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Abstract

Genomic data, and more generally biomedical data, are usually characterized by high dimen-
sionality. A feature selection procedure can attain the two objectives of highlighting the relevant
variables (genes) and improving classification results. In this paper we propose a wrapper approach
to gene selection in classification of gene expression data using Simulated Annealing coupled with
supervised classifiers. The proposed approach can perform global combinatorial searches through
the space of all possible input subsets, can handle cases with numerical, categorical or mixed
inputs, and is able to find (sub-)optimal subsets of inputs giving very low classification errors.
The method has been tested on publicly available bioinformatics data sets, and also on mixed
type data, using Support Vector Machines or Classification Trees. Moreover we propose some
heuristics able to speed-up the convergence. The experimental results highlight the ability of the
method to select minimal sets of relevant genes.
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1 Introduction

Genomic data are often characterized by small cardinality and high dimensionality and can include
some features that are not relevant for the discrimination among classes. This is the case, e.g., with
gene expression data obtained from DNA microarrays where each dimension or feature corresponds
to a gene expression data. Usually, some (or most) genes are not relevant for discrimination between
classes and subsets of genes are mutually redundant. This is inherent in the experiment design: a
lot of candidate genes are probed in a microarray experiment, and those related to the phenomenon
under study are to be identified.

For those data, a gene selection procedure could highlight the relevant genes and improve the
classification results at the same time.

Gene selection is a specific instance of a more general problem, which is called input or variable
selection [15]. Note that our main goal is selection of relevant subsets of genes rather than perfor-
mance optimization or dimensionality reduction. Therefore features (derivative variables obtained by
transformation of raw input variables) are not of interest. Input selection algorithms can be broadly
divided into two categories [5, 18]: filters and wrappers. Filters evaluate the relevance of each in-
put (subset) using the data set alone, while wrappers invoke a learning algorithm to evaluate the
quality of each input (subset). Both approaches, filters and wrappers, usually involve combinatorial
searches (often only local) through the space of possible input subsets. Wrappers are usually more
computationally demanding, but they can be superior in accuracy when compared with filters.

The strategy for variable selection, and the underlying assumptions about the input variables
themselves, is also a design choice. Variables can be selected as a subset with aggregate discriminative
power [29, 24], or ranked for their individual relevance [36, 14, 21]. In the latter case variables are
assumed to be weakly correlated, so that their individual importance can be unambiguously assessed.
In the former case, it is assumed that all possible interaction patterns can occur, and this forces a
much more complex search space. However, ranks can also be used as an indication to evaluate a
subset selection process, in an in-between approach.

The definition of relevance itself can be subject to variations [18], and the goal of the procedure
can also be different, with some approaches aiming at comprehensive set (find all significant variables
[16, 20, 24]) and others at explanatory sets (this is generally the case with all gene selection tasks,
where one wants to identify the most important genes only, as, e.g., in [13]). Again, an in-between
approach is possible [36] when an explicit cost function includes both performance and complexity
(number of variables) terms. In this case, a continuum of possible balances is provided by the relative
weighting of these terms.

To summarize, the gene selection problem is here stated as the problem of selecting small subsets
of input variables achieving high discriminating power but with good explanatory properties.

These hypotheses form the basis of the method we are presenting in this paper, which is based on
optimizing the combination of performance and complexity costs. We propose a wrapper approach to
gene selection in classification of gene expression data. The combinatorial search is performed using
the Simulated Annealing (SA) method [17] which is a global search method technique derived from
Statistical Mechanics and is based on the Metropolis algorithm [22], while the learning algorithms
employed in the paper are the Support Vector Machine [8] and the Decision Tree [6].

In the next section, we present the Simulated Annealing technique and describe how we applied
it to input selection problem. In Sect. 3, some measures of the input relevance are illustrated. The
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experimental validation of the proposed input selection method and some heuristics for its speeding-up
are shown in Sect.s 4 and 5. Sect. 6 concerns the discussion and conclusions.

2 SA for gene selection

Table 1: Simulated Annealing Input Selection (SAIS) algorithm.

