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Abstract

We present a novel approach to online change detection problems based on estimating the
expected information content of a new data point. We show that in the Gaussian and multi-
variate Gaussian cases an approximate expression can be derived which does not depend on the
estimated statistics of the training distribution, but only on the size of the training set. This
allows an accurate estimate of the expected false positive rate even when the size of the training
set is small. We analyze the connections with statistical testing in the case of the Gaussian, and
we propose an approximation scheme to the case of the mixture of Gaussian.
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1 Introduction

Novelty detection is a fundamental task in machine learning which plays a prominent role in many
application domains, from fault detection [2, 7, 9] to monitoring medical conditions [15, 19]. In its
classic formulation, novelty detection is the identification of data that deviate from the norm using
only knowledge from normality. In order to do this, one needs to estimate some characteristics of the
distribution of the normal data. This could be a full estimation of the statistics of the training set
distribution or, usually, some weaker form of this, such as estimating quantiles of the distribution.
This then allows the user to fix a threshold for acceptance of new data while having a degree of
control over the number of false alarms raised.

Several approaches have been considered to tackle this problem including neural networks [13, 4],
extreme value statistic [16], support vector methods [17, 6] and non-parametric Bayesian approaches
[20] (for a good review of statistical approaches for novelty detection see e.g. [3, 12]). In general, for
reasonably sized training sets, most of these approaches achieve very good performance both in terms
of accurately identifying novelty and in terms of containing the number of false positives. However,
there are many applications where the size of the training set is very small, or, equivalently, where
the user requirements prohibit a long training phase for the system. Typical examples might include
monitoring the health conditions of patients or the lifestyle of elderly people, where a system which
only requires a short training would clearly be advantageous.

The problem encountered when deploying techniques based on density estimation when the train-
ing set is extremely small is that, in general, there is little control over the inherent variability
introduced by the sparsity of the training data. In kernel density estimation, for example, it is diffi-
cult to select the bandwidth of the kernel in order to model data properly avoiding the problem of
overfitting. On the other hand, parametric approaches usually rely on strong distributional assump-
tions thus limiting their applicative domain. For some distributions, however, it is possible to achieve
important theoretical results on the tests for novelty detection. Unfortunately, the class of distribu-
tions having this property is very limited; for a relevant set of distributions there are no statistical
tests with such theoretical guarantees.

In this report, we recast the novelty detection problem in the framework of information theory.
Our approach focuses on computing the distribution of the information content carried by a new data
point. Namely, given a distributional assumption for the training data, we compute the Kullback-
Leibler (KL) divergence between the density estimated with the training set and the density estimated
with the training set and the test point. We show that the KL divergence in the univariate and
multivariate Gaussian cases does not depend on the estimated statistics of the training distribution;
we also emphasize the connections with statistical testing in such cases. In particular, the resulting
method is able to control the false positive rate even when the training set is small. Finally, we extend
the information theoretic approach to the case of the mixture of univariate and multivariate Gaussian.
Such extension allows to deal with more general forms of generating distributions, thus leading to a
method that can be employed in a wider range of applications [10]. We present an approximation
scheme for the computation of the KL divergence between the density estimated with the training
set and the density estimated with the training set and the test point. From there, we introduce an
efficient Monte Carlo scheme yielding an algorithm able to control the false positive rate in the case
of the mixture of Gaussian.

The report is organized as follows: in Section 2 we report some basic concepts on statistical
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testing, in Section 3 we present our method, in Section 4 we show the results on some simulated data,
and we report the conclusions in Section 5.

2 Statistical Testing

Let X = {x1, . . . , xn} be a set of points xi ∈ R generated from an unknown probability density
function (pdf) p(x). In data modeling, it is usual to try to approximate the pdf generating the data.
This is a crucial point in many application domains, and several approaches have been proposed. We
can broadly divide such approaches into parametric and non-parametric. In this report, we will focus
on parametric density estimation as a way to approach the novelty detection problem. In particular,
we parameterize the pdf p(x) generating the points xi by means of a set of parameters w. In other
words, we assume xi ∼ p(xi|w). In data modeling, we are interested in inferring the parameters w

on the basis of the observed data set X.
From a frequentist point of view, we can consider the likelihood of having observed the particular

set X given the assumed model, and we can maximize it with respect to the parameters w. Formally,
under the i.i.d. assumption for the points xi, the likelihood reads:

L = p(X|w) =
n
∏

i=1

p(xi|w)

The density estimation problem, then, reduces to the maximization of L with respect to w:

ŵ = arg max
w

{p(X|w)}

This is the so called Maximum Likelihood (ML) approach. In such approach, the predictive probability
distribution results in p(x|ŵ). More sophisticated approaches could take into account the variability
of the parameters given the fact that their estimate is based on a limited set of points; we will discuss
this issue in more detail in the next section.

From a Bayesian perspective, instead, the observed data are used to update our prior belief about
the values assumed by the parameters w. In this framework, we encode our prior belief in a prior
probability distribution p(w) over w. As in the ML approach, we can write the likelihood of having
observed X given the parameters w:

L = p(X|w) =
n
∏

i=1

p(xi|w)

Now, we can use Bayes’ theorem to compute the probability density function of the parameters after
having observed X. Since this pdf is computed after having observed X, it is usually called posterior
distribution, and results in:

p(w|X) =
1

Z
p(X|w)p(w)

where Z is a normalization constant ensuring that the posterior is a proper pdf, i.e.:

Z =

∫

p(X|w)p(w)dw
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The Bayesian analysis offers an interesting view of the data modeling problem. In particular, it yields
a probabilistic measure on how likely are the values of the parameters, given that we observed X. At
this point, the predictive probability for a new point x is p(x|w), and we can attempt to marginalize
out the parameters, thus obtaining:

p(x|X) =

∫

p(x|w)p(w|X)dw

It is important to remark that in many cases Bayesian data analysis is not straightforward. Often,
the direct computation of some of the integrals involved in such analysis is not trivial. Approximation
schemes have been proposed to overcome this limitation, but often come to a computational cost [5].

