strategy that we use to obtain the distribution of the ratio is based on the following steps:
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1. Write the estimated parameters as their true values plus a term that is given by the fact that
the estimation is based on a finite set of observations:

α̂ = α+ ∆α α̂∗ = α+ ∆α∗

µ̂ = µ + ∆µ µ̂∗ = µ + ∆µ∗

m̂ = m + ∆m m̂∗ = m + ∆m∗

2. Substitute the last relations into the computations of γ̂2 and γ̂2
∗ . This allows to show explicitly

their dependency from the stochastic terms εi+1 and ε∗.

3. Compute an approximation of the ratio γ̂2
∗

γ̂2 by using the expansion based on the following leading
term:

1

(n − d)γ̂2
≃

1
∑n−1

i=d ε2
i+1

The ratio becomes a function of this form:

γ̂2
∗

γ̂2
≃

n − d

n − d + 1

[

1 +
∆

∑n−1
i=d ε2

i+1

]

where:
∆ = ε2

∗ + correction terms

4. The leading term of the ratio ∆
P

n−1

i=d
ε2
i+1

is therefore ε2
∗

P

n−1

i=d
ε2
i+1

. We know that:

ε2
∗

∑n−1
i=d ε2

i+1

∼
1

n − d
F(1,n−d)

The leading term of ∆
P

n−1

i=d
ε2
i+1

is ε2
∗

P

n−1

i=d
ε2
i+1

; therefore, the leading term of that ratio is distributed

as an F . Since ∆ contains other correction terms, we decide to approximate the ratio:

∆
∑n−1

i=d ε2
i+1

∼ τ
1

n − d
F(1,n−d)

where τ is a constant that we estimate using the expectation of the correction terms contained
in ∆. In practice, we are fitting an F(1,n−d) on the ratio ∆

P

n−1

i=d
ε2
i+1

. In order to do that, we

find the constant τ allowing to match the expected value of the F -distribution with the actual
distribution of the ratio ∆

P

n−1

i=d
ε2
i+1

. We notice that we are keeping the same degrees of freedom

of the F -distribution as the leading term.

5. The expectation of the correction terms of ∆, up to the first order in 1/n leads to the final
result:

τ = 1 + 2
d

(n − d)
+ 2

µ2

m2

1

n
− 2

1

n

µ

m
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Table 1: Pseudo-code of the information theoretic novelty detection method for autoregressive time
series.

1. set the false positive rate ρ;

2. estimate the parameters of an AR(d) time series on X;

3. compute Fρ that is the (1 − ρ)-th quantile of an F(1,n−d);

4. compute the threshold θρ corresponding to the rejection rate ρ:

θρ =
n − d

n − d + 1

[

1 +
1

n − d
Fρ

(

1 + 2
d

(n − d)
+

2

n
(1 −

∑

i

α̂i)
2 −

2

n
(1 −

∑

i

α̂i)

)]

5. compute the ratio γ̂2
∗

γ̂2 given a new observation x∗;

6. if ( γ̂2
∗

γ̂2 > θρ) then flag x∗ as outlier

7. else flag x∗ as normal

After this analysis, we obtain an F -test for the ratio with a correction that depends on n, d, and
α (since µ/m = 1 −

∑

i αi ). Since we don’t know explicitly α, we use its estimate α̂. Finally, the
test we propose is:

γ̂2
∗

γ̂2
=

n − d

n − d + 1

[

1 +
1

n − d
F(1,n−d)

(

1 + 2
d

(n − d)
+

2

n
(1 −

∑

i

α̂i)
2 −

2

n
(1 −

∑

i

α̂i)

)]

Setting a rejection rate, we can easily compute the quantiles of the ratio in the last equation.
Such quantiles are a simple combination of the quantiles of an F distribution and n, d, and the
model parameters. For large values of n, the correction terms vanish, leaving the F -test only as we
would expect. For small values of n, the correction allows to cope with the fact that the parameter
estimation has been performed on a short time series. We report the steps comprising the novelty
detection method for autoregressive time series in Tab. 1.

3 Experimental Results

3.1 Synthetic data sets

We check the behavior of the proposed method on a set of four synthetically generated linear autore-
gressive time series with different orders and parameters (see Tab. 2).