1. Initialize the parameters;

2. Initialize the binary mask g and the temperature T ;

3. Train and test the classifier and evaluate the generalized system energy E;

4. do

5. Initialize f = 0 (number of iterations), h=0 (number of success);

(a) do

(b) Increment the number of iterations f ;

(c) Perturb the binary mask g;

(d) Train and test the classifier and evaluate the generalized system energy E;

(e) Generate a random number rnd in the interval [0,1];

(f) if rnd < P (∆E) then

i. Accept the new binary mask g;

ii. Increment the number of success h;

(g) endif

(h) loop until h ≤ hmin and f ≤ fmax;

6. update T = αT ;

7. loop until h > 0;

8. end.

The method for input selection we propose makes use of Simulated Annealing (SA) technique [17]
that is a global search method technique derived from Statistical Mechanics. SA is based on the
Metropolis algorithm [22] proposed to simulate the behavior and small fluctuations of a system of
atoms starting from an initial configuration, by the generation of a sequence of iterations. In the
Metropolis algorithm each iteration is composed by a random perturbation of the actual configuration
and the computation of the corresponding energy variation (∆E). If ∆E < 0 the transition is un-
conditionally accepted, otherwise the transition is accepted with probability given by the Boltzmann
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Table 2: Parameters of SAIS algorithm and their values selected for the experiments presented in
Sect.s 4 and 5.

Symbol Meaning Exper A Exper B Exper C

s0 Number of inputs initially selected 20 20 5

p Number of initializations of g for 10000 10000 10000
estimating the initial value of T

[wmin, wmax] Interval for w [1, s] [1, s] [1, s]

[vmin, vmax] Interval for v [1, s0/2] [1, s0/2] [1, d − s]

λ Regularization coefficient 10−2 2 · 10−3 10−4, 10−2

fmax Maximum number of iterations 10000 2000 100
for each T

hmin Minimum number of successes 1000 200 30
for each T

α Cooling parameter 0.9 0.9 0.9

γ Aging constant 0.98 0.98 0.98

distribution:

P (∆E) = e−∆E/KT (1)

where K is the Boltzmann constant and T the temperature.
In SA this approach is generalized to the solution of general optimization problems [17, 25] by

using an ad hoc selected cost function (generalized energy) instead of the physical energy. SA works
as a probabilistic hill-climbing procedure searching for the global optimum of the cost function [28].
The temperature T takes the role of a control parameter of the search area (while K is usually set to
1), and is gradually lowered until no further improvements of the cost function are noticed. SA can
work in very high-dimensional searches, given enough computational resources.

SA has been already applied to classification of gene expression data from DNA microarray [1]
with the aim of training perceptrons. In this paper we apply SA to the input selection problem
with the aim of aggregating an ideally minimal subset of inputs with strong discriminative power.
The approach we adopted is to constrain the search space to subsets of variables, and to evaluate
a compound cost function combining performance and complexity scores, as previously indicated.
The method is described in the following, whereas in Tab. 1 a step-by-step outline of the proposed
Simulated Annealing Input Selection (SAIS) algorithm is presented.

Let d be the dimensionality of the input space and g = (g1, g2, . . . , gd) be a binary mask repre-
senting the system state (configuration), where each bit gi (with i = 1, . . . , d) corresponds to either
selection (gi = 1) or deselection (gi = 0) of an input. The number of bits of g set to 1 is denoted by
s (i.e., s ≡ |g| =

∑d
i=1

gi) .
At Steps 1, 3, and 5, the classifier is trained in the sub-space of selected inputs as defined by

the vector mask g and the Classification Error ε is evaluated using a cross-validation technique, e.g.,
leave-one-out or k-fold validation [31]. The generalized energy E is defined as a linear combination
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of ε and of the number of selected inputs s:

E = ε + λ s (2)

Note that the introduction of the number of selected inputs s in the computation of E penalizes
situations in which the number of selected inputs is too high. The trade-off between size of input space
and accuracy is controlled by the parameter λ (penalization coefficient). If λ = 0 we favor solutions
with low classification error ε, without taking the dimensionality of the input space into account,
while high values of λ can led to solutions with few input variables, but with a large classification
error.

Moreover, due to the redundancy of groups of input variables [19] and to curse of dimensionality
problem [4], often a good tuning of the penalization coefficient can allow us to find a very small input
space supporting a small classification error.

The vector mask g (Step 2) is initialized by randomly setting s0 bits to 1 and leaving the remaining
d − s0 to 0.

Moreover, as suggested in [25], at Step 2 the initial temperature T is obtained as the mean
variation of generalized energy (∆E) over an assigned number p of random initializations of g.