Let’s now consider the problem of novelty detection, where we want to decide whether a new test
point, that we will denote as x∗, is an outlier or not. After the density estimation part, we can use the
predictive pdf as a starting point for the test. Intuitively, regions of the space where the predictive
probability is low would indicate a low probability of observing data points there. Therefore, it is
reasonable to identify such regions on the basis of some statistical means. In the case of univariate
distributions, we can identify these regions by using the quantiles, corresponding to specific rejection
levels, of the predictive distribution. In other words, it is possible to set a specific amount of the
area on the tails of the predictive distribution that we want to consider as a “rejection region”.
Corresponding to this area, we can identify the regions of the real line where the total probability of
a point coming from the predictive distribution is equal to the selected amount. We notice here that
we select the regions on the basis of the predictive pdf that has been built from X, that is a finite-size
set. This would give a deviation from the results that we expect. We also notice that, even if we
know the true predictive pdf, setting a rejection rate corresponds to setting the rate of normal points
that we are willing to misclassify as outliers. Such situation gives rise to false positives, and occurs
when we flag normal pattern as outliers. In this scenario, setting a specific rejection rate corresponds
to setting the false alarm rate that we are willing to tolerate.

It is important to remark that the problem of finding rejection regions can be difficult. For some
univariate pdfs belonging to the exponential family, the computation of rejection regions is feasible,
since there is a closed form for computing the quantiles. In the case of some important univariate
pdfs such as mixture models, however, the identification of rejection regions is not straightforward.
Also, and most important, for almost all the multivariate distributions, there is no closed form for
the computation of rejection regions based on quantiles. In all these cases, a way to identify these
regions could be based on sampling techniques. This means that we can sample from the predictive
pdf, estimated from data, and compute the quantiles of the histogram of the sampled points. When
a new test point has to be analyzed, its pdf value is compared against the threshold obtained from
the computed quantiles. It is worth noting, however, that in multivariate cases the amount of data
required to sample the data space can be large. In some cases, it is possible to overcome this limitation
by transforming the test for novelties from multivariate to univariate, as we will see shortly in the
case of the multivariate Gaussian.

2.1 Univariate Gaussian

Let’s assume that data are generated from a univariate Gaussian with mean m and variance s2, i.e.,
p(x) = N (x|m, s2). In a frequentist setting, we can use the ML approach to compute the statistics
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m̂ and ŝ2, that result in:

m̂ =
1

n

n
∑

i=1

xi ŝ2 =
1

n

n
∑

i=1

(xi − m̂)2

These quantities are the sample mean and the sample variance, and are the ML estimates for the
mean and the variance. In this framework, we could consider p(x|m̂, ŝ2) as the predictive pdf, and
we could select the rejection regions on its basis. When the set X has low cardinality, however, this
in not a good choice, since the values of the statistics can strongly deviate from the true values. In
particular, the sample mean m̂ ∼ N (m, s2

n ), and the sample variance ŝ2 ∼ s2

n χ
2
(n−1). We can try to

exploit these facts to obtain a better way to identify the rejection regions.
Let’s study the distribution of the following random variable:

ẑ2 =
(x∗ − m̂)2

ŝ2

Assuming that x∗ comes from the same distribution as the training points, we can study the distri-
bution of ẑ2. Since m̂ ∼ N (m, s2

n ), x∗ ∼ N (m, s2), and x∗ and m̂ are independent, the difference:

(x∗ − m̂) ∼ N

(

0, s2
(

1 +
1

n

))

Its square is a random variable distributed as:

(x∗ − m̂)2 ∼ s2
(

1 +
1

n

)

χ2
(1)

We also know that:
nŝ2 ∼ s2χ2

(n−1)

Then, dividing the last two expressions, we see that [1]:

ẑ2 ∼

(

n+ 1

n− 1

)

F(1,n−1)

We can use this result to test if a new point is an outlier by checking that the ẑ2 variable, computed
for a test point, is below the selected quantile of the F distribution. We note that this test is valid
for all the Gaussian distributions, since it does not depend on the estimated statistics. In the rest
of this report, we will refer to this novelty detection method as the F -test. We emphasize here that
under the null hypothesis that x∗ comes from the same N (m, s2), the distribution of ẑ2 is known
exactly. Therefore, the F -test is the optimal test in the sense that allows to set precisely the rejection
regions corresponding to the selected false positive rate. It is possible to come to similar conclusions
in the case of a Bayesian analysis too. The F distribution results from the square of a Student-t
distribution, that is obtained by marginalizing out the parameters from the predictive pdf in the
Bayesian inference for the Gaussian [5].
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2.2 Multivariate Gaussian

We can extend the F -test to the multivariate case. Let X = {x1, . . . ,xn} be the training set, where
each data point xi ∈ R

d is drawn from a multivariate d-dimensional Gaussian N (x|m, S) with mean
m and covariance matrix S. The multivariate counterpart of the ẑ2 score is the following:

ẑ2 = (x∗ − m̂)TŜ−1(x∗ − m̂) (1)

In order to find the distribution of this score, we use a result from statistics [1] stating that given
y ∼ N (m, aS), and A ∼Wν(S) (a ∈ R, S a positive semidefinite covariance matrix, ν the number of
degrees of freedom of the Wishart distribution W ):

yTA−1y ∼
ad

ν − d+ 1
F(d,ν−d+1)

Given that we know how the sample mean and the sample covariance are distributed, we see that the
distribution of ẑ2 is:

ẑ2 ∼ (n+ 1)
d

n− d
F(d,n−d) (2)

It is important to notice that this is a univariate test for a multivariate pdf, that leads to a considerable
computational advantage. We analyze directly ẑ2 for a test point, comparing it with the quantiles of
the F distributed random variable. Again, this test is independent from the estimated statistics of
the pdf.

