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Abstract

Clustering is the problem of grouping objects on the basis of a similarity measure between
them. This paper considers the approaches belonging to the K-means family, in particular those
based on fuzzy memberships. When patterns are represented by means of non-metric pairwise dis-
similarities, these methods cannot be directly applied, since they are not guaranteed to converge.
Symmetrization and shift operations have been proposed, to transform the dissimilarities between
patterns from non-metric to metric. It has been shown that they modify the K-means objective
function by a constant, that does not influence the optimization procedure. Some fuzzy cluster-
ing algorithms have been extended, in order to handle patterns described by means of pairwise
dissimilarities. The literature, however, lacks of an explicit analysis on what happens to K-means
style fuzzy clustering algorithms, when the dissimilarities are transformed to let them become
metric. This paper shows how the objective functions of four clustering algorithms based on fuzzy
memberships change, due to dissimilarities transformations. The experimental analysis conducted
on a synthetic and a real data set shows the effect of the dissimilarities transformations for four
clustering algorithms based on fuzzy memberships.
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1 Introduction

Clustering is the problem of grouping objects on the basis of a similarity measure between them. It
occurs very often in different disciplines and fields; this is the reason why several approaches have
been proposed. Clustering algorithms can be roughly divided in two categories: hierarchical and
partitional. Hierarchical clustering techniques [12, 26, 27] are able to find structures which can be
further divided into substructures and so on recursively. The result is a hierarchical structure of
groups known as dendrogram.

Partitioning clustering methods try to obtain a single partition of data and are often based
on the optimization of an appropriate objective function. The result of such clustering algorithms
is the creation of hypersurfaces separating groups of patterns. This paper considers the approaches
belonging to the K-means [18, 19] family, in particular those based on fuzzy memberships [3, 4, 14, 15].
In this context, a pattern can belong to more than one cluster with different degrees. This allows to
better describe situations where some patterns can belong to more than one cluster, or some patterns
do not belong to any cluster, since they are outliers. All these scenarios can be efficiently handled by
means of the generalization of the concept of membership from crisp to fuzzy.

All the K-means style clustering algorithms are based on the concept of memberships and cen-
troids, and are asked to find the clusters in the input space that is usually Euclidean. Some fuzzy
clustering algorithms have been extended in order to handle patterns described by means of pairwise
dissimilarities, in particular: Fuzzy relational clustering [10] and Possibilistic relational clustering [6].
For such clustering algorithms, the concept of centroids looses its meaning, since the patterns are
not described in terms of features. Moreover, if the dissimilarities are not metric, the convergence of
the algorithms is not guaranteed. In Ref. [13], the authors propose a fuzzy relational algorithm that
looks for the centroids among the objects composing the data set.

Some approaches have been proposed to transform the dissimilarities between patterns from non-
metric to metric, to cope with the convergence problem. Non-metric dissimilarities are not symmetric,
and do not obey to the triangular inequality. The transformations needed to let the dissimilarities
become metric are symmetrization and shift operations. The symmetrization operation makes the
dissimilarities symmetric. Shift means that a constant value is added to the pairwise dissimilarities,
to let them satisfy the triangular inequality. The point is how these transformations influence the
behavior of the clustering algorithms. It has been shown that they do not influence the K-means
objective function [21, 22]. In other words, changing the dissimilarities with their transformed versions
does not reflect any changes on the objective function. In fact, it changes by a constant that does
not affect the optimization. Once the dissimilarities are metric, they can be considered as pairwise
squared Euclidean distances between patterns. This is the link with clustering methods using positive
semidefinite kernels. Such kernels can be obtained by the dissimilarity matrix, and each entry is a
scalar product between vectors representing the original objects. These are called embedding vectors,
and are not computed explicitly. The pairwise scalar products contain enough information to let to
apply the K-means family algorithms on the embedding vectors. This corresponds to the clustering
in feature space [7].

A fuzzy clustering dealing with non-Euclidean dissimilarities can be found in Ref. [9]. The lit-
erature, however, lacks of an explicit analysis on what happens to fuzzy clustering algorithms when
the dissimilarities are transformed. This paper explicitly shows how the objective functions of four
clustering algorithms based on fuzzy memberships change, due to dissimilarities transformations.
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The considered clustering algorithms based on fuzzy memberships are: Fuzzy c-means I (FCM I) [4],
Fuzzy c-means II (FCM II) [3], Possibilistic c-means I (PCM I) [14], and Possibilistic c-means II
(PCM II) [15]. The main contributions include the lack of invariance to shift operations, as well as
the invariance to symmetrization. As a byproduct, the kernel versions of FCM I, FCM II, PCM I
and PCM II are obtained, that can be viewed as relational dual of the four algorithms. FCM II and
PCM I in feature space have never been proposed before, while FCM I and PCM II in feature space
can be found in Refs. [28] and [8]. The relational duals of FCM I and PCM I have been proposed
in Ref. [10] and [6]; the non-Euclidean case is studied in Ref. [9] for FCM I. The relational dual of
FCM II and PCM II have never been proposed before. The experimental analysis conducted in this
paper on a synthetic and a real data set shows the effect of the dissimilarities transformations on the
four considered clustering algorithms.

This Section discusses how to embed in Euclidean spaces sets of patterns described by pairwise
dissimilarities, along with some basic concepts on positive semidefinite kernels. Then the paper
is organized as follows: Section 2 shows how the objective functions of four K-Means style fuzzy
clustering algorithms change, due to distance transformations; Section 3 provides an experimental
analysis on synthetic and real data sets, and then the conclusions are drawn. Many technical details
concerning the derivations of the proposed algorithms and theoretical aspects can be found in the
appendix.

1.1 How to Embed Objects Described by Pairwise Dissimilarities in Euclidean

Spaces

Let Y = {y1, . . . , yn} be a set of objects and r : Y × Y → R a function between pairs of its elements.
The conditions that r must satisfy to be a distance are:

• r(yi, yj) ≥ 0 ∀i, j = 1, . . . , n and r(yi, yi) = 0 ∀i = 1, . . . , n (Positivity);

• r(yi, yj) = r(yj , yi) ∀i, j = 1, . . . , n (Symmetry) ;

• r(yi, yj) + r(yj , yk) ≥ r(yi, yk) ∀i, j, k = 1, . . . , n (Triangular inequality).