A perturbation or move (Step 5c) is obtained in the following way: w bits of g set to 1 are
switched to 0, and v bits of g set to 0 are switched to 1, where the values of w and v are extracted
with uniform distributions, respectively in the (integer) intervals [wmin, wmax] and [vmin, vmax].

In Tab. 2, the list of the parameters to be initialized at Step 1 is presented together with the
values selected for the experiments that we will describe in Sect. 4. Namely, s0 and p are used at
Step 2 for the initialization of g and T ; [wmin, wmax] and [vmin, vmax] constrain the size of move (Step
5c); λ is used for computing the Generalization Energy E (Steps 3 and 5d); fmax, hmin, α are used
for the SA scheduling (Steps 5 and 6); and γ is used for estimating the input relevances (see Sect. 3).

As already stated, the SAIS algorithm aims to find a small subset of variables, with high discrim-
inant capability, by exploiting the redundancy of subsets of variables and penalizing solutions with
high input dimensionality. To this aim s0 should be selected of the order of the estimated input di-
mensionality, while intervals [wmin, wmax] and [vmin, vmax], regulating the variability of perturbation,
can be changed during the algorithm to favor solutions with small input space.

SAIS is a computationally intensive algorithm, but it is able to work with both numerical and
categorical inputs. It is also worth noting that, due to the random nature of SA, each time we run
the SAIS algorithm we can find a new subset of s inputs from the original d.

3 Evaluating input relevance

As noticed in Sect. 1, many definitions of input relevance have been presented in the literature, with
different meaning, motivation, and depending on the numerical or categorical type of inputs [18, 16,
20, 24, 13, 36]. Here we present some new definitions that apply both to numerical and categorical
variables.

SA is an algorithm implementing a stochastic time-varying dynamical system where the state
vector evolves in the direction of the minima of the generalized energy function. In our case during
the evolution of the SAIS algorithm, the bits set in the state vector g will be related to the more
relevant inputs with increasing probability.

5



The inputs which are more relevant for classification should appear soon in the set of bits of
g set to 1 and will be as more frequent as the temperature decreases. In order to estimate the
relevance of inputs, we can include in SAIS an aging algorithm. To this end, we can define a vector
r = (r1, r2, . . . , rd). At Step 1 of the SAIS algorithm, we set ri = 0 ∀i. Every time a perturbation is
accepted according to the Boltzmann distribution (Step 5.f), we update r as follows:

r = γr + g (3)

where γ is the aging constant chosen in the interval [0,1].
At the end of the SAIS the vector r measures how long each input has been selected in the last few

successful moves of the algorithm. We give to vector r an interpretation as vector of input relevances
(aged relevance).

It is worth noting that measures based on similar aging algorithms are used also in other contexts
such as implementation of policies in computer operating systems [32], sensor networks [12], and
chaotic systems dynamics [3].

We also introduce the concepts of voted relevance and of soft-voted relevance defined as the sums
of the input masks g and of vectors r obtained at the ends of an assigned number m of SAIS runs,
i.e., as, respectively,

∑

j gj and
∑

j rj (with j = 1, 2, ..., m).
It is worth noting that none of those relevance notions are exploited for making decisions in the

SAIS algorithm.

4 Experimental validation of SAIS

SAIS algorithm has been implemented in R [27] under the Linux operating system. The experimental
validation consisted of three experiments using publicly available data sets with numerical inputs
(Experiments A and B) and mixed numerical and categorical inputs (Experiment C) that will be
described in the next subsections.

In the former two cases we used as the classification algorithm the Support Vector Machine
(SVM) [35], that is one of most popular classifier, as implemented by Chung et al. [7]. We chose
to work with linear kernels and with a cost parameter fixed to C = 1 in the SVM functional in order
to avoid model selection on several parameters and to make it possible to obtain a clear biological in-
terpretation of results. In the latter case we used the RPART decision tree algorithm as implemented
in R by Ripley [6][26].

Tab. 3 lists the principal characteristics of data sets, and the learning machine used in each
experiment. The selected values for the initialization of parameters (Step 1 of SAIS) are shown in
Tab. 2.

In all the experiments described in this section, the w bits of g set to 1 to be switched to 0 and
the v bits of g set to 0 to be switched to 1, at the move step of SAIS (Step5c), are selected using a
uniform distribution in the (integer) interval [1, s], i.e., with probability

pi =
1

s
(Uniform Selection), (4)

and, similarly, the v bits of g set to 0 to be switched to 1, are selected using an uniform distribution
in the interval [1, d − s], i.e., with probability
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Table 3: Characteristics of data sets and of the learning machines used in the experiments.