3 Kullback-Leibler Divergence for Novelty Detection

Let X = {x1, . . . , xn} be the training set and let x∗ be a new point to test for anomaly (the gener-
alization to test sets with multiple points is trivial). We assume that the training set is generated
from a probability distribution p(x|w) of known functional form but unknown parameters. Using
this parametric assumption, one can easily obtain an estimate ŵ of the parameters from the training
set via maximum likelihood (ML) and then fix a threshold for acceptance of the new point x∗ based
on the estimated statistics. We will refer to this method as the ML method; notice that the ML
statistics summarize all the information of the training set, and do not explicitly depend on its size.

We instead propose to update the ML estimates of the parameters using the test point and then
compute the similarity of the two distributions obtained. The rationale for doing this is that the new
estimates ŵ∗ will depend explicitly on the old estimates, on the test point and on the size of the
training set. Intuitively, for small training sets we will expect the information content of a new point,
even drawn from the same distribution, to be quite high. As a measure of (dis)similarity between the
two distributions we will use the Kullback-Leibler (KL) divergence

KL [p(x)‖q(x)] =

∫

p(x) log

[

p(x)

q(x)

]

dx. (3)

It can be easily shown that the KL divergence is always non-negative and is zero if and only if the
two distributions coincide. However, it is not a metric, since is not symmetric and does not obey to
the triangular inequality.
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We note here that a similar approach has been proposed for the computational theory of sur-
prise [11]. In that approach, the KL divergence measures the dissimilarity between prior and posterior
in Bayesian inference. In some sense it shares some similarities with the method we are proposing
here, but we intend to use such approach in novelty detection applications. Also, in Ref. [8] there
is a connection between Neyman-Pearson lemma and the KL divergence. In statistics, the Neyman-
Pearson lemma gives an important result on the power of a statistical test, through the likelihood
ratio analysis, where two hypotheses have to be tested. In novelty detection, such tests are not
straightforward, since usually we infer normality from a data set, and we don’t know the model of
what constitutes the alternative hipothesis.

3.1 Univariate Gaussian distribution

Let’s assume the training data is generated by a Gaussian probability distribution p(x|m, s2) =
N (x|m, s2) with mean m and variance s2, and let m̂ and ŝ2 be their respective ML estimates. When
a new point x∗ is drawn, the estimates of the mean and the variance can be updated in the following
way:

m̂∗ =
n

n+ 1
m̂+

1

n+ 1
x∗ ŝ2

∗
=

n

n+ 1
ŝ2 +

n

(n+ 1)2
(x∗ − m̂)2 (4)

To evaluate the amount of information carried by the new point x∗, we compute the KL divergence
between the probability distribution N (x|m̂, ŝ2) and the updated one N (x|m̂∗, ŝ

2
∗
). The KL divergence

between two normal distributions with parameters (m1, s
2
1) and (m2, s

2
2) is readily obtained from

Eq. (3) as

KL(m1,m2, s
2
1, s

2
2) =

1

2

[

log

(

s22
s21

)

− 1 +
s21
s22

+
(m1 −m2)

2

s22

]

. (5)

Inserting the update rule (4) one obtains

KL(y, ẑ2) =
1

2

[

log
(

1 + y + yẑ2
)

− 2 log (1 + y) − 1 +
1 + y

1 + y + yẑ2
+ y

]

(6)

where we have defined y = 1
n and ẑ2 = (x∗−m̂)2

ŝ2 for brevity. This result is remarkable. From the
analysis of the former section, we have seen that ẑ2 is distributed as an F variable, depending only
on the cardinality of X. This means that the information content of a new data point coming from
the true distribution, in the univariate Gaussian case, does not depend on the estimated statistics.
Therefore, under the null hypothesis that x∗ comes from the same distribution as the training set, we
know exactly the distribution of KL(y, ẑ2). Obtaining the quantiles of this distribution will enable us
to set thresholds at a specific false positive rate. In fact, this procedure corresponds to the test of ẑ2

directly, in the sense that they lead to the same results. This is the link between statistical testing
and the information theoretic approach in the univariate Gaussian case. In particular, the proposed
approach leads to a method able to control the false alarm rate to the desired level, since, as in the
F -test, it takes into account the variability of the estimated statistics.

3.2 Multivariate Gaussian distribution

These results can be extended to the multivariate Gaussian case in d dimensions N (x|m, S). However,
the calculations involved, while totally analogous to the univariate case, are somewhat intricate; for
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presentation’s sake we will only outline them here, referring the reader to the Appendix for the details.
Using the same notation as in the previous section, let

x̃∗ = x∗ − m̂ A = x̃∗x̃
T
∗

When a new point x∗ is drawn, the updated versions of the mean and the covariance matrix are

m̂∗ =
n

n+ 1
m̂ +

1

n+ 1
x∗ Ŝ∗ =

n

n+ 1
Ŝ +

n

(n+ 1)2
A (7)

where m̂ and Ŝ are the ML estimates of the mean and covariance of the distribution obtained from
the training set. Mimicking the procedure followed in the univariate case, we obtain that the KL
divergence between the training distribution and the updated distribution is

KL =
1

2

[

log
(

det Ŝ∗Ŝ
−1
)

+ tr
(

Ŝ−1
∗
Ŝ
)

+ (m̂ − m̂∗)
TŜ−1

∗
(m̂ − m̂∗) − d

]

. (8)

Using repeatedly the properties of traces and determinants, we obtain, after some algebra, the
following expression for the KL divergence

KL(y, ẑ) =
1

2

[

log
(

1 + y + yẑ2
)

− (d+ 1) log (1 + y) − 1 +
1 + y

1 + y + yẑ2
+ yd

]

. (9)

Here again we have introduced y = 1
n and ẑ2 = x̃T

∗
Ŝ−1x̃∗.