Let’s assume that r satisfies only the first condition. In this case, r can be interpreted as a dissimilarity
measure between the elements of the set Y . Clearly, it is not possible to embed the objects according
to r in a Euclidean space, as long as it does not satisfy also the other two conditions. The only
way to cope with this problem is to apply some transformations to let r become a distance function.
Regarding the symmetry, the following, for instance, could represent a solution:

r̂(yi, yj) = max(r(yi, yj), r(yj , yi)) ∀i, j (1)

or:

r̂(yi, yj) =
1

2
(r(yi, yj) + r(yj , yi)) ∀i, j (2)

Depending on the application, one can choose the most suitable solution to fix the symmetry.
Once the symmetry is fixed, to make r satisfy the triangular inequality, a constant shift 2α can

be added to all the pairwise distances, excluding the dissimilarity between a pattern and itself:

r̃(yi, yj) = r(yi, yj) + 2α ∀i 6= j (3)
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Let’s introduce R as the n × n matrix with entries rij = r(yi, yj). Let e = {1, 1, . . . , 1}T and I the
n × n identity matrix. Eq. 3 is equivalent to:

R̃ = R + 2α(eeT − I) (4)

The natural question arises: how can we choose α to guarantee that r̃ satisfies the triangular inequal-
ity? The answer is in a theorem that can be found in Refs. [16, 22]. In this Section the theorem is
reported, while the proof can be found in App. A.2.

Before showing the theorem, some preliminary definitions are needed. Let’s decompose R by
means of a matrix S:

rij = sii + sjj − 2sij (5)

Let Q = I − 1
n
eeT . The centralized version P c of a generic matrix P is defined:

P c = QPQ (6)

It’s clear from Eq. 5 that S is not uniquely determined by R. All the matrices S +αeeT , for instance,
lead to the same matrix R no matter what α is. It can be proved, however, that the centralized
version of S is uniquely determined by R (see App. A.1):

Sc = −
Rc

2
(7)

Now we have all the elements to claim that:

Theorem 1.1. R is a squared Euclidean distance matrix if and only if Sc � 0.

The proof can be found in App. A.2. The theorem states that Sc must be positive semidefinite
to ensure that R is a squared Euclidean distance matrix. It is well known that the eigenvalues λi

of positive semidefinite matrices satisfy λi ≥ 0 ∀i = 1, . . . , n [1]. If at least one eigenvalue of Sc

is negative, R is not guaranteed to be a squared Euclidean distance matrix. Let λ1 be the smallest
eigenvalue of Sc. Simple concepts of linear algebra ensure that the following diagonal shift to Sc:

S̃c = Sc − λ1I (8)

makes S̃c positive semidefinite. The diagonal shift of Sc transforms R in a matrix representing squared
Euclidean distances. The resulting transformation on R is the following:

R̃ = R − 2λ1(ee
T − I) (9)

Since S̃c is positive semidefinite, it can be thought as representing a scalar product. Thus, it
exists a matrix X for which:

S̃c = XXT (10)

The rows of X are the realization of the embedding vectors xi. In other words each element yi of the
set Y has been embedded in a Euclidean space and is represented by xi. The entries of S̃c are the
scalar product between the vectors xi.

Resuming, if the only thing known about the data to analyze are the pairwise distances, the matrix
Sc can be checked for positive semidefiniteness. If it is, Sc can be kept as is, otherwise the diagonal
shift to Sc has to be applied. Either way, Sc or S̃c is the product of two unknown matrices X. This
is the link between the theory of embedding a set of objects and the theory of kernel methods. S̃c

can be interpreted as the Gram matrix that is used in kernel algorithms. In Ref. [16, 17] the authors
give an interpretation of the negative eigenvalues of Sc.
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1.2 Mercer Kernels

A kernel function K : X × X → R is called a positive definite kernel (or Mercer kernel) if and only
if K is symmetric and positive semidefinite [2, 23]. Each Mercer kernel can be expressed as follows:

K(xi,xj) = Φ(xi) · Φ(xj) (11)

where Φ : X → F performs a mapping from the input space X to F which is called feature space. A
well known result shows that it is not necessary to know Φ to compute the distances in feature space:

‖Φ(xi) − Φ(xj)‖
2 = (Φ(xi) − Φ(xj)) · (Φ(xi) − Φ(xj))

= Φ(xi) · Φ(xi) + Φ(xj) · Φ(xj) − 2Φ(xi) · Φ(xj)

= kii + kjj − 2kij (12)

This is the so called distance kernel trick [20, 24].
Kernels have been using in many supervised and unsupervised algorithms. In fact, every algorithm

where input vectors appear only in dot products with other input vectors can be kernelized [25]. In
Support Vector Machines [5], one takes advantage of this mapping to solve a classification problem in a
high dimensional feature spaces. Clustering methods in feature space should take the advantage of the
mapping to solve a clustering problem where the cluster structure is more evident. From the previous
analysis, we know that starting from the pairwise dissimilarities between patterns, it is possible to
construct the matrix S̃c having all the properties of Mercer kernels K. Here the dissimilarities in R
imply K = S̃c, that implies Φ. The next Section shows hot it is possible to obtain a formulation of
the K-means style fuzzy clustering algorithms, knowing just K. Since Φ is unknown, it will not be
possible to know the prototypes of the clusters, that will be points in the space F .