Exper A Exper B Exper C

Number of numerical inputs 7129 2000 6
Number of categorical inputs 0 0 7
Number of instances 38 62 303
Learning machine Linear SVM Linear SVM RPART

pi =
1

d − s
(Uniform Selection). (5)

In Sect. 5 we will show some modifications to this basic approach to system state perturbation,
aimed at accelerating the convergence of SAIS.

4.1 Experiment A

The first data set we considered is Leukemia data by Golub et al. [13]1. The Leukemia problem
consists in characterizing two forms of acute leukemia, Acute Lymphoblastic Leukemia (ALL) and
Acute Mieloid Leukemia (AML). The original work proposed both a supervised classification task
(class prediction) and an unsupervised characterization task (class discovery). The data set contains
38 instances for which the expression level of 7129 genes has been measured with the DNA microar-
ray technique (the interesting human genes are 6817, and the others are controls required by the
technique). Of these instances, 27 are cases of ALL and 11 are cases of AML. Moreover, it is known
that the ALL class is composed of two different diseases, since they are originated from different cell
lineages (either T-lineage or B-lineage). In the data set, ALL cases are the first 27 objects and AML
cases are the last 11. Therefore, in the presented results, the object identifier can also indicate the
class (ALL if id ≤ 27, AML if larger). Using those data (with dimensionality d = 7129) Golub et
al. [13] selected a set of 50 most relevant genes.

Given the scarcity of instances in the sample, for the computation of the Classification Error ε
we applied the SAIS algorithm using a leave-one-out resampling technique.

In Tab. 4 we show the results of 10 independent runs of SAIS using the assumptions in Tab. 2 and
SVM with linear kernel, as already noticed. For each run we started SAIS with a mask g with 20 bits
set to 1 and ended with a set of two genes (ranked in Tab. 4 in order of aged relevance) with perfect
discriminant ability (i.e., ε = 0). Those results have been obtained with a penalization parameter
λ = 10−2. In the next experiments (B and C) we will be not able to find a value of λ with those
characteristics, but we will have to select λ in order to handle the trade-off between accuracy and
input space size.

In Fig. 1(a1) and Fig. 1(a2) we plot the behavior of the classification error ε and the number
of selected genes versus the iteration number of the algorithm in a run of SAIS. Each iteration
corresponds to a different value of temperature T (i.e. Step 5 and Step 6 in Tab. 1). Those graphs

1http://www.broad.mit.edu/cancer/software/genepattern/datasets/.
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Table 4: Genes selected in each run of the SAIS algorithm on the Leukemia data set. ε is the
classification error and m is the number of misclassified instances.

Run 1 Run 2 Run 3 Run 4 Run 5

ε; m 0; 0 0; 0 0; 0 0; 0 0; 0

Gene 1 M55150 at U50136 rna1 at M23197 at X95735 at Y12670 at

Gene 2 HG3523-HT4899 s at M58603 at X85116 rna1 s at M10321 s at U29607 at

Run 6 Run 7 Run 8 Run 9 Run 10

ε; m 0; 0 0; 0 0; 0 0; 0 0; 0

Gene 1 M63138 at X95735 at M23197 at X95735 at M55150 at

Gene 2 U29091 at D14659 at M24470 at HG3454-HT3647 at HG3523-HT4899 s at

Table 5: Genes selected in each run of the SAIS algorithm on the Colon data set. For each run we
show also ε (classification error) and m (number of misclassified instances).

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

ε; m 0.048; 3 0.048; 3 0.048; 3 0.081; 5 0.048; 3 0.032; 2 0.016; 1 0.065; 4 0.081; 5 0.016; 1