3.3 Mixture of Gaussian distributions

In this section, we consider the mixture of c Gaussian distributions as the pdf generating the data.
Let’s start with a mixture of univariate distributions; at the end of this section, we will report the
extension to the multivariate case. We collect a data set X = {x1, . . . , xn}, with xi ∼ p(x|w), where:

p(x|w) = p(x|π1, . . . , πc,m1, . . . ,mc, s
2
1, . . . , s

2
c) =

c
∑

k=1

πkN (x|mk, s
2
k)

In order to apply our method, we would need the ML estimate ŵ of the parameter vector w that
comprises the proportions πk, the means mk, and the variances s2k of the c components. Then, we
would need an expression for ŵ∗ that is the updated version of the parameters obtained by computing
the ML estimates on the augmented set X ∪ {x∗}. Finally, we would compute the KL divergence
between the two pdf parameterized by ŵ and ŵ∗.

In order to do that, we need to overcome some computational problems. First, it is known that
there is no closed form solution for the ML problem of the mixture of Gaussian. Second, there is no
closed form for the KL divergence between two mixture distributions. We propose a way to overcome
these limitations by resorting to some approximations; the main steps are summerized here as:

1. computing a ML solution by the Expectation Maximization (EM) algorithm on X;

2. updating the parameters doing one EM step on X ∪ {x∗};
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3. writing the first order approximation of p(x|ŵ∗) based on p(x|ŵ) and the updated parameters;

4. expand the logarithm in the expression of the KL divergence up to the second order and compute
the expectation over p(x|ŵ).

(Step 1). To obtain a ML solution for the mixture, we can employ the Expectation Maximization
(EM) algorithm [5]. The EM algorithm on the set X yields a maximum likelihood estimation ŵ of
the parameters via an iterative scheme that maximizes the likelihood.

(Step 2). The update of the parameters when we add a new test point x∗ would require to start
from the ML solution obtained by EM, and restart the iteration on the augmented set X∪{x∗}. Since
this update of the parameters is not in closed form, we consider a single iteration of the EM algorithm
on the augmented set X ∪ {x∗}. An interesting online method for the update of the parameters can
be found in Ref. [18]. The E step will not affect the responsibilities of the points belonging to X,
while the responsibilities of x∗ will be computed as:

u∗k =
π̂kN (x∗|m̂k, ŝ

2
k)

∑c
r=1 π̂rN (x∗|m̂r, ŝ2r)

=

π̂k

ŝk
exp

(

− (x∗−m̂k)2

2ŝ2

k

)

∑

r
π̂r

ŝr
exp

(

− (x∗−m̂r)2

2ŝ2
r

)

In the M step the parameters ŵ will be updated into ŵ∗. Introducing nk =
∑

j ujk as the cardinality
of the k-th component, the update equations for the M step are the following:

m̂∗

k =
m̂knk + x∗u∗k
nk + u∗k

ŝ∗k
2

=
nk

nk + u∗k
ŝ2k +

nku∗k
(nk + u∗k)2

(x∗ − m̂k)
2

π̂∗k =
n

n+ 1
π̂k +

u∗k
n+ 1

Let’s rewrite the former equations in an incremental form:

m̂∗

k = m̂k + ∆m̂k = m̂k +
(x∗ − m̂k)u∗k
nk + u∗k

ŝ∗k
2

= ŝ2k + ∆ŝ2k = ŝ2k +
nku∗k

(nk + u∗k)2
(x∗ − m̂k)

2 −
ŝ2ku∗k

(nk + u∗k)

π̂∗k = π̂k + ∆π̂k = π̂k +
u∗k − π̂k

n+ 1

(Step 3). We are interested in the KL divergence between p(x|ŵ) and p(x|ŵ∗):

KL[p(x|ŵ)‖p(x|ŵ∗)] =

∫

p(x|ŵ) log

[

p(x|ŵ)

p(x|ŵ∗)

]

dx (10)

We compute a first order approximation of p(x|ŵ∗) =
∑c

k=1 π̂
∗

kN (x|m̂∗

k, ŝ
∗

k

2
). First of all:

π̂∗kN (x|m̂∗

k, ŝ
∗

k

2
) ≃ π̂kN (x|m̂k, ŝ

2
k) + π̂kN (x|m̂k, ŝ

2
k)∆ψk
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where:

∆ψk =

[

∆m̂k
(x− m̂k)

ŝ2k
+

∆ŝ2k
2

(

(x− m̂k)
2

ŝ4k
−

1

ŝ2k

)

+
∆π̂k

π̂k

]

Thus:
p(x|ŵ∗) ≃ p(x|ŵ) +

∑

k

π̂kN (x|m̂k, ŝ
2
k)∆ψk

Now let’s compute the KL divergence KL[p(x|ŵ)‖p(x|ŵ∗)]. First of all:

log

(

p(x|ŵ)

p(x|ŵ∗)

)

= − log

(

1 +

∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

p(x|ŵ)

)

(Step 4). Expanding the logarithm up to the second order, we obtain:

− log

(

1 +

∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

p(x|ŵ)

)

≃ −

∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

p(x|ŵ)
+

1

2

[
∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

]2

[p(x|ŵ)]2

The expectation of the first term of the former equation over p(x|ŵ) is zero, leading to the following
result:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∫

[
∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

]2

p(x|ŵ)
dx (11)

We can rewrite the former equation:

[
∑

k π̂kN (x|m̂k, ŝ
2
k)∆ψk

]2

p(x|ŵ)
=
∑

r

∑

j

π̂rN (x|m̂r, ŝ
2
r)uj∆ψr∆ψj

where uj is the responsibility function of x for the class j. Here we make a further approximation by
neglecting the terms when j 6= r. In other words, we replace ujN (x|m̂r, ŝ

2
r) with zero when j 6= r,

and with N (x|m̂r, ŝ
2
r) when j = r. This leads to:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∑

k

π̂k

∫

N (x|m̂k, ŝ
2
k)∆ψ

2
kdx

The integral can be computed easily, yielding:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∑

k

π̂k

[

∆m̂2
k

ŝ2k
+

(∆ŝ2k)
2

2ŝ4k
+

∆π̂2
k

π̂2
k

]

This is a closed form approximation of the KL divergence, and is a function of x∗. We define:

ẑ2
k =

(x∗ − m̂k)
2

ŝ2k
n∗k = nk + u∗k

We can rewrite the former equation by substituting the expressions of the updates of the parameters
and rearranging the terms, thus obtaining:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

4

∑

k

π̂k
u2
∗k

(n∗k)
4

[

n2
kẑ

4
k + 2u∗k(n

∗

k)ẑ
2
k + (n∗k)

2
]

+
1

2

∑

k

(u∗k − π̂k)
2

π̂k(n+ 1)2
(12)
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Figure 1: Left: Mixture distribution composed by four Gaussian. Right: Quality of the approximation
of the KL divergence with respect to the values of x∗.