1.3 Preshift and Postshift

Before closing this Section, it is worth noting that in general there are two options when shifting R
to obtain S̃c. The first is to shift the dissimilarities R obtaining R̃, and then compute S̃c associated
to R̃. Let’s call this procedure preshift:

S̃c = −
1

2
(QR̃Q) (13)

The second choice, the postshift, is to compute Sc associated to R, and then shift its diagonal elements:

Sc + αI (14)

Both the methods allow to compute a matrix S corresponding to the same shift of the distances, but:

Sc + αI 6= −
1

2
(QR̃Q) (15)

App. A.3 shows that the choice between preshift and postshift does not affect the studied clustering
algorithms.
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2 K-means Family Algorithms Objective Functions

The algorithms belonging to the K-means family are based on the concept of centroids and mem-
berships. In this family, we can find the fuzzy versions of the K-means with the probabilistic and
possibilistic description of the memberships: Fuzzy c-means [4] and Possibilistic c-means [14]. Given
a set of patterns X, the set of centroids V = {v1, . . . ,vc} and the membership matrix U are defined.
The set V contains the prototypes/representatives of the c clusters. The element vi are also referred
to as codevectors or centroids. U is a c×n matrix where each element uih represents the membership
of the pattern h to the cluster i. Both Fuzzy and Possibilistic c-means are fuzzy, since uih ∈ [0, 1]
while uih ∈ {0, 1} for K-means. In K-means and FCM algorithms the memberships of a pattern to
all the c clusters are constraint to sum up to one:

c
∑

i=1

uih = 1 ∀k = 1, . . . , n (16)

In the possibilistic paradigm, the memberships are not subject to any constraint, and can be inter-
preted as a degree of typicality.

In general, all the K-means family algorithms are based on the minimization of a functional
composed of two terms:

J(U, V ) = G(U, V ) + H(U) (17)

The first term is a measure of the distortion and the second is an entropic score on the memberships.
The distortion can be written as the following sum:

G(U, V ) = 2
c
∑

i=1

n
∑

h=1

uθ
ih‖xh − vi‖

2 (18)

with θ ≥ 1. The aim of the entropy term H(U) is to avoid trivial solutions where all the memberships
are zero or equally shared among the clusters.

For the algorithms having a constraint on the U , the Lagrange multipliers technique has to be
followed in order to perform the optimization. This means that a further term, depending only from
the U , must be added to J(U, V ). The Lagrangian associated to the optimization problem can be
introduced:

L(U, V ) = G(U, V ) + H(U) + W (U) (19)

The technique used by these methods to perform the minimization is the so called Picard iteration
technique. The Lagrangian L(U, V ) depends on two groups of variables U and V related to each other,
namely U = U(V ) and V = V (U). In each iteration one of the two groups of variables is kept fixed,
and the minimization is performed with respect to the other group. In other words:

∂L(U, V )

∂vi

= 0 (20)

with U fixed gives a formula for the update of the centroids vi, and:

∂L(U, V )

∂uih

= 0 (21)
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with V fixed gives a formula for the update of the memberships uih. The algorithms start by randomly
choosing U or V and iteratively update U and V by means of the previous two equations. It can be
proved that the value of L does not increase after each iteration [11]. The algorithms stop when a
convergence criterium is satisfied on the U , V or G. Usually the following is considered:

‖U − U ′‖p < ε (22)

where U ′ is the updated version of the memberships and ‖‖p is a p-norm.
Since L(U, V ) depends on V only because of G, the update of the vi is the same for all the

considered algorithms. From Eq. 20:

vi =

∑n
h=1 uθ

ihxh
∑n

h=1 uθ
ih

(23)

Now it is possible to prove that the following functional is equivalent to G(U, V ) (see appendix A.4):

G(U) =
c
∑

i=1

n
∑

r=1

n
∑

s=1

uθ
iru

θ
isd

2
rs

n
∑

r=1

uθ
ir

(24)

Here d2
rs is the squared Euclidean distance between patterns r and s. This allows to write the objective

function only in terms of U , when the description of the data set is in terms of pairwise distances.
In the non-metric case, it is not possible to identify d2

rs as the squared Euclidean distance between
patterns r and s. Anyway, it is still possible to think that the objective function of the clustering is:

G(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihuθ

ikrhk

n
∑

h=1

uθ
ih

(25)

In the following, this way of writing G(U) will be useful to show how the objective functions change
with respect to dissimilarities transformations.

2.1 Invariance of G(U) to Symmetrization of R

Let’s analyze what happens to the Lagrangian L when R is transformed in the following way:

r̂ij =
rij + rji

2
(26)

which is equivalent to:

R̂ =
R + RT

2
(27)
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It’s clear that the only term of the functional affected by the distance transformation is G(U). Showing
that:

n
∑

h=1

n
∑

k=1

uθ
ihuθ

ikr̂hk =
1

2

n
∑

h=1

n
∑

k=1

uθ
ihuθ

ikrhk +
1

2

n
∑

h=1

n
∑

k=1

uθ
ihuθ

ikrkh

=

n
∑

h=1

n
∑

k=1

uθ
ihuθ

ikrhk (28)

the invariance of the Lagrangian L(U) to the symmetrization of R is proved. In other words, in
presence of a non-symmetric R, the symmetrization in Eq. 26 does not change the clustering objective
function. In force of this result, R will be considered symmetric in the rest of this paper.

2.2 Transformation of G(U) to Shifts Operations

This Section analyzes what happens to the Lagrangian L when transforming the distances in the
following way:

r̃hk = rhk + 2α ∀h 6= k (29)

which is equivalent to Eq. 4:
The only term in the Lagrangian L(U) changing due the dissimilarities shift is G(U):

Gα(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihuθ

ikr̃hk

n
∑

h=1

uθ
ih

= G(U) + 2α
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihuθ

ik −
n
∑

h=1

u2θ
ik

n
∑

h=1

uθ
ih

= G(U) + 2α

c
∑

i=1

n
∑

h=1

uθ
ih − 2α

c
∑

i=1

n
∑

h=1

u2θ
ih

n
∑

h=1

uθ
ih

(30)

The Lagrangian will result in:

Lα(U) = G(U) + H(U) + W (U) + 2α (A(U) − B(U)) (31)

This result shows that in general the Lagrangian for the K-means family algorithms is not invariant
to such transformations. Only for K-means A(U) − B(U) = n − c, which means that the K-means
objective function is invariant to distance shifts. Besides, for fuzzy clustering algorithms for which
θ = 1, A(U) reduces to n.
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In general, since θ ≥ 1 and uih ∈ [0, 1], the following two inequalities are satisfied:

A(U) =
c
∑

i=1

n
∑

h=1

uθ
ih < n (32)

B(U) =
c
∑

i=1

n
∑

h=1

u2θ
ih

n
∑

h=1

uθ
ih

< c (33)

The contributions of A(U) and B(U) to Lα(U) are weighted by 2α. This means that Lα(U) can be
strongly affected by large shift values.