Gene 1 J02854 R36977 Z50753 X12369 Z50753 R87126 H08393 H64489 X05276 H49870

Gene 2 M24069 M95627 X66365 D21261 L06175 R88749 M84490 U37012 L37112 M28219

Gene 3 R49719 U05875 H20505 T47601 T69748 M11220 L06175 H65355 X13810 X66503

Gene 4 T74896 T40637 T51493 T56690 L22214 R27813 M23254 J03824 T74257 R54097

Gene 5 X79683 H67764 R54818 L10413 R74208 M95678 L09159 – R49565 T74257

Gene 6 M22488 R38636 X56597 U10117 – H49515 T81492 – M23115 M13450

Gene 7 H81802 R90908 H05966 H02630 – T86444 H06061 – U33849 L06111

Gene 8 R01755 – U31525 M38690 – M63239 D26129 – M76378 D14663

Gene 9 H13292 – M83664 D12686 – U30498 U27699 – R55778 R07007

Gene 10 K03474 – U33849 L14076 – H05814 T74257 – – T89164

Gene 11 R49565 – M94250 – – T54341 X78817 – – R36977

Gene 12 H07899 – – – – – – – – U07802

Gene 13 T95063 – – – – – – – – M23419

Gene 14 X77548 – – – – – – – – T89175

Gene 15 U09646 – – – – – – – – T85165

Gene 16 T67433 – – – – – – – – T78489

Gene 17 – – – – – – – – – H09137

Gene 18 – – – – – – – – – U37012

Gene 19 – – – – – – – – – X73424

Gene 20 – – – – – – – – – R37276

Gene 21 – – – – – – – – – H56077

illustrate the ability of SAIS to minimize both the Classification Error ε and the number of relevant
inputs s.

We notice that each selected pair of genes (Tab. 4) contains at least one gene found by Golub et
al. [13]. Moreover, ranking the genes following their soft-voted relevance degrees, we found in the first
three positions X95735 at, M23197 at and M55150 at, that are also in the set selected by Golub et
al. [13]. The the most relevant gene (i.e., X95735 at) has been also highlighted by Guyon et al. [14].

4.2 Experiment B

The second data set on which we performed input selection is the Colon data set by Alon et al. [2].
This is an oligonucleotide microarray analysis of gene expression in 40 tumor and 22 normal colon
tissue instances, used to characterize the role and behavior of more than 6500 human genes in colon
adenocarcinoma. The normal instances were obtained from a subset of the tumor instances, so
that they are well paired to the corresponding positive instances. The actual data set used in the
experiments2, contains only the 2000 genes most clearly expressed in the experiments, those with the

2http://microarray.princeton.edu/oncology/affydata/index.html.
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Figure 1: Classification error ε and Number of selected inputs s versus the iteration number for Run
4 of Experiment A on the Leukemia data set ((a1), (a2)), Run 7 of Experiment B on the Colon data
set ((b1), (b2)), and Run 1 of Experiment C on the Cleve data set ((c1), (c2)).
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Table 6: Inputs selected in each run of the SAIS algorithm on Cleve data set using as penalization
parameter λ = 10−2 in the generalized energy. For each run we show also ε (classification error) and
m (number of misclassified instances).

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

ε; m 0.18; 55 0.18; 55 0.18; 54 0.18; 55 0.18; 55 0.15; 45 0.18; 55 0.18; 54 0.18; 55 0.18; 55

Input 1 ncol ncol ncol ncol ncol ncol ncol ncol ncol thal

Input 2 thal chest ches thal thal thal thal chest chest ncol

Input 3 chest thal induced chest chest induced chest induced thal chest

Input 4 – – oldpeak – – Sex – oldpeak – –

Input 5 – – – – – Age – – – –

Input 6 – – – – – bps – – – –

Table 7: Inputs selected in each run of the SAIS algorithm on Cleve data set using as penalization
parameter λ = 10−4 in the generalized energy. For each run we show also ε (classification error) and
m (number of misclassified instances).

Run 11 Run 12 Run 13 Run 14 Run 15 Run 16 Run 17 Run 18 Run 19 Run 20

ε; m 0.16; 48 0.15; 44 0.14; 42 0.17; 50 0.16; 49 0.14; 42 0.15; 44 0.15; 45 0.14; 42 0.15; 44

Input 1 ncol ncol ncol ncol ncol ncol ncol ncol ncol ncol

Input 2 induced thal Age induced induced induced thal thal induced thal

Input 3 Sex Sex induced Sex thal Sex induced induced thal induced

Input 4 bps induced thal bps ecg thal Sex ecg Sex Sex

Input 5 thal Age Sex slope Sex Age ecg fbs Age ecg

Input 6 Age bps bps – oldpeak bps Age Sex bps bps

Input 7 chol ecg – – Age – bps bps – Age

Input 8 – – – – bps – – Age – –

highest minimal intensity across the 62 tissue instances.
In all runs of SAIS on this data set, the classification error ε has been evaluated using 6-fold

cross-validation, as in this case we have a larger (although still small in absolute terms) data base
than in previous experiment.