We can also rewrite u∗k in terms of ẑ2
k:

u∗k =

π̂k

ŝk
exp

(

−
ẑ2

k

2

)

∑

r
π̂r

ŝr
exp

(

− ẑ2
r

2

)

that depends from the proportions and the variances. Therefore, the approximated expression of the
KL divergence depends on the ẑ2

k variables as well as the ML estimates of the proportions and the
variances ŝ2k:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃ f(ẑ1, . . . , ẑc, π̂1, . . . , π̂c, ŝ
2
1, . . . , ŝ

2
c)

Unfortunately, the dependence from the ML estimates of the proportions and the variances remains,
and will result in a deviation from the expected results.

We evaluate the quality of the proposed approximation by means of an illustrative example. In
Fig 1, we show the pdf generating the data composed by four Gaussian. From that, we sample 100
data points and we plot the KL divergence obtained by adding a test point corresponding to the
value on the x∗-axis. The curves on the plot show the quality of the approximations. The solid line
represents the true value of KL[p(x|ŵ)‖p(x|ŵ∗)] computed by integrating numerically Eq. 10. The
dashed line represents the approximated value of the KL divergence after expanding the logarithm
up to the second order (Eq. 11); again, the integral has been computed numerically. Finally, the
dashed-dotted line represents the approximated value of the KL divergence in Eq. 12, that is what
we use as the final approximation.

Remarkably, in the multivariate case, following the same derivation, we obtain the same expression
in Eq. 12. The details for the derivation of the multivariate case can be found in the Appendix. In
this case, the variables ẑ2

k read:

ẑ2
k = (x∗ − m̂k)

TŜ−1
k (x∗ − m̂k)

11



and the responsibilities for the test point:

u∗k =
π̂k|Ŝk|

−1/2 exp
(

−
ẑ2

k

2

)

∑

r π̂r|Ŝr|−1/2 exp
(

− ẑ2
r

2

)

3.3.1 Monte Carlo simulation to obtain rejection thresholds on the KL divergence

In this section, we study how we can apply efficiently the proposed method in practice. We recall
that the KL divergence results in a function of this form:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃ f(ẑ1, . . . , ẑc, π̂1, . . . , π̂c, Ŝ1, . . . , Ŝc)

We are interested in evaluating the quantile of this random variable corresponding to a specific
rejection rate. Then, we can compare it with the value of the KL divergence computed on the basis
of the test point. In order to compute the quantile of the KL divergence, we can employ a Monte
Carlo simulation. In principle we could sample directly x∗, if we knew the true pdf generating the
data, and compute the quantiles of the resulting histogram of the KL divergence. This would mean
sampling from each components of the mixture the right proportions of points with the true mean
and variances. Since we only have an estimate of such parameters, it is better to sample directly
the values of ẑ2

k with the estimated proportions for all the components. This would allow to include
the uncertainty on the estimated statistics in the method, given that we would sample ẑ2

k from an F
distribution instead that x∗ from the predictive pdf. Of course, we need to use the ML estimate of
the proportions, and we are assuming that in the mixture case the ML estimates of the mean and the
covariance are distributed as in the unimodal case. This last assumption is not true in general; for
example, when the components of the mixture are strongly overlapped, the distribution of the mean
of the components does not follow a Gaussian distribution. In the experimental part we will see how
these facts affect the performances.

What we need to do is then trying to obtain a sampling scheme where all the quantities are
expressed in terms of ẑ2

k. For the sake of presentation, let’s focus on two of the components of the
mixture that we will denote as i and j; also, let’s consider the multivariate case. When we sample
points from the i-th component, we need to compute their contribution to the KL divergence with
respect to the other components of the mixture. Focusing on two components only, sampling a value
of x∗, would correspond to set the value of both ẑ2

i and ẑ2
j , since:

ẑ2
k = (x∗ − m̂k)

TŜ−1
k (x∗ − m̂k) = ẑT

k ẑk ∀k = 1, . . . , c

where we introduced ẑk = Ŝ
−

1

2

k (x∗ − m̂k). The last expression, shows also that sampling directly
ẑ2
i , for example, corresponds to selecting values of x∗ that correspond to values of ẑ2

j . Rewriting the

expression for ẑ2
j , indeed:

ẑ2
j = ‖ẑj‖

2 = ‖Ŝ
−

1

2

j (x∗ − m̂j)‖
2 = ‖Ŝ

−
1

2

j (x∗ − m̂i + m̂i − m̂j)‖
2

ẑ2
j = ‖Ŝ

−
1

2

j Ŝ
1

2

i Ŝ
−

1

2

i (x∗ − m̂i)‖
2 + ‖Ŝ

−
1

2

j (m̂i − m̂j)‖
2 + 2(m̂i − m̂j)

TŜ−1
j Ŝ

1

2

i Ŝ
−

1

2

i (x∗ − m̂i)

12



Table 1: Pseudo-code of the information theoretic novelty detection method for the mixture of Gaus-
sian.