The goal of this analysis is to see if the proposed method is able to achieve, on average, the
expected false alarm rate. We perform this analysis generating a training time series of length n
and a test series of length 106 drawn from the same model parameters. We use the algorithm in
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d µ γ α

Synth1 1 2 0.1 (0.3)

Synth2 5 1 0.5 (0.18, 0.13, 0.12,−0.14,−0.13)

Synth3 10 −3 0.2 αi ∼ U[−0.1,0.1]

Synth4 50 0.5 0.1 αi ∼ U[−0.1,0.1]

Table 2: Parameters of the four synthetic time series. U[−0.1,0.1] stands for the uniform distribution
in the interval [−0.1, 0.1].

Tab. 1 for all the test points and we compute the number of points of the test series flagged as novel.
Since the test series is generated using the same parameters, the points that are flagged as novel are
false positives. In this way, we obtain the false alarm rate for a specific training series of length n.
We repeat such procedure for different values of n and we average the false positive rate over 1000
repetitions for each value of n; in each repetition we generate a new training series of length n.

We generate the time series using the linear autoregressive model presented in Section 2 (Eq. 1).
We first generate d values from a N (µ/(1 −

∑d
i=1 αi), γ

2). Then we use the recursive formula 1
starting from these d values. We generate a series of 1000 points longer than n, and we discard the
first 1000 values; in this way we expect that the initialization would not affect the generation of the
time series.

We compare the proposed method, that we will denote as the KL method (from Kullback-Leibler),
against two others that we will call ML (from Maximum Likelihood) and F -test. In the ML method,
we consider the following residual:

ε̂∗ = x∗ − α̂
T
xn − µ̂

The assumption is that the estimated parameters are the true ones. In this case, ε̂∗ is compared to
the quantiles of N (0, γ̂2) corresponding to the selected false alarm rate.

The F -test method, instead, is based on the classical statistical F -test, which is the most powerful

test for i.i.d. data. It considers the ratio γ̂2
∗

γ̂2 without the correction term given by the variability in
the parameters.

γ̂2
∗

γ̂2
=

n − d

n − d + 1

[

1 +
1

n − d
F1,(n−d)

]

Samples of 100 points from the four synthetic time series are shown if Fig. 1. The results on the
average false alarm rate are reported in Fig. 2 and 3 for the four sets of parameters generating the
series. The two figures correspond to different selection of false positive rates; in Fig. 2 we selected a
false alarm rate of 1% whereas in Fig. 3 we set it to 10%.

4 Conclusions

In this paper we have introduced a new method for novelty detection in linear autoregressive models
with Gaussian noise. The method is based on an information theoretic criterion for novelty originally
proposed for i.i.d. data in [10, 9]. By expanding the KL divergence in powers of 1

n
, where n is

the number of samples observed in the training set, we obtain a simple first order correction to
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Figure 1: Samples of 100 taken from the four synthetic generated time series.

the classical F -test, which provides a tight control on the false positives rate for short time series.
Extensive experimentation on synthetic data shows that our approach performs consistently better
than competing approaches, with a dramatic difference when the time series is short.

Our approach assumes that the modeling and system identification from data is part of a pre-
processing separately carried out on the training data. In particular, we always tested using the
knowledge of the order of the autoregression. While this knowledge was also used for the competing
methods, ensuring fairness, it would be an interesting area of further research to combine novelty
detection with system identification in a single step. Another potential area of interest would be
to consider higher order corrections in the computation of the KL divergence, which could lead to
significant improvements for short time series.
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A Full derivation of the proposed novelty detection method

In this section we derive explicitly the proposed test for novelty detection. We will start by showing
some preliminary material on autoregressive modeling, and then we will present in detail the steps
we have been following to obtain the statistical test for linear autoregressive time series.

First of all, let’s analyze the following expectations:

ck = E[(xi+1 − m)(xi+1−k − m)]

=
d
∑

j=1

αjE[(xi+1−j − m)(xi+1−k − m)]+

+ E[εi+1(xi+1−k − m)] + E[µ(xi+1−k − m)] + E[m(
d
∑

j=1

αj − 1)(xi+1−k − m)]

=
d
∑

j=1

αjc|j−k| + E[εi+1(xi+1−k − m)]

=
d
∑

j=1

αjc|j−k| ∀k = 1, . . . , d

where we used the facts that m(
∑d

j=1 αj − 1) = −µ and that E[εi+1(xi+1−k − m)] = 0. Introducing

the vector c = (c1, c2, . . . , cd)
T and the matrix C:

C =











c0 c1 . . . cd−1

c1 c0 . . . cd−2
...