In Tab. 5 we show the results of 10 independent runs of SAIS using the assumptions in Tab. 2 and
SVM with linear kernel, as already noticed. For each run we obtained a different small set ranging
from 4 to 21 genes with good discriminant ability, that in Tab. 5 are presented ranked following their
aged relevance degree.

In Fig. 1(b1) and Fig. 1(b2) the behavior of the classification error ε and the number of selected
genes are plotted versus the iteration number of the algorithm.

For Colon data set the selection of a penalization parameter λ = 10−3 allows us to obtain a small
classification error ε. Greater values of λ lead to the selection of a smaller input space at the cost of
an higher ε.

Run 7 selected 11 genes and made only one misclassification on the data base. Moreover, the gene
H08393, obtained in this run, has been also highlighted by Guyon et al. [14].

4.3 Experiment C

The third experiment has been performed on the Cleve mixed data set which is modified from the
Detrano’s heart disease data set which contains 76 clinic attributes for each patient. Cleve data set
is composed by 303 instances (patients) with six categorical and eight numerical inputs3. We focus

3http://www.ics.uci.edu/ mlearn/databases/heart-disease/cleve.mod.
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Table 8: Classification error ε obtained by several algorithms on Cleve data set.
Model mean standard deviation

C5.0 [11] .272 .005
MoE I [33] .232 .039
MLP [30] .209 .037
MoE II [33] .204 .029
C5.0+Boost [11] .202 .005
Rprop [30] .182 .040
SAIS λ = 10−2 .178 .010
ADTree [11] .170 .006
5-NN OS [34] .170 .010
Stump Boost [11] .166 .008
MoE [30] .161 .036
SAIS λ = 10−4 .149 .010

on the problem of finding a set of features able to distinguish only between health and disease.
We chose this data base, even if it is not a Bioinformatics data set, as it has been well studied in

the literature and can allow us to make a deeply comparison on a mixed data set of the performances
of SAIS with those of previously studied models.

In all the runs of SAIS on the Cleve data set, the classification error ε has been evaluated using
10-fold cross-validation, as even in this case the size of the data base is small. In Tab.s 6 and 7
we show the results of 20 independent runs of SAIS using the assumptions in Tab. 2 and a RPART
classification tree [6, 26] as a classifier. The classification tree has been employed here as it is able to
handle both numerical and categorical inputs.

In the runs of SAIS shown in Tab. 6 we chose a penalization coefficient λ = 10−2, while in those
of Tab. 7 we used λ = 10−4. In both tables the inputs selected are ranked following the valuation of
their aged relevance.

Using the value of the penalization coefficient λ = 10−2, we obtained solutions with higher classifi-
cation error ε and few selected inputs. With λ = 10−4, we obtained solutions with better accuracy and
higher dimension of the selected input space. In the former case the first inputs, ranked using both
soft voted and voted relevances, were: ncol (number of vessels colored), thal (norm, fixed, rever), chest
(chest pain type, namely: angina, abnang, notang, asympt), and induced (exercise induced angina).
In the latter case the first inputs, ranked using voted relevance, were: sex, induced, ncol, and ecg
(resting ecg, namely: norm, abn, hyper); while, ranking according to soft voted relevance, the first
inputs were: ncol, chest, induced, and thal.

In Fig. 1(c1) and Fig. 1(c2) the behavior of the classification error ε and the number of selected
inputs are plotted versus the iteration number of the algorithm in run number 11.

In Tab. 8 we compare the accuracies obtained with SAIS with those of other models reported
in the literature, namely C5.0 [11], online Mixture of Expert classifier (MoE I) [33], Multi-Layer
Perceptron using a softmax activation function (MLP) [30], Mixture of Expert with softmax self-
organizing gate function (MoE II) [33], C5.0 with boosting [11], perceptron trained using Resilient
Backpropagation (RProp) [30], Alternating Decision Tree boosting algorithm (ADTree) [11], 5-NN
with Optimal Scoring (5-NN OS) [34], boosting algorithm generating trees with a single layer of
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Table 9: Time duration in hours of input selection methods on Leukemia database, averaged on 10
runs (with the exception of RFE). Results obtained on a Pentium IV 1900 MHz personal computer.