Given a clustering algorithm, in order to obtain the update of the memberships, the derivatives
of the Lagrangian with respect to them have to be set to zero. From that, an update formula for the
memberships has to be obtained (in presence of constraints, this implies to compute also the value of
the Lagrange multipliers). Let’s consider the term B(U):

∂B(U)

∂uih

=
2θu2θ−1

ih

∑n
r=1 uθ

ir − θuθ−1
ih

∑n
h=1 u2θ

ih

(
∑n

h=1 uθ
ih)2

(34)

This is not easily invertible when summed to the derivative of the other terms to obtain zero. The next
Section provides an experimental analysis showing the effect of the shift operation on the behavior
of the memberships during the optimization.

2.3 Analysis of Four Clustering Algorithms

This Section shows the results just obtained to four clustering algorithms based on fuzzy memberships:
Fuzzy c-means I (FCM I) [4], Fuzzy c-means II (FCM II) [3], Possibilistic c-means I (PCM I) [14],
and Possibilistic c-means II (PCM II) [15] (see App. A.5 for the complete derivation of these four
algorithms). In Tab. 1, the terms of the Lagrangian in Eq. 19 for the mentioned clustering algorithms
are resumed. Since the sum of the memberships of a point to all the clusters is constrained to be one
in fuzzy clustering, the term W (U) is introduced. For the possibilistic algorithms W (U) = 0, since
the memberships are not constrained. In fact, for these algorithms the minimization of L(U) should
be done in the hypercube uih ∈ [0, 1]. Since the form assumed by the update equations, this constrain
is automatically satisfied. In FCM I and PCM I, the exponent of the memberships θ is usually called
m, while θ = 1 in FCM II and PCM II.

Tab. 2 resumes the Lagrangian Lα(U) of the discussed clustering algorithms, considering also the
effect of the shift. K-means is invariant to distance shifts since A(U) = n and B(U) = c. In FCM II
and PCM II, A(U) = n; in FCM I and PCM I, both A(U) and B(U) are not zero.

From the analysis in Section 1.1, it is possible to choose α big enough to guarantee that R̃
represents a squared Euclidean distance matrix. This allows to represent each pattern in a Euclidean
space F , where the discussed clustering algorithms can be applied. In fact, the positions of the
patterns in F is still encoded in R̃, and thus is unknown. Nevertheless, using the fact that K =
S̃c contains the scalar products between patterns, an update formula for the memberships can be
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Method θ H(U) W (U)

FCM I m 0
n
∑

h=1

βh

(

1 −
c
∑

i=1

uih

)

FCM II 1 λ

c
∑

i=1

n
∑

h=1

uih ln(uih)

n
∑

h=1

βh

(

1 −

c
∑

i=1

uih

)

PCM I m
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)m 0

PCM II 1
c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) 0

Table 1: Resuming table of the entropy functions, θ value, and constraints, for the considered clus-
tering algorithms.

FCM I

Lα(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihum

ikrhk

n
∑

h=1

um
ih

+
n
∑

h=1

βh

(

1 −
c
∑

i=1

uih

)

+ 2α
c
∑

i=1

n
∑

h=1

um
ih − 2α

c
∑

i=1

n
∑

h=1

u2m
ih

n
∑

h=1

um
ih

FCM II

Lα(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uihuikrhk

n
∑

h=1

uih

+ λ
n
∑

h=1

c
∑

i=1

uih ln(uih) +
n
∑

h=1

βh

(

1 −
c
∑

i=1

uih

)

+ 2αn − 2α
c
∑

i=1

n
∑

h=1

u2
ih

n
∑

h=1

uih

PCM I

Lα(U) =

c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihum

ikrhk

n
∑

h=1

um
ih

+

c
∑

i=1

ηi

n
∑

h=1

(1 − uih)m + 2α

n
∑

h=1

c
∑

i=1

um
ih − 2α

c
∑

i=1

n
∑

h=1

u2m
ih

n
∑

h=1

um
ih

PCM II

Lα(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uihuikrhk

n
∑

h=1

uih

+
c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) + 2αn − 2α
c
∑

i=1

n
∑

h=1

u2
ih

n
∑

h=1

uih

Table 2: Resuming table of the objective functions, for the considered clustering algorithms.
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explicitly found. Each pattern is represented by a vector xi ∈ F and the set of centroids V is
composed of prototypes in F . Let’s analyze, for instance, the update equations for vi and uih for
FCM II:

uih =
exp

(

−‖xh−vi‖
2

λ

)

∑c
j=1 exp

(

−
‖xh−vj‖2

λ

) (35)

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(36)

Since we don’t know explicitly the vectors xi, it would not be possible to explicitly compute vi.
Substituting Eq. 36 in Eq. 35, we obtain:

‖xh − vi‖
2 =

∥

∥

∥

∥

xh −

∑n
r=1 uirxr
∑n

r=1 uir

∥

∥

∥

∥

2

=

(

xh −

∑n
r=1 uirxr
∑n

r=1 uir

)(

xh −

∑n
r=1 uirxr
∑n

r=1 uir

)

= xhxh − 2

∑n
r=1 uirxrxh
∑n

r=1 uir

+

∑n
r=1

∑n
s=1 uiruisxrxs

(
∑n

r=1 uir)2

= khh − 2

∑n
r=1 uirkrh
∑n

r=1 uir

+

∑n
r=1

∑n
s=1 uiruiskrs

(
∑n

r=1 uir)2
(37)

This allows to obtain an update equation for the memberships for the considered clustering algorithms.
To obtain a more convenient way of writing the update equations, let Uθ be the c × n matrix

having uθ
ih as elements, and let:

ai =

(

n
∑

h=1

uθ
ih

)−1

(38)

z(0) = diag(K) (39)

Z(1) = UθK (40)

z(2) = diag(UθKUT
θ ) (41)

Eq. 37 becomes:

‖xh − vi‖
2 = z

(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i (42)

Tab. 3 shows the update equations of the memberships for the considered clustering algorithms.
Tab. 4 shows the steps composing the considered clustering algorithms.