...
. . .

...
cd−1 cd−2 . . . c0











we can write the following equation relating the expectations and the coefficients of the model:

c = Cα

Now we present a detailed derivation of the proposed method, following the steps in Section 2.

1. The first step is to write the parameters of the model estimated from data as their true values
plus a term that is due to the fact that the estimate is based on a finite set. We will write both
the parameters estimated on n and n + 1 data in such form:

α̂ = α+ ∆α α̂∗ = α+ ∆α∗

µ̂ = µ + ∆µ µ̂∗ = µ + ∆µ∗

m̂ = m + ∆m m̂∗ = m + ∆m∗

From data we can estimate the entries of the matrix Ĉ in the following way:

ĉk =
1

n − d

n−1
∑

i=d

(xi+1 − m̂)(xi+1−k − m̂)
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where m̂ is the mean value of the series. At this point, we can pose the problem of estimating
the parameters in this way:

ĉ = Ĉα̂

By using the model assumptions, we can rewrite the entries of Ĉ:

ĉk =
1

n − d

n−1
∑

i=d





d
∑

j=1

αjxi+1−j + εi+1 + µ − m̂



 (xi+1−k − m̂)

After some computations, we obtain:

ĉk =
d
∑

j=1

αj ĉ
(−min(j,k))
|j−k| +

1

n − d

n−1
∑

i=d

(

εi+1 − µ
∆m

m

)

(xi+1−k − m̂)

Here we used the notation ĉ
(−min(j,k))
|j−k| to denote the fact that ĉ|j−k| is computed using a batch

of point shifted with respect to ĉ|j−k|.

Ĉ =













c
(−1)
0 c

(−1)
1 . . . c

(−1)
d−1

c
(−1)
1 c

(−2)
0 . . . c

(−2)
d−2

...
...

. . .
...

c
(−1)
d−1 c

(−2)
d−2 . . . c

(−d)
0













From the last equation, we see that:
ĉ = Ĉα+ψ

where we introduced the vector:

ψ =
1

n − d

n−1
∑

i=d

(

εi+1 − µ
∆m

m

)

(xi − m̂e)

If we rewrite the estimate α̂ = α+ ∆α, we get:

∆α = Ĉ−1ψ

We repeat the same procedure when we add a new data point x∗. In this case, we place a star
as subscript in the parameter names, and we see that:

ĉ∗ = Ĉ∗α̂∗ +ψ∗

where we introduced the vector:

ψ∗ =
1

n − d + 1

[

n−1
∑

i=d

(

εi+1 − µ
∆m∗

m

)

(xi − m̂∗e) +

(

ε∗ − µ
∆m∗

m

)

(xn − m̂∗e)

]

14



If we rewrite the estimate α̂∗ = α+ ∆α∗, we get:

∆α∗ = Ĉ−1
∗ ψ∗

It is convenient now to write ψ∗ and Ĉ∗ in an incremental fashion.

Before doing that let’s write the incremental forms for the parameters µ and m.

µ̂ = m̂(1 − α̂T
e) = (m + ∆m)(1 −αT

e − ∆αT
e)

µ̂ = µ − m∆αT
e + ∆m

[

1 − (α+ ∆α)Te
]

= µ + ∆µ

We define:
m̂∗ = m̂ + δm

We notice that:

δm =
x∗ − m̂

n + 1
=

1

n + 1
(ε∗ +αT

xn + µ − m̂)

and
∆m − ∆m∗ = m̂ − m − m̂∗ + m = −δm

Going back to the analysis of α, we consider:

ψ∗ = ψ + ∆ψ

Rewriting ψ∗, we obtain:

ψ∗ =
1

n − d + 1

[

n−1
∑

i=d

(

εi+1 − µ
∆m

m
− µ

δm

m

)

(xi − m̂e − δme)+

(

ε∗ − µ
∆m

m
− µ

δm

m

)

(xn − m̂e − δme)

]

=
1

n − d + 1

[

(n − d)ψ − δme

n−1
∑

i=d

(

εi+1 − µ
∆m

m

)