Method mean standard deviation

RFE [14] 2.3 –
SAIF US 14.2 4.0
SAIF SPS (ϕ = 0) 10.9 3.4
SAIF SPS (ϕ = 0.25) 13.4 3.8
SAIF SPS (ϕ = 0.50) 13.0 6.6
SAIF SRS (α = 2) 9.1 2.2
SAIF SRS (α = 3) 5.3 1.6
SAIF SRS (α = 4) 5.7 1.8
SAIF STS (c = 2) 6.0 3.5
SAIF STS (c = 5) 4.6 1.1
SAIF STS (c = 8) 4.1 1.2

decision nodes (StumpBoost) [11], and Mixtures of local Experts (MoE) [30]. The shown results
demonstrate that the proposed input selection procedure allows a simple classification tree to perform
better than most ensemble methods.

5 Speeding-up SAIS

Optimization techniques are evaluated both on the precision in finding the solutions to the problem,
and on their converging speed. Concerning SAIS algorithm, it shows a time cost sometime comparable
with other wrapper methods, even if Simulated Annealing is computationally intensive.

Let us consider, e.g., the method by Guyon et al. [14] which performs feature selection by Recursive
Feature Elimination (RFE). At each iteration a new linear SVM is trained and the inputs with the
smallest weight is eliminated. In order to rank the entire set of thousand of features it must run
an SVM for each dimension of the input space starting from thousands to one. In SAIS, instead,
when we work on only numerical inputs and using SVMs, we have much more (hundreds of thousand)
SVMs to train, but each learning procedure is fast, as it must perform classification in a space of
small dimension (only some tens of inputs).

In Tab. 9 we present a comparison of convergence times obtained using RFE [14], SAIS with
Uniform Selection (US), already illustrated in the previous sections, and some heuristics we have
implemented to speed-up SAIS and we shall show in this section. The results are obtained on
Leukemia data by Golub et al. [13] on a Pentium IV 1900 MHz personal computer and averaged on
10 runs of each algorithm.

The heuristics we propose apply to the case of numerical inputs and learning methods based on
linear discriminant f = w · x (where x is the vector of inputs and w is the vector of parameters or
weights), such as linear SVM.

In this case the sensitiveness of the discriminant function to the input xi, can be evaluated as:

∂f(x)

∂xi
=

∂(wixi)

∂xi
= wi (Absolute input sensitiveness), (6)
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or, better, as:

w2
i

∑

j w2
j

(Normalized input sensitiveness). (7)

Inputs sensitiveness is often exploited by wrapper methods for feature selection as notion of
input relevance [36, 14, 21]. As noticed in Sect. 1, this implies that variables are assumed to be
weakly correlated, so that their individual importance can be unambiguously assessed, and no input
redundancy of subsets of features is taken into account.

SAIS implements a combinatorial search on the all possible input subspaces on the basis of the
penalized classification error that is an evaluation more robust both to noise data and on numerical
approximations than those of input sensitiveness. However, in case of numerical inputs and linear
discriminant classifiers, we can embedded input sensitiveness evaluations in the algorithm, as a broad
knowledge on the solution of the problem.

In particular, advice from input sensitiveness can be useful in the perturbation step of SAIS (Step
5c). For example, we can make use of input normalized sensitiveness for selecting the w bits of g in the
interval [1, s] to be switched for 1 to 0 in the Step 5c of SAIS, instead of using Uniform Selection as in
Sect. 4. We have implemented the following selection techniques borrowed from Genetic Algorithms
literature (see, e.g., [23]):

1. Sensitiveness Proportionate Selection (SPS). A bit of mask g set to 1 is select to be switched
to 0 with probability

pi =
ϕ

s
+

1 − ϕ

s − 1

(

1 −
w2

i
∑s

j=1
w2

j

)

, with 0 ≤ ϕ ≤ 1. (8)

2. Sensitiveness Ranked Selection (SRS). A vector of ranks of inputs ρ = (ρ1, ρ2, ..., ρd) is obtained
by sorting on the ground of their normalized relevance. Then each bit of mask g set to 1 is
select to be switched to 0 with probability

pi =
αρi

∑s
j=1

αρj
, with α ≥ 0. (9)

3. Sensitiveness Tournament Selection (STS). To select a bit of mask g set to 1 to be switched to 0,
c bits (competitors) are sampled from those set to 1 using an uniform probability distribution.
Then, only the bit corresponding to the input with the lowest normalized sensitiveness is selected
and switched to 0.