3 Experimental Analysis

3.1 Synthetic Data Set

The presented clustering algorithms have been tested on a synthetic data set composed of two clusters
in two dimensions (Fig. 1). Each cluster is composed of 200 points sampled from a Gaussian distri-
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FCM I

u−1
ih =

c
∑

j=1





z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

z
(0)
h − 2ajz

(1)
jh + a2

jz
(2)
j





1

m−1

FCM II

uih =

exp

(

−
z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

λ

)

c
∑

j=1

exp



−
z
(0)
h − 2ajz

(1)
jh + a2

jz
(2)
i

λ





PCM I

u−1
ih =

(

z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

ηi

)
1

m−1

+ 1

PCM II

uih = exp

(

−
z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

ηi

)

Table 3: Resuming table of the memberships update equations, for the considered clustering algo-
rithms.

Table 4: Pseudocode of the considered clustering algorithms

1. if R is not symmetric, then symmetrize it using Eq. 26;

2. Compute Sc using Eq. 7;

3. if Sc � 0 then K = Sc;

4. else K = Sc − λ1I;

5. Initialize parameters: c, m (FCM I, PCM I), λ (FCM II), ηi (PCM I, PCM II);

6. Initialize U ;

7. Update U using the update equation in Tab. 3 corresponding to the chosen method;

8. if the convergence criteria is not satisfied then go to step 7;

9. else stop.
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Figure 1: Plot of the synthetic data set composed of two clusters and some outliers.

bution. The position of their centers are respectively in (0, 0) and (6, 6), and the standard deviations
are equal to one for both the features and clusters. Twenty outlier points have been added; they have
been extracted with a uniform distribution in the set [−6, 12] × [−6, 12]. The average of the squared
distances is 43.4, the median is 34.4, and the maximum is 360.9.

For all the tested algorithms, the behavior of the memberships have been analyzed during the
optimization, for different values of α. In order to do that, the rij have been set to the squared
Euclidean distance ‖xi − xj‖

2, and have been shifted with different values of α. This can be done in
two equivalent ways, namely the preshift and the postshift (see App. A.3). The proposed algorithms
have been run on the modified data sets. During the optimization, the memberships have been
recorded to see how the distance shifts affected their behavior. At each iteration, the difference
between the matrix U when α = 0 and U ′ for an α 6= 0 has been measured. The analysis has been
made on the basis of these two scores:

sd(U − U ′) =

√

(
∑n

h=1

∑c
i=1(uih − u′

ih)2

c n

)

(43)

max(U − U ′) = max
i,h

(|uih − u′
ih|) (44)

averaged over 100 runs.

FCM I has been tried three different values of m, in particular m = 1.1, 1.5, 2. Fig. 2 shows the
behavior of the memberships during the optimization for different values of α and m. The first row
in Fig. 2 corresponds to m = 2, the one in the middle to m = 1.5, and the one on the bottom to
m = 1.1. For small α the results are almost invariant as expected. For values of α of the order of
the average of the squared distances, the memberships have a very different behavior with respect to
those on the original set. Reducing the fuzziness m it can be noticed that the results are better. This
is not surprising since for m tending to 1, FCM I behaves like K-means which is invariant to shift

13
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Figure 2: FCM I - Behavior of the memberships during the optimization for different values of α.
First row m = 2, second row m = 1.5, third row m = 1.1. Results are averaged over 100 repetitions
with different initialization of U .
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transformations. At the end of the algorithm, the memberships can be defuzzified using a threshold
of 0.5 to obtain the cluster labels. The cluster labels for different values of alpha have been found to
be identical for all the tested valued of α.

FCM II has been tried with three different values of λ, in particular λ = 10, 20, 30. For such values
of λ, the resulting memberships range from almost crisp to moderate fuzzy. For different fuzziness
levels (higher λ leads to fuzzier solutions), the memberships are almost invariant, even for values of α
higher than the maximum of the original squared distances (Fig. 3). The Lagrangian in FCM II is
not invariant to shift transformations only because of the term B(U). The fact that A(U) is constant
gives to FCM II more robustness to distance shifts.

PCM I Fig. 4 shows the behavior of the memberships during the optimization for the PCM I with
different values of m, in particular m = 1.1, 1.5, 2. The initialization of the memberships has been
done using the result obtained by the FCM II, since it showed high robustness to distance shifts. The
values of ηi have been computed on the basis of the memberships obtained by the FCM II. It can
be seen that even for small values of α, the behavior of the memberships is strongly affected by the
shift operation.

PCM II The initialization of the memberships and the computation of the ηi have been done on
the basis of the result obtained by the FCM II. In PCM II there are no further parameters to set up.
Fig. 5 shows that also PCM II is strongly affected by dissimilarities shifts, even for small values of α.