1. set the false positive rate ρ, the number of components c, and the number of points ν for the
Monte Carlo simulation;

2. run the EM algorithm on X with c components;

3. compute KL∗ that is the KL value with the test point x∗ using Eq. 12;

4. procedure Monte Carlo:

(a) for (i = 1, . . . , c) repeat

i. generate νπ̂i values of ẑ2
i using Eq. 2

ii. generate νπ̂i vectors v̂i using Eq. 14

iii. Compute ẑ2
j using Eq. 13 ∀j 6= i

(b) compute the distribution of KL using Eq. 12

(c) return the value θρ corresponding to the (100 − ρ)-th quantile of the distribution of KL

5. if (KL∗ > θρ) then flag x∗ as outlier

6. else flag x∗ as normal

ẑ2
j = ‖Ŝ

−
1

2

j Ŝ
1

2

i ẑi‖
2 + ‖Ŝ

−
1

2

j (m̂i − m̂j)‖
2 + 2(m̂i − m̂j)

TŜ−1
j Ŝ

1

2

i ẑi

Now, let ẑi = ‖ẑi‖v̂i =
√

ẑ2
i v̂i, where we introduced the unit norm vector v̂i:

ẑ2
j = ẑ2

i ‖Ŝ
−

1

2

j Ŝ
1

2

i v̂i‖
2 + ‖Ŝ

−
1

2

j (m̂i − m̂j)‖
2 + 2

√

ẑ2
i (m̂i − m̂j)

TŜ−1
j Ŝ

1

2

i v̂i (13)

The last equation shows that when we sample a particular value of ẑ2
i , we implicitly set the value of

ẑ2
j with some uncertainty given by the direction of v̂i. This effect can be easily seen on the univariate

case. If we sample ẑ2
i , we lose the information on the side of the Gaussian x∗ is coming from. When

we compute the corresponding ẑ2
j , we need to recover the information about the sign of (x∗ − m̂i) to

compute it correctly. The situation is even worse in the case of multivariate distributions, where v̂i

can assume all the possible directions in a d-dimensional space.
In our case, we want to generate, using a Monte Carlo simulation, several values of ẑ2

i , and from
them compute the corresponding ẑ2

j . Using the last equation for ẑ2
j , we see that we can generate

independently ẑ2
i and v̂i. Since we want v̂i to be uniformly distributed on the unit d-dimensional

hypersphere, we can generate them in this way:

v̂i =
1

γ

(

N (m = 0, s2 = 1), . . . ,N (m = 0, s2 = 1)
)

(14)
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where γ is the normalization term needed to ensure that v̂i has norm 1.
Given ẑ2

i , it is then possible to compute ẑ2
j for all j 6= i by generating independently c stan-

dardized normal Gaussian variables (for v̂i) and an F distributed variable (for ẑ2
i ). We can repeat

this procedure for all the values of i running from 1 to c, and compute the values of the random
variable KL[p(x|ŵ)‖p(x|ŵ∗)] in Eq. 12. We can finally compute the quantiles of the histogram of
the sampled values, thus obtaining a threshold on the value of the KL divergence corresponding to
a specific rejection rate. When a test point has to be analyzed, we compute its information content
using the expression of the KL divergence in Eq. 12 and we compare it with the threshold to assess
whether it is novel or not. This scheme takes explicitly into account the variability of the mean and
the covariance of the components of the mixture, accommodating their intrinsic variability. Table 1
shows the steps composing the information theoretic novelty detection method for the mixture of
Gaussian.

4 Experimental Validation

We report some results on synthetic generated data. The procedure that we use to evaluate the
performances of the proposed method is the following. We generate a training set X of cardinality n
and a test set of cardinality r from the same generating distribution. We set the false alarm rate that
we are willing to tolerate, and we run the novelty detection algorithms using X for the training stage.
At this point, we compute the false positive rate on the test, namely the percentage of test points
that we flag as outliers. We repeat this procedure l times and for different cardinalities of X. Finally,
we report the mean and the standard deviation of the false alarm rate over different repetitions and
different values of n.

4.1 Gaussian

For the univariate Gaussian case, we generated the data using p(x) = N (x|m, s2), with m = 2.3 and
s2 = 1.4. We generate the test set with cardinality r = 106, and for each value of n, we repeat the
test l = 200 times. The ML approach here consists in the test of ẑ2 assuming that m̂ and ŝ2 are the
true statistics of the generating distribution; in other words, we assume that ẑ2 ∼ χ(1). In Fig. 2 we
can see the comparison between the proposed method (that is equivalent to the F -test) and the ML
approach on the average and the standard deviation of the false alarm rate. We set the value of the
rejection rate to 3%, and it is what we get on average with the proposed method.

In the multivariate Gaussian case, the pdf generating the data is p(x) = N (x|m, S); we set the

parameters to m = (1.1, 3.2) and S =

(

2 1
1 3

)

. We generate the test set with cardinality r = 105,

and for each value of n, we repeat the test over l = 200 repetitions. The ML approach here consists
in the test of ẑ2 assuming that m̂ and Ŝ are the true statistics of the generating distribution; in other
words, we assume that ẑ2 ∼ χ(d). In Fig. 3 we can see the comparison between the proposed method
and the ML approach, where we set the false positive rate to 3%. Again, the proposed method gives
us the expected false positive rate on average.

14



1.0 1.5 2.0 2.5 3.0

0
5

10
15

log(n)

av
er

ag
e 

fa
ls

e 
al

ar
m

 r
at

e

KL
ML

1.0 1.5 2.0 2.5 3.0

0
5

10
15

log(n)

st
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

fa
ls

e 
al

ar
m

 r
at

e

KL
ML

Figure 2: Comparison of the average (left) and standard deviation (right) of the false positive rate
over 200 repetitions for the KL and the ML methods in the univariate Gaussian case.
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Figure 3: Comparison of the average (left) and standard deviation (right) of the false positive rate
over 200 repetitions for the KL and the ML methods in the multivariate Gaussian case.
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Figure 4: Pdfs of the univariate and multivariate mixture of Gaussian used in the experiments
comparing KL and ML for novelty detection.