In SPS if ϕ = 0 we have the basic perturbation with Uniform Selection used in Sect. 4, while if
ϕ = 0 we have the pure roulette-wheel algorithm used in Genetic Algorithms. When 0 < ϕ < 1, the
selection is done in an intermediate way. Nevertheless, as shown in Tab. 9, the best speeding-up has
been obtained for the pure roulette-wheel algorithm (i.e., ϕ = 0).

We can notice that using SPS, the values of normalized input sensitiveness, after few iterations
tend to become very similar for all inputs, independently on the value assigned to ϕ. In Genetic

13



Algorithms literature, this phenomenon is called the problem of stagnation, and is known to slow-
down convergence, as best solutions are favored only slightly with respect to the worst ones. Remedies
to stagnation proposed in the literature are ranked and tournament selections.

Using STS, stagnation is avoided at the cost of a reordering overhead, as it happens in Genetic
Algorithms. From Tab. 9, we notice a significant speeding-up with respect SPS, especially with α = 3
or 4. Note that when α = 1, STS becomes the the basic perturbation with Uniform Selection used in
Sect. 4.

STR can be thought of as a noisy version of rank selection. Even in this case we can can avoid
stagnation, but no global reordering is required. STR permits to obtain the fastest runs of SAIS, as
shown in Tab. 9, especially with a large number of competitors (c).

We point out that when we apply those heuristics to Step 5c of SAIS, we make use of a generic
knowledge on the solutions of the combinatorial search problem. If the advice is correct, we obtain a
speeding-up of SAIS, otherwise the move will be rejected at Step 5f. However, the results obtained
with those heuristics are comparable with those obtained with SAIS US and illustrated in Table 4.

6 Discussion and Conclusions

This paper describes SAIS, a variable subset selection method of the wrapper type, with application
to the problem of gene selection. The method is based on Simulated Annealing [17] and therefore it
implements a global search strategy. The output of the SAIS algorithm is a relevant subset of genes,
where relevance is experimentally assessed by using a supervised classifier during the evaluation phase
of the algorithm [8][6] and in addition it provides estimates of individual relevances of genes within
the output subset.

The obtained results compare very favorably with the literature. On the 7129-dimensional
Leukemia data set by Golub et al. [13] the proposed input selection method is able to find for each
run a subset of two genes, that is sufficient to achieve null classification error with the leave-one-out
procedure. Different pairs of genes were obtained from different runs, and the most frequent ones are
also in the list found by Golub.

On the 2000-dimensional Colon data set by Alon et al. [2] the proposed input selection method
finds solutions with a low number of selected genes and a very good discriminant capability.

Even on the Cleve mixed data set, the proposed input selection method gives good accuracy in
classification, performing better than many ensemble of classifiers.

These results can be obtained semi-automatically with few parameter selection iterations, and the
method performs classification and input selection and ranking jointly.

Due to the type of problem addressed, which implies long data acquisition and preparation times,
the relatively long run times required by a SA procedure are not considered a limiting factor for
the method. Of course, this does not apply to optimal solutions (which are found in theoretically
unbounded time), but to good suboptimal solutions. In this realistic case, the optimization can
be stopped according to one of the usual criteria (threshold on the objective function, number of
iterations, or others).

Let’s consider, e.g., the method by Guyon et al. [14] which performs feature selection by recursive
feature elimination. At each iteration a new linear SVM is trained and the inputs with the smallest
weight is eliminated. In order to rank the entire set of thousand of features it must run an SVM for
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each dimension of the input space starting from thousands to one. In SAIS, instead, we have many
more classifiers to train. However, each one performs classification in a space of small dimension
(some tenths of inputs). Moreover, the convergence SAIS can be accelerated using the heuristics
inspired from the Genetic Algorithms we have presented.

Moreover, it is worth noting that the proposed algorithm can work either with numerical or
categorical inputs depending on the associated learning machine and on the application. For example
in [10] we run SAIS method associated to Fuzzy c-means on the Leukemia data set by Golub et al. [13]
obtaining minimal sets of inputs able to perform unsupervised clustering with null representation
error.

The stochastic nature of the SA method implies that at each run a different subset of genes can
be found, provided that it complies with some quality requirement, in our case implemented by the
classification performance of a suitable classifier. Having more than one gene sets at the output, the
method can possibly find other applications, e.g. in systems biology, where interaction networks and
cause-effect relationships are investigated.
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