3.2 USPS Data Set

The studied algorithms have been tested on the USPS data set, which has been studied also in
Refs. [24, 16]. It is composed of 9298 images acquired and processed from handwritten zip-codes
appeared on real US mail. Each image is 16× 16 pixels; the training set in composed by 7219 images
and the test set by 2001 images. As in Ref. [16], only the characters in the training set labeled as “0”
and “7” have been considered, obtaining a subset of 1839 images. The dissimilarity function used in
Ref. [16] is based on the Simpson score, which is a matching function between binary images. Given
two binary images, the following matrix can be constructed:

Img 1
0 1

Img 2 0 d c
1 b a

where: a is the number of pixels that are white in both the images; b is the number of pixels that
are white in Img 2 and black in Img 1; c is the number of pixels that are white in Img 1 and black in
Img 2; d is the number of pixels that are black in both the images. The Simpson score of two binary
images is defined as:

l =
a

min(a + b, a + c)
(45)
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Figure 3: FCM II - Behavior of the memberships during the optimization for different values of α.
First row λ = 30, second row λ = 20, third row λ = 10. Results are averaged over 100 repetitions
with different initialization of U .
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Figure 4: PCM I - Behavior of the memberships during the optimization for different values of α.
First row m = 2, second row m = 1.5, third row m = 1. Results are averaged over 100 repetitions
with different initialization of U .
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Figure 5: PCM II - Behavior of the memberships during the optimization for different values of α.
Results are averaged over 100 repetitions with different initialization of U .

The images in the USPS data set are not binary; this has required a normalization between 0 and 1,
and a thresholding at 0.5. The dissimilarity based on the Simpson score, is:

rij = 2 − 2lij (46)

which is between 0 and 2. The Simpson dissimilarity is symmetric, but does not obey to the triangular
inequality. Indeed, as can be seen in Fig. 6, there are some negative eigenvalues of Sc. The smallest
eigenvalue λ1 = −57.2 is the value that added to the dissimilarities let R̃ become a squared Euclidean
distance matrix. FCM II has been applied on the selected binary images, with λ = 0.2 and looking for
2 clusters. Fig. 7 shows the two clusters found by the algorithm. The images have been sorted with
decreasing values of memberships. The image in the top-left corner has the highest membership and
moving to the right the memberships decrease. In the area of the images where the memberships
are low, some images are misclassified. A thorough analysis shows that the characters that have been
assigned to the wrong clusters have, in fact, their membership shared almost equally between the two
clusters.

4 Conclusions

In this paper, four clustering algorithms based on fuzzy memberships have been studied: FCM I,
FCM II, PCM I, and PCM II. In particular, it has been studied how the symmetrization and the
shift operation on the dissimilarities affect their Lagrangian. The main results include the proof of
the invariance of the Lagrangian to symmetrization and the lack of invariance to shift operations.

The tests conducted on a synthetic data set show that FCM II, among the studied algorithms, is
the least sensitive to shift operations. The difference of the memberships in FCM I, after dissimilarities
shift, presents a peak around the first iterations. One possible explanation can be found by looking
at the functional and at the values assumed by the memberships around those iterations. The terms
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Figure 6: USPS data set - Eigenvalues of the matrix Sc sorted by decreasing magnitude.

Figure 7: Clusters found by FCM II. The image in the top-left corner has the highest membership
value. Moving right, the memberships decrease.
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A(U) and B(U) give a high contribution when the memberships are near 1/c. In the first exploratory
iterations, the values are more likely to be near 1/c than later, when the clusters are well identified. As
we can see from Eq. 84, as α increases, the memberships tend to be 1/c, if c ≪ n. The memberships
for α 6= 0 do not diverge from those of α = 0; this effect can be noticed also for FCM II. A small peak
in the difference of the memberships for different α can be seen also for FCM II, and is the effect of
B(U) in the Lagrangian. In both FCM I and FCM II, the defuzzification of the membership produced
the same cluster labels, even for large shifts. These experimental results suggest that FCM I and
FCM II could be useful to perform the optimization, to obtain the cluster labels; the value of the
memberships are distorted by the shift, though. Shift operations affects mostly PCM I and PCM II.
Even for moderate values of α, the memberships assume very different values with respect to the
unshifted case. Small distances are more affected by the sum of a constant than large distances. The
lack of a probabilistic constraint leads to the inability of the possibilistic algorithms to handle sparse
data set [15]. The algorithm considers all the data set as a single cluster, and the centroids collapse
into a single one. This could be the reason for this strong distortion after shift operations. From the
results on handwritten character recognition problem, it is possible to see how FCM II performed in
a real scenario. A simple analysis on the memberships can help to avoid a decision on the assignment
of patterns having their membership almost equally shared among clusters.

Other interesting studies could involve the effect of the cardinality of the data set n and the
number of clusters c. It would be also interesting to try different approaches for the estimation
of ηi, as suggested in Ref. [6], or see what is the difference between the behavior of memberships
associated to outlier and normal patterns. All these considerations could be the basis of new studies
on the behavior of the studied clustering algorithms, for patterns described by non-metric pairwise
dissimilarities.
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A Appendix

A.1 Proof that Sc is Uniquely Determined by Rc

The centralized version of a generic matrix P is the following:

P c = QPQ (47)

This is equivalent to:

pc
ij = pij −

1

n

n
∑

h=1

phj −
1

n

n
∑

k=1

pik +
1

n2

n
∑

h=1

n
∑

k=1

phk (48)

Inverting Eq. 5, we can write:

sij = −
1

2
(rij − sii − sjj) (49)
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The centralized version of S is:

sc
ij = −

1

2

[

(rij − sii − sjj) −
1

n

n
∑

h=1

(rhj − shh − sjj) −
1

n

n
∑

k=1

(rik − sii − skk)

+
1

n2

n
∑

h=1

n
∑

k=1

(rhk − shh − skk)

]

(50)

= −
1

2

(

rij −
1

n

n
∑

h=1

rhj −
1

n

n
∑

k=1

rik +
1

n2

n
∑

h=1

n
∑

k=1

rhk

)

(51)

This proves that the centralized version of S is uniquely determined by the centralized version of R:

Sc = −
1

2
Rc (52)

A.2 Proof of Theorem 1.1

In this section we provide the proof that R is a squared Euclidean distance matrix ⇐⇒ Sc � 0. Let’s
start with ⇒. The centralized version of R is:

Rc = QRQ = R −
1

n
eeT R −

1

n
ReeT +

1

n2
eeT ReeT (53)