4.2 Mixture of Gaussian

We report here the results obtained in the mixture of univariate Gaussian. The generating distribution
p(x|w) =

∑c
k=1 πkN (x|mk, s

2
k) has c = 3 components, and the parameters are π1 = 0.35, π2 = 0.40,

π3 = 0.25, m1 = −2.0, m2 = 1.0, m3 = 3.2, s21 = 3.0, s22 = 0.5, s23 = 0.4. The pdf is plotted in Fig. 4
(left plot). We repeat the same procedure carried out in the unimodal case. We generate the test
set with cardinality r = 5 · 104, and for each value of n, we repeat the test over l = 100 repetitions.
The ML approach consists in computing the quantile of p(x|ŵ), corresponding to the selected false
positive rate, based on the training set X; then, the test points are flagged as novel when p(x∗|ŵ) is
below that threshold. In Fig. 5, we can see the comparison between the proposed method and the
ML approach where we set the false positive rate to 1%.

In the mixture of multivariate Gaussian case, the generating distribution is p(x|w) =
∑c

k=1 πkN (x|mk, Sk)
with c = 3 components; the parameters are π1 = 0.5, π2 = 0.2, π3 = 0.3, m1 = (2.0, 1.3), m2 =

(3.2,−3.5), m3 = (−1.40, 3.15), S1 =

(

3.0 2.1
2.1 2.5

)

, S2 =

(

1.0 −0.3
−0.3 1.0

)

, S3 =

(

2.2 −1.3
−1.3 1.8

)

.

The pdf is plotted in Fig. 4 (right plot). We generate the test set with cardinality r = 5 · 104, and for
each value of n we repeat the test over l = 100 repetitions. The ML approach consists in computing
the quantiles of p(x|ŵ) based on the training set X; then, the test points are flagged as novel when
p(x∗|ŵ) is below the threshold corresponding to the selected false positive rate. In Fig. 6 we can see
the comparison between the proposed method and the ML approach; we set the false positive rate to
1%.

5 Conclusion

In this report we propose a novel method to control the false positives rate in novelty detection
problems. The method is based on estimating the distribution of the information content of a new
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Figure 5: Comparison of the average (left) and standard deviation (right) of the false positive rate
over 100 repetitions for the KL and the ML methods in the univariate mixture Gaussian case.
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Figure 6: Comparison of the average (left) and standard deviation (right) of the false positive rate
over 100 repetitions for the KL and the ML methods in the univariate mixture Gaussian case.
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data point given that we had a training set of a certain size n. The rationale for doing this is that this
approach explicitly takes into account the size of the training set in setting a threshold for novelty.
Remarkably, we show that in the univariate and multivariate Gaussian cases the distribution of this
information content does not depend on the statistics of the data distribution. This results leads to a
natural connection with statistical testing. In particular, the novelty detection test is able to control
the false positive rate even when the training set size is small.

We also propose an extension of our approach to the mixture of Gaussian case. The information
theoretic approach allows us to use an approximation scheme for the computation of the information
content of a test point, yielding a novelty detection method controlling of the false positive rate.

While we believe the method to be novel and potentially useful, it is important to stress once
more its limitations as well. The question we set ourselves to answer is to produce a novelty detection
method that gives good guarantees of achieving a certain rate of false positives when the training
set is small. As we have seen, the ML method with small training set tends to give thresholds that
typically capture less probability mass than expected, resulting in false positives rates well beyond
the expected. Our method is quite accurate in setting thresholds which capture the desired fraction
of the mass of the unknown data distribution. However, the flipside of this is that, if the distribution
of the anomalous points is not far from the training distribution, it will inevitably let more abnormal
cases slip through the net. This might result in a lower accuracy in detecting true positives. In some
applications this behavior is not desirable, since the cost of letting an abnormal case go undetected
is much higher than the cost of raising a false alarm.

Although we present the extension to the mixture of Gaussian, there are pdfs that cannot be
modelled adequately. In these cases, non-parametric methods such as [6] are preferable and may
result in better performance. It should be pointed out though that non-parametric methods generally
depend on the value of hyperparameters which can be problematic to determine. It is clearly a very
interesting question whether it is possible to extend this information theoretic approach to non-
parametric methods. Finally, it would be interesting to compare our method with the mixture of
Student-t distributions proposed in Ref. [14].

A Appendix

A.1 Multivariate Gaussian

Here we report the algebraic manipulations involved in the derivation of the KL divergence in the mul-
tivariate Gaussian case. The KL divergence between the multivariate Gaussian distribution N (m̂, Ŝ)
and the updated version N (m̂∗, Ŝ∗) is:

KL =
1

2

[

log
(

det Ŝ∗Ŝ
−1
)

+ tr
(

Ŝ−1
∗
Ŝ
)

+ (m̂ − m̂∗)
TŜ−1

∗
(m̂ − m̂∗) − d

]

(15)

We recall that we introduced:
x̃∗ = x∗ − m̂ A = x̃∗x̃

T
∗

and that the updated versions of the mean and the covariance matrix are:

m̂∗ =
n

n+ 1
m̂ +

1

n+ 1
x∗ (16)
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Ŝ∗ =
n

n+ 1
Ŝ +

n

(n+ 1)2
A (17)

Let’s analyze each term of Eq. 15. The first term is:

det
[(

Ŝ∗Ŝ
−1
)]

= det

[

n

(n+ 1)2

(

(n+ 1)I +AŜ−1
)

]

=

(

n

(n+ 1)2

)d

det
[

(n+ 1)I +AŜ−1
]

(18)

The determinant of a matrix is the product of its eigenvalues. The eigenvalues of (n+1)I+AŜ−1 are
the eigenvalues of AŜ−1 plus (n+1). We notice that A has rank equal to one; this implies that AŜ−1

has only one non-zero eigenvalue, that we call ẑ2. Recalling that the eigenvalues and the eigenvectors
of a generic operator B satisfy Bv = λv, we have:

AŜ−1x̃∗ = x̃∗x̃
T
∗
Ŝ−1x̃∗ = x̃∗ẑ

2

The variable ẑ2 is the eigenvalue of AŜ−1 associated to the eigenvector x̃∗; it is also the quadratic
form x̃T

∗
Ŝ−1x̃∗. Finally, the first term of Eq. 15 is:

log

(

ẑ2

n+ 1
+ 1

)

+ d log

(

n

n+ 1

)

(19)

The second term can be rewritten using the properties of the trace:

tr
(

Ŝ−1
∗
Ŝ
)

= tr
(

ŜŜ−1
∗

)

= tr

[

(

Ŝ∗Ŝ
−1
)

−1
]

=
(n+ 1)2

n
tr

[

(

(n+ 1)I +AŜ−1
)

−1
]

(20)

The trace of a generic matrix B is the sum of its eigenvalues. It is easy to prove that:

Bx = λx ⇒ B−1x = λ−1x

We have already analyzed the eigenvalues of (n + 1)I + AŜ−1; the second term of Eq. 15 will then
result in:

(

n+ 1

n

)

(

d− 1 +
1

ẑ2

n+1 + 1

)

(21)

The third term can be rewritten in the following way:

(m̂ − m̂∗)
TŜ∗(m̂ − m̂∗) =

1

n
x̃T
∗
Ŝ−1

[

(n+ 1)I +AŜ−1
]

−1
x̃∗ (22)

We notice that:
[

(n+ 1)I +AŜ−1
]

−1
x̃∗ =

x̃∗

ẑ2 + n+ 1
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Recalling that ẑ2 = x̃T
∗
Ŝ−1x̃∗, the third term of Eq. 15 results in:

ẑ2

n(ẑ2 + n+ 1)
(23)

Introducing y = 1/n, the expression of the KL divergence will be:

KL(y, ẑ) =
1

2

[

log
(

1 + y + yẑ2
)

− (d+ 1) log (1 + y) − 1 +
1 + y

1 + y + yẑ2
+ yd

]

(24)

A.2 Multivariate Mixture of Gaussian

In the multivariate case, the update of the parameters after one M step of the EM algorithm are the
following:

m̂∗

k =
m̂knk + x∗u∗k
nk + u∗k

Ŝ∗

k =
nk

nk + u∗k
Ŝk +

nku∗k
(nk + u∗k)2

(x∗ − m̂k)(x∗ − m̂k)
T

π̂∗k =
n

n+ 1
π̂k +

u∗k
n+ 1

Their incremental version reads:

m̂∗

k = m̂k + ∆m̂k = m̂k +
(x∗ − m̂k)u∗k
nk + u∗k

Ŝ∗

k = Ŝk + ∆Ŝk = Ŝk +
nku∗k

(nk + u∗k)2
(x∗ − m̂k)(x∗ − m̂k)

T −
Ŝku∗k

(nk + u∗k)

π̂∗k = π̂k + ∆π̂k = π̂k +
u∗k − π̂k

n+ 1

The first order approximation of p(x|ŵ∗) =
∑c

k=1 π̂
∗

kN (x|m̂∗

k, Ŝ
∗

k) can be computed by following the
idea used in the univariate case. In this case we have to deal with matrix and vector derivatives:

π̂∗kN (x|m̂∗

k, Ŝ
∗

k) ≃ π̂kN (x|m̂k, Ŝk) + π̂kN (x|m̂k, Ŝk)∆ψk

where:

∆ψk =

[

(x − m̂k)
TŜ−1

k ∆m̂k +
1

2

(

(x − m̂k)
TŜ−1

k ∆ŜkŜ
−1
k (x − m̂k) − tr(Ŝ−1

k ∆Ŝk)
)

+
∆π̂k

π̂k

]

Thus:
p(x|ŵ∗) ≃ p(x|ŵ) +

∑

k

π̂kN (x|m̂k, Ŝk)∆ψk

To compute an approximation of the KL divergence KL[p(x|ŵ)‖p(x|ŵ∗)] we start from:

log

(

p(x|ŵ)

p(x|ŵ∗)

)

= − log

(

1 +

∑

k π̂kN (x|m̂k, Ŝk)∆ψk

p(x|ŵ)

)
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Expanding the logarithm up to the second order, we obtain:

− log

(

1 +

∑

k π̂kN (x|m̂k, Ŝk)∆ψk

p(x|ŵ)

)

≃ −

∑

k π̂kN (x|m̂k, Ŝk)∆ψk

p(x|ŵ)
+

1

2

[

∑

k π̂kN (x|m̂k, Ŝk)∆ψk

]2

[p(x|ŵ)]2

The expectation of the first term of the former equation over p(x|ŵ) is 0, leading to the following
result:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∫

[

∑

k π̂kN (x|m̂k, Ŝk)∆ψk

]2

p(x|ŵ)
dx (25)

The former equation can be rewritten in the following way:

[

∑

k π̂kN (x|m̂k, Ŝk)∆ψk

]2

p(x|ŵ)
=
∑

r

∑

j

π̂rN (x|m̂r, Ŝr)uj∆ψr∆ψj

where uj is the responsibility function of x for the class j. We can use again the approximation where
we neglect the terms when j 6= r. In other words, we approximate ujN (x|m̂r, ŝ

2
r) with zero when

j 6= r, and with N (x|m̂r, ŝ
2
r) when j = r. This leads to:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

2

∑

k

π̂k

∫

N (x|m̂k, Ŝk)∆ψ
2
kdx

The integral yields:

KL[p(x|ŵ)‖p(x|ŵ∗)] ≃
1

4

∑

k

π̂k
u2
∗k

(n∗k)
4

[

n2
kẑ

4
k + 2u∗k(n

∗

k)ẑ
2
k + (n∗k)

2
]

+
1

2

∑

k

(u∗k − π̂k)
2

π̂k(n+ 1)2
(26)

Again we have defined:

ẑ2
k = (x∗ − m̂k)

TŜ−1
k (x∗ − m̂k) n∗k = nk + u∗k
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