− µ
δm

m

n−1
∑

i=d

(xi − m̂∗e)+

(

ε∗ − µ
∆m∗

m

)

(xn − m̂∗e)

]

Therefore:

∆ψ =
1

n − d + 1

[

−δme

n−1
∑

i=d

(

εi+1 − µ
∆m

m

)

− µ
δm

m

n−1
∑

i=d

(xi − m̂∗e) +

(

ε∗ − µ
∆m∗

m

)

(xn − m̂∗e) −ψ

]

Concerning Ĉ∗, we analyze its entries:

(ĉ∗|j−k|)
(−r) =

1

n − d + 1

n
∑

i=d

(xi+1−j+1−r − m̂∗)(xi+1−k+1−r − m̂∗)
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where r = min(j, k) and j, k = 1, . . . , d.

(ĉ∗|j−k|)
(−r) =

1

n − d + 1

n
∑

i=d

(xi+1−j+1−r − m̂ − δm)(xi+1−k+1−r − m̂ − δm)

=
1

n − d + 1

(

n−1
∑

i=d

(xi+1−j+1−r − m̂)(xi+1−k+1−r − m̂) − δm

n
∑

i=d

(xi+1−j+1−r − m̂)

−δm
n
∑

i=d

(xi+1−k+1−r − m̂) +
n
∑

i=d

δm2 + (xn+1−j+1−r − m̂∗)(xn+1−k+1−r − m̂∗)

)

=
n − d

n − d + 1
ĉk +

n − d

n − d + 1
δm2 −

δm

n − d + 1

(

n−1
∑

i=d

(xi+1−j+1−r + xi+1−k+1−r − 2m̂)

)

+
1

n − d + 1
(xn+1−j+1−r − m̂∗)(xn+1−k+1−r − m̂∗)

Finally, we get the following expression:

Ĉ∗ =
n − d

n − d + 1
Ĉ + ∆Ĉ

where:

∆Ĉ =
n − d

n − d + 1
δm2

ee
T −

δm

n − d + 1

(

n−1
∑

i=d

(exT
i + xie

T − 2m̂ee
T)

)

+
1

n − d + 1
(xn − m̂∗e)(xn − m̂∗e)T

=
n − d

n − d + 1
δm2

ee
T −

δm

n − d + 1
Z +

1

n − d + 1
(xn − m̂∗e)(xn − m̂∗e)T

=
1

n − d + 1

[

(n − d)δm2
ee

T − δmZ + (xn − m̂∗e)(xn − m̂∗e)T
]

=
1

n − d + 1
A

where the matrices A and Z have been introduced for the sake of convenience and their definition
is clear from the derivation. Using a Woodbury matrix identity, we see that Ĉ∗:

Ĉ−1
∗ =

n − d + 1

n − d
Ĉ−1 −

(n − d + 1)

(n − d)2
Ĉ−1

(

A−1 +
Ĉ−1

n − d

)−1

Ĉ−1

With abuse of notation, we write:

Ĉ−1
∗ = Ĉ−1 + ∆Ĉ−1

where we denoted with ∆Ĉ−1 the correction of the inverse of Ĉ to obtain the inverse of Ĉ∗:

∆Ĉ−1 = −
(n − d + 1)

(n − d)2
Ĉ−1

(

A−1 +
Ĉ−1

n − d

)−1

Ĉ−1 +
1

n − d
Ĉ−1
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2. Now we can go back to the analysis of the variance of the stochastic term. We start from
its definition and we substitute the estimates of the parameters by the true values plus the
correction terms:

γ̂2 =
1

n − d

n−1
∑

i=d

(

xi+1 − α̂
T
xi − µ̂

)2

=
1

n − d

n−1
∑

i=d

(

xi+1 −α
T
xi − µ − ∆αT

xi − ∆µ
)2

=
1

n − d

n−1
∑

i=d

(

εi+1 − ∆αT
xi − ∆µ

)2

=
1

n − d

n−1
∑

i=d

(

εi+1 − ∆αT
xi + m∆αT

e − ∆m
[

1 − (α+ ∆α)Te
])2

=
1

n − d

n−1
∑

i=d

(

εi+1 − ∆αT
xi + m∆αT

e − ∆m + ∆m(α+ ∆α)Te
)2

=
1

n − d

n−1
∑

i=d

(

εi+1 − ∆αT(xi − m̂) − ∆m(1 −αT
e)
)2

=
1

n − d

n−1
∑

i=d

(

εi+1 −ψ
TĈ−1(xi − m̂) − ∆m

µ

m

)2

=
1

n − d

n−1
∑

i=d

(εi+1 − ϕi)
2

For convenience we introduced:

ϕi = ψTĈ−1(xi − m̂) + ∆m
µ

m

Following the same derivation, we rewrite the variance when we consider n + 1 points:

γ̂2
∗ =

1

n − d + 1

n
∑

i=d

(

xi+1 − α̂
T
∗ xi − µ̂∗

)2

=
1

n − d + 1

[

n−1
∑

i=d

(

εi+1 −ψ
T
∗ Ĉ−1

∗ (xi − m̂∗) − ∆m∗
µ

m

)2
+
(

ε∗ −ψ
T
∗ Ĉ−1

∗ (xn − m̂∗) − ∆m∗
µ

m

)2
]

=
1

n − d + 1

[

n−1
∑

i=d

(εi+1 − ϕ∗
i )

2 + (ε∗ − ϕ∗
n)2
]

3. As we saw in Section 2 the information content of a new data point is a function of the ratio:

γ̂2
∗

γ̂2
=

n − d

n − d + 1

∑n−1
i=d (εi+1 − ϕ∗

i )
2 + (ε∗ − ϕ∗

n)2
∑n−1

i=d (εi+1 − ϕi)
2
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Now we write ϕ∗
i in an incremental fashion ϕ∗

i = ϕi + ∆ϕi, obtaining:

γ̂2
∗

γ̂2
=

n − d

n − d + 1

[

1 +
∆

(n − d)γ̂2

]

where we defined ∆ as:

∆ = ε2
∗ + ϕ2

n +
n
∑

i=d

∆ϕ2
i + 2

n
∑

i=d

ϕi ∆ϕi − 2
n−1
∑

i=d

εi+1∆ϕi − 2ε∗ϕn − 2ε∗∆ϕn

In order to obtain a tractable test for novelty detection, we decide to approximate the ratio
∆

(n−d)γ̂2 . Analyzing the denominator (n − d)γ̂2, we see that:

(n − d)γ̂2 =
n−1
∑

i=d

(εi+1 − ϕi)
2

(n − d)γ̂2 =
n−1
∑

i=d

ε2
i+1 +

n−1
∑

i=d

ϕ2
i − 2

n−1
∑

i=d

εi+1ϕi

a =
n−1
∑

i=d

ε2
i+1 b =

n−1
∑

i=d

ϕ2
i − 2

n−1
∑

i=d

εi+1ϕi

The quantity a represents the main contribution to (n − d)γ̂2, while b is small when n is large.
Therefore, we can use a Taylor expansion of the following ratio (for b small):

∆

a + b
≃

1

a
∆ −

b

a2
∆ + . . .

For the moment we will use only the leading term ∆/a, thus obtaining:

∆

(n − d)γ̂2
≃

ε2
∗

∑n−1
i=d ε2

i+1

+
ϕ2

n +
∑n

i=d ∆ϕ2
i + 2

∑n
i=d ϕi ∆ϕi − 2

∑n−1
i=d εi+1∆ϕi − 2ε∗ϕn − 2ε∗∆ϕn

∑n−1
i=d ε2

i+1

4. The leading term of the ratio ∆
P

n−1

i=d
ε2
i+1

is therefore ε2
∗

P

n−1

i=d
ε2
i+1

. We know that:

ε2
∗

∑n−1
i=d ε2

i+1

∼
1

n − d
F(1,n−d)

We approximate the ratio:
∆

∑n−1
i=d ε2

i+1

∼ τ
1

n − d
F(1,n−d)

where τ is a correction term that we estimate using the expectation of ∆. In practice, we want
to find the constant τ allowing to match the expected value of the F -distribution with the actual
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distribution of the ratio ∆
P

n−1

i=d
ε2
i+1

. We notice that we keep the same degrees of freedom of the

F -distribution as the leading term. Computing the expectation of both the sides, we obtain:

E

[

∆
∑n−1

i=d ε2
i+1

]

= τ
1

n − d − 2

given that the expected value of an F distributed variable with degrees of freedom 1 and n− d
is (n − d)/(n − d − 2). The constant τ can be computed as:

τ = (n − d − 2)E

[

∆
∑n−1

i=d ε2
i+1

]

Given the form of ∆, we see that:
τ = 1 + z

where:

z = (n − d − 2)E

[

ϕ2
n +

∑n
i=d ∆ϕ2

i + 2
∑n

i=d ϕi ∆ϕi − 2
∑n−1

i=d εi+1∆ϕi − 2ε∗ϕn − 2ε∗∆ϕn
∑n−1

i=d ε2
i+1

]

5. Now we compute an approximation of the expectations in z retaining only the terms up to the
first order in 1/n. Before doing that, we introduce a notation that will help us to keep the
notation uncluttered:

δ = e
TĈ−1

e

δi = e
TĈ−1(xi − m̂e)

δji = (xj − m̂e)Ĉ−1(xi − m̂e)

ξ = e
TĈ−1

(

A−1 +
Ĉ−1

n − d

)−1

Ĉ−1
e

ξi = e
TĈ−1

(

A−1 +
Ĉ−1

n − d

)−1

Ĉ−1(xi − m̂e)

ξji = (xj − m̂e)TĈ−1

(

A−1 +
Ĉ−1

n − d

)−1

Ĉ−1(xi − m̂e)

The variables ϕi can be written as:

ϕi = ψTĈ−1(xi − m̂e) + ∆m
µ

m

=
1

n − d

n−1
∑

j=d

(

εj+1 − µ
∆m

m

)

(xj − m̂e)TĈ−1(xi − m̂e) + ∆m
µ

m

=
1

n − d

n−1
∑

j=d

(

εj+1 − µ
∆m

m

)

δji + ∆m
µ

m
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The variables ϕ∗
i can be written as:

ϕ∗
i = ψT

∗ Ĉ−1
∗ (xi − m̂∗) + ∆m∗

µ

m

We are interested in an incremental form for ϕ∗
i :

ϕ∗
i = ϕi + ∆ϕi

ϕ∗
i = (ψ + ∆ψ)T

(

Ĉ−1 + ∆Ĉ−1
)

(xi − m̂e − δme) + ∆m∗
µ

m
The increments ∆ϕi read:

∆ϕi = − δmψTĈ−1
e +ψT∆Ĉ−1(xi − m̂∗e) + ∆ψTĈ−1(xi − m̂∗e)

+ ∆ψT∆Ĉ−1(xi − m̂∗e) + δm
µ

m

Let’s compute each term of ∆ϕi.

−δmψTĈ−1
e = −δm

1

n − d

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

δr

= −
ε∗

(n − d)(n + 1)

[

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

δr

]

−
αT

xn + µ − m̂

(n − d)(n + 1)

[

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

δr

]

ψT∆Ĉ−1(xi − m̂∗e) = −
n − d + 1

(n − d)3

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

(ξri − δmξr)

+
1

(n − d)2

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

(δri − δmδr)

= −
n − d + 1

(n − d)3

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

ξri

+
n − d + 1

(n − d)3(n + 1)

[

ε∗

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

ξr

+(αT
xn + µ − m̂)

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

ξr

]

+
1

(n − d)2

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

δri

−
1

(n − d)2(n + 1)

[

ε∗

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

δr

+(αT
xn + µ − m̂)

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

δr

]
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∆ψTĈ−1(xi − m̂∗e) =
1

n − d + 1

[

−δm
n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

(δi − δmδ)

−µ
δm

m

n−1
∑

r=d

(δri − δm(δi + δr) + δm2δ)

+

(

ε∗ − µ
∆m∗

m

)

(δni − δm(δn + δi) + δm2δ)

−ψTĈ−1(xi − m̂∗e)
]

= −
ε∗ +αT

xn + µ − m̂

(n − d + 1)(n + 1)

[

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

(δi − δmδ)

]

−
(ε∗ +αT

xn + µ − m̂)

(n − d + 1)(n + 1)

µ

m

[

n−1
∑

r=d

(δri − δm(δi + δr) + δm2δ)

]

+
1

n − d + 1

[(

ε∗ − µ
∆m∗

m

)

(δni − δm(δn + δi) + δm2δ)

]

−
1

n − d + 1

[

ψTĈ−1(xi − m̂∗e)
]

∆ψT∆Ĉ−1(xi − m̂∗e) =
1

(n − d)2
δm

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

(ξi − δmξ)