Assuming that a set of vectors x exists, for which:

rij = ‖xi − xj‖
2 (54)

the elements of Rc can be written:

rc
ij = ‖xi − xj‖

2 −
1

n

n
∑

h=1

‖xh − xj‖
2 −

1

n

n
∑

k=1

‖xi − xk‖
2 +

1

n2

n
∑

h=1

n
∑

k=1

‖xh − xk‖
2

= xixi + xjxj − 2xixj −
1

n

(

n
∑

h=1

xhxh + xjxj − 2xhxj

)

−
1

n

(

n
∑

k=1

xixi + xkxk − 2xixk

)

+
1

n2

(

n
∑

h=1

n
∑

k=1

xhxh + xkxk − 2xhxk

)

= −2

(

xixj −
1

n

n
∑

h=1

xhxj −
1

n

n
∑

k=1

xixk +
1

n2

n
∑

h=1

n
∑

k=1

xhxk

)

(55)

Introducing the quantity:

x̄ =
1

n

n
∑

h=1

xh (56)

we can rewrite in a more compact way Eq. 55:

rc
ij = −2(xi − x̄)(xj − x̄) = −2x̆ix̆j (57)
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This is equivalent to say that:
Sc = X̆X̆T (58)

which proves ⇒.
To prove ⇐, since Sc is positive semidefinite, we can write:

Sc = XXT (59)

where the rows of X are vectors x ∈ R
d. From Eq. 5:

rij = sii + sjj − 2sij

= xixi + xjxj − 2xixj

= ‖xi − xj‖
2 (60)

This proves ⇐.

A.3 Preshift and Postshift

Let’s analyze why:

Sc + αI 6= −
1

2
(QR̃Q) (61)

and how this can influence the behavior of the studied clustering algorithms. First, let’s see what is
the difference between the resulting matrices. For the preshift we have:

−
1

2
(QR̃Q) = −

1

2
(QRQ) − αQ(eeT − I)Q = Sc − αQ(eeT − I)Q (62)

Now:
Q(eeT − I)Q = QeeT Q − QQ = −QQ = −Q (63)

since:

Qe = (I −
1

n
eeT )e = e − e = 0 (64)

and:

QQ = (I −
1

n
eeT )(I −

1

n
eeT ) = I −

2

n
eeT +

1

n2
eeT eeT = I −

1

n
eeT = Q (65)

Thus:

−
1

2
(QR̃Q) = Sc + αQ (66)

The difference between the matrices associated to postshift and preshift is:

α(I − Q) =
α

n
eeT (67)

Now we prove that ‖xh − vj‖
2 is independent from the choice of the preshift or postshift:

‖xh − vj‖
2 = k′

hh − 2

∑n
r=1 uθ

irk
′
rh

∑n
r=1 uθ

ir

+

∑n
r=1

∑n
s=1 uθ

iru
θ
isk

′
rs

(
∑n

r=1 uθ
ir)

2
(68)

k′ = k +
α

n
(69)

‖xh − vj‖
2 = khh +

α

n
− 2

∑n
r=1 uθ

irkrh
∑n

r=1 uθ
ir

− 2
α

n
+

∑n
r=1

∑n
s=1 uθ

iru
θ
iskrs

(
∑n

r=1 uθ
ir)

2
+

α

n
(70)
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A.4 Proof of Equivalence between G(U, V ) and G(U)

To prove the equivalence between the distortion functions in Eqs. 18 and 24, let’s introduce the
quantity:

bi =
n
∑

h=1

uθ
ih (71)

Since:

vi =

∑n
h=1 uθ

ihxh
∑n

h=1 uθ
ih

(72)

part of the sum in G(U, V ) can be rewritten in the following way:

n
∑

h=1

uθ
ih‖xh − vi‖

2 =
n
∑

h=1

uθ
ih(xh − vi)(xh − vi)

=

n
∑

h=1

uθ
ih(xhxh + vivi − 2xhvi)

=
n
∑

h=1

uθ
ihxhxh +

n
∑

h=1

uθ
ihvivi − 2

n
∑

h=1

uθ
ihxhvi

=
n
∑

h=1

uθ
ihxhxh + bivivi − 2bivivi

=

n
∑

h=1

uθ
ihxhxh − bivivi (73)

Rewriting part of G(U), we obtain:

n
∑

r=1

n
∑

s=1

uθ
iru

θ
is‖xr − xs‖

2 =
n
∑

r=1

n
∑

s=1

uθ
iru

θ
is(xr − xs)(xr − xs)

=
n
∑

r=1

n
∑

s=1

uθ
iru

θ
is(xrxr + xsxs − 2xrxs)

=
n
∑

r=1

n
∑

s=1

uθ
iru

θ
isxrxr +

n
∑

r=1

n
∑

s=1

uθ
iru

θ
isxsxs − 2

n
∑

r=1

n
∑

s=1

uθ
iru

θ
isxrxs

=
n
∑

r=1

uθ
irxrxr

n
∑

s=1

uθ
is +

n
∑

s=1

uθ
isxsxs

n
∑

r=1

uθ
ir − 2

n
∑

r=1

xru
θ
ir

n
∑

s=1

uθ
isxs

= 2bi

n
∑

r=1

uθ
irxrxr − 2b2

i vivi (74)

This proves that G(U, V ) = G(U).
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A.5 Derivation of FCM I, FCM II, PCM I, and PCM II

This section shows the derivation of FCM I, FCM II, PCM I, and PCM II. At the end of each
derivation, we discuss the influence of the distance shift on the update equations.

A.5.1 Fuzzy c-means I

The Lagrangian L(U) is introduced:

L(U, V ) =
c
∑

i=1

n
∑

h=1

um
ih‖xh − vi‖

2 +
n
∑

h=1

βh(1 −
c
∑

i=1

uih) (75)

The first term is the distortion G(U, V ) and the second is W (U) which is not zero, since the mem-
berships are subjected to the probabilistic constraint in Eq. 16. The parameter m > 1 works as
a fuzzifier parameter; for high values of m the memberships tend to be equally distributed among
clusters. Setting to zero the derivatives of L(U, V ) with respect to the uih:

∂L(U, V )

∂uih

= mum−1
ih ‖xh − vi‖

2 − βh = 0 (76)

we obtain:

uih =

(

βh

m‖xh − vi‖2

) 1

m−1

(77)

Substituting the expression of uih into the constraint equation:

c
∑

i=1

(

βh

m‖xh − vi‖2

) 1

m−1

= 1 (78)

we can obtain the Lagrange multipliers:

βh =

[

c
∑

i=1

(

1

m‖xh − vi‖2

) 1

m−1

]1−m

(79)

Substituting Eq. 79 into Eq. 77, the equation for the update of the memberships uih can be obtained:

u−1
ih =

c
∑

j=1

(

‖xh − vi‖
2

‖xh − vj‖2

)
1

m−1

(80)

To compute the equation for the update of the vi, we set to zero the derivatives of L(U, V ) with
respect to vi:

∂L(U, V )

∂vi

= −
n
∑

h=1

um
ih (xh − vi) = 0 (81)

obtaining:

vi =

∑n
h=1 um

ihxh
∑n

h=1 um
ih

(82)
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After a shift operation on the dissimilarities, the Lagrangian Lα(U, V ) contains two more terms:
A(U) and B(U). Since A(U) < n and B(U) < c, if c ≪ n, we can neglect the term B(U):

Lα(U, V ) =
n
∑

h=1

c
∑

i=1

um
ih‖xh − vi‖

2 + α
n
∑

h=1

c
∑

i=1

um
ih +

n
∑

h=1

βh(1 −
c
∑

i=1

uih) (83)

Following the same procedure, we obtain that the update of the v is the same as in Eq. 82, but the
update of the memberships is:

u−1
ih =

c
∑

j=1

(

‖xh − vi‖
2 + α

‖xh − vj‖2 + α

)
1

m−1

(84)

This shows that for large values of α and c ≪ n the membership tend to be equally distributed among
clusters.

A.5.2 Fuzzy c-means II

The Lagrangian L(U, V ) for FCM II is:

L(U, V ) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 + λ

n
∑

h=1

c
∑

i=1

uih ln(uih) +
n
∑

h=1

βh(1 −
c
∑

i=1

uih) (85)

The entropic term favors values of the memberships near zero or one (Fig. 8). Let’s compute the
derivative of L(U, V ) with respect to uih:

∂L(U, V )

∂uih

= ‖xh − vi‖
2 + λ(ln(uih) + 1) − βh = 0 (86)

This leads to:

uih =
1

e
exp

(

βh

λ

)

exp

(

−
‖xh − vi‖

2

λ

)

(87)

Substituting the last equation into the probabilistic constraint, we obtain:

c
∑

i=1

1

e
exp

(

βh

λ

)

exp

(

−
‖xh − vi‖

2

λ

)

= 1 (88)

This allows to compute the Lagrange multipliers:

βh = λ − λ ln





c
∑

j=1

exp

(

−
‖xh − vj‖

2

λ

)



 (89)

Substituting Eq. 89 into Eq. 87, we obtain the equation for the update of the uih:

uih =
exp

(

−‖xh−vi‖
2

λ

)

∑c
j=1 exp

(

−
‖xh−vj‖2

λ

) (90)
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Figure 8: (a) Plot of the FCM II entropy H(uih) = uih ln(uih). (b) Plot of the PCM I entropy
H(uih) = (1−uih)m for increasing values of m. (c) Plot of the PCM II entropy H(uih) = uih ln(uih)−
uih.

Setting to zero the derivatives of L(U, V ) with respect to vi:

∂L(U, V )

∂vi

= −
n
∑

h=1

uih (xh − vi) = 0 (91)

the following update formula for the centroids vi is obtained:

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(92)

A.5.3 Possibilistic c-means I

The PCM I Lagrangian L(U, V ) does not have the W (U) term coming from the probabilistic constraint
on the memberships:

L(U, V ) =
n
∑

h=1

c
∑

i=1

um
ih‖xh − vi‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)m (93)

The entropic term penalizes small values of the memberships.
Setting to zero the derivatives of L(U, V ) with respect to the memberships uih:

∂L(U, V )

∂uik

= mum−1
ih (‖xh − vi‖

2) − ηim(1 − uih)m−1 = 0 (94)

We obtain directly the update equation:

u−1
ih =

(

‖xh − vi‖
2

ηi

)
1

m−1

+ 1 (95)
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The following derivative of L(U, V ):

∂L(U, V )

∂vi

= −
n
∑

h=1

um
ih (xh − vi) = 0 (96)

gives the update equation for the centroids vi:

vi =

∑n
h=1 um

ihxh
∑n

h=1 um
ih

(97)

The following criteria is suggested to estimate the value of ηi:

ηi = γ

∑n
h=1 (uih)m ‖xh − vi‖

2

∑n
h=1 (uih)m (98)

where γ is usually set to one.
In presence of a shift operation on the dissimilarities, the Lagrangian is not invariant. Following

the same considerations made for FCM I about A(U) and B(U), it is possible to neglect B(U), if
c ≪ n:

Lα(U, V ) =
n
∑

h=1

c
∑

i=1

um
ih‖xh − vi‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)m + α
n
∑

h=1

c
∑

i=1

um
ih (99)

Following the same procedure to derive the equations for the update of U :

u−1
ih =

(

‖xh − vi‖
2 + α

ηi

)
1

m−1

+ 1 (100)

For large values of α the memberships tend to be small.

A.5.4 Possibilistic c-means II

The PCM II Lagrangian L(U, V ) is:

L(U, V ) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 +

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) (101)

The entropic term penalizes small values of the memberships.
Setting to zero the derivatives of L(U, V ) with respect to the memberships uih:

∂L(U, V )

∂uik

= ‖xh − vi‖
2 + ηi ln(uih) = 0 (102)

we obtain:

uik = exp

(

−
‖xh − vi‖

2

ηi

)

(103)

Setting to zero the derivatives of L(U, V ) with respect to vi:

∂L(U, V )

∂vi

= −
n
∑

h=1

uih (xh − vi) = 0 (104)
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we obtain the update formula for the centroids vi:

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(105)
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