+
1

(n − d)2
µ

δm

m

n−1
∑

r=d

(ξri − δm(ξr + ξi) + δm2ξ)

−
1

(n − d)2

(

ε∗ − µ
∆m∗

m

)

(ξni − δm(ξi + ξn) + δm2ξ)

+
1

(n − d)2
ψTĈ−1

(

A−1 +
Ĉ−1

n − d

)−1

Ĉ−1(xi − m̂∗e)

−
1

(n − d)(n − d + 1)
δm

n−1
∑

r=d

(

εr+1 − µ
∆m

m

)

(δi − δmδ)

−
1

(n − d)(n − d + 1)
µ

δm

m

n−1
∑

r=d

(δri − δm(δr + δi) + δm2δ)

+
1

(n − d)(n − d + 1)

(

ε∗ − µ
∆m∗

m

)

(δni − δm(δi + δn) + δm2δ)

−
1

(n − d)(n − d + 1)
ψTĈ−1

(

A−1 +
Ĉ−1

n − d

)−1

Ĉ−1(xi − m̂∗e)
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The last term is:

δm
µ

m
=

x∗ − m̂

n + 1

µ

m

We see that:

δm
µ

m
=

ε∗
n + 1

µ

m
+

1

n + 1

µ

m
(αT

xn + µ − m̂)

Now we have everything we need to compute an approximation of z by substituting all the
variables with their expectations. Since many terms involve odd powers of ε∗ or εi+1 that
have expected value zero, we simply ignore them. We approximate δij as the product of two
multivariate Gaussian distributed variables in d dimensions with identity covariance matrix:

E[δji] ≃ 0 E[δ2
ji] ≃ d i 6= j

E[δii] ≃ d E[δ2
ii] ≃ d(d + 2)

E[
∑

r

δr] ≃ 0 E[
∑

r

ξr] ≃ 0

Also, we make the following approximations:

E[δm2] ≃
var(x)

(n + 1)2
≃

γ2

(n + 1)2

E[∆m2] ≃
var(x)

n
≃

γ2

n

E

[

1
∑n−1

i=d ε2
i+1

]

≃
1

(n − d − 2)γ2

since the inverse of the sum of n − d squares of Gaussian variables is distributed as an inverse
chi square with expectation 1/(n − d − 2).

We recall that:

z = (n − d − 2)E

[

ϕ2
n +

∑n
i=d ∆ϕ2

i + 2
∑n

i=d ϕi ∆ϕi − 2
∑n−1

i=d εi+1∆ϕi − 2ε∗ϕn − 2ε∗∆ϕn
∑n−1

i=d ε2
i+1

]

We analyze each term of the last equation, neglecting all the terms in order higher than the
second in 1/n (there is a multiplication in front of z that will make the correction in order 1/n).

E

[

ϕ2
n

∑n−1
i=d ε2

i+1

]

≃
d

(n − d)2
+

d

(n − d)(n − d − 2)n

µ2

m2
+

µ2

m2n(n − d − 2)

≃
d

(n − d)2
+

µ2

m2n(n − d − 2)

E

[

∑n
i=d ∆ϕ2

i
∑n−1

i=d ε2
i+1

]

≃
µ2

m2

(n − d + 1)

(n − d − 2)(n + 1)2
+

d

(n − d + 1)(n − d − 2)

22



E

[

2
∑n

i=d ϕi ∆ϕi
∑n−1

i=d ε2
i+1

]

≃
2d

(n − d)2

E

[

−2
∑n−1

i=d εi+1∆ϕi
∑n−1

i=d ε2
i+1

]

≃ −
2d

(n − d)2

E

[

−2ε∗ϕn
∑n−1

i=d ε2
i+1

]

≃ 0

E

[

−2ε∗∆ϕn
∑n−1

i=d ε2
i+1

]

≃ −2
1

(n + 1)(n − d − 2)

µ

m

We obtain the final result:

z =

[

d(n − d − 2)

(n − d)2
+

µ2

m2n
+

µ2

m2

(n − d + 1)

(n + 1)2
+

d

(n − d + 1)
− 2

1

(n + 1)

µ

m

]

That can be further approximated as:

z ≃

[

2
d

(n − d)
+ 2

µ2

m2

1

n
− 2

1

n

µ

m

]
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