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Abstract. In this paper we propose the Possibilistic C-Means in Fea-
ture Space and the One-Cluster Possibilistic C-Means in Feature Space
algorithms which are kernel methods for clustering in feature space based
on the possibilistic approach to clustering. The proposed algorithms re-
tain the properties of the possibilistic clustering, working as density esti-
mators in feature space and showing high robustness to outliers, and in
addition are able to model densities in the data space in a non-parametric
way. One-Cluster Possibilistic C-Means in Feature Space can be seen also
as a generalization of One-Class SVM.

1 Introduction

In the last few years, some applications of kernel methods [1] to clustering tasks
have been proposed. Kernel approach allows us to implicitly map patterns into
a high feature space where the cluster structure is possibly more evident than
in the original data space. In the literature, kernels have been applied in clus-
tering in different ways. We can be broadly classify these approaches in three
categories, which are based respectively on the: (a) kernelization of the metric

(see, e.g., [9,12]); (b) clustering in feature space (see, e.g., [11]); (c) description

via support vectors (see, e.g., [4]). The first two keep the concept of centroid as
a prototype of a cluster as it is in K-Means. Methods based on kernelization of
the metric look for centroids in input space and the distance between patterns
and centroids is computed through kernels. Clustering in feature space is made
by mapping each pattern in feature space and then computing centroids in this
new space. The description via support vectors is used in the One-Class Support
Vector Machine (One-Class SVM) algorithm [4] that finds a hypersphere with
minimal radius in the feature space able to enclose almost all data excluding
outliers. When we go back to the input space, this hypersphere corresponds to
a non-linear and possibly non-connected surface separating clusters. A labeling
procedure is then applied in order to group the patterns lying in the same cluster
in data space.

In this paper we present the Possibilistic C-Means in Feature Space (PCM-
FS) and the One-Cluster Possibilistic C-Means in Feature Space (One-Cluster
PCM-FS) algorithms, which are two novel kernel methods for clustering in fea-
ture space based on the possibilistic approach to clustering [5,6]. The proposed



algorithms retain the properties of the possibilistic approach to clustering, work-
ing as density estimators in feature space and showing high robustness to out-
liers, and in addition they are able to model densities in the data space in a
non-parametric way. Note that previous kernel approaches to possibilistic clus-
tering [12,10,7] are based on the kernelization of the metric.

One-Cluster PCM-FS can be seen also as a generalization of One-Class SVM
as it is able to find a family of minimum enclosing hyperspheres in feature space;
each of such hyperspheres can be obtained by simply thresholding the member-
ships.

The paper is organized as follows: Section 2 sketches the main aspects of the
PCM algorithm, in Sections 3 and 4 we introduce the PCM-FS and the One-
Cluster PCM-FS while in Sections 5 and 6 we present some experimental results
and the conclusions.

2 Possibilistic C-Means

Let U be the membership matrix, where each element uih (uih ∈ [0, 1]) repre-
sents the membership of the h-th pattern (h = 1, 2, . . . , n) to the i-th cluster
(i = 1, 2, . . . , c). In the possibilistic clustering framework [5], memberships uih

can be interpreted of as degrees of typicality of patterns to clusters. To this
aim, in the possibilistic clustering framework we do we relax the usual proba-

bilistic constraint on the sum of the memberships of a pattern to all clusters
(i.e.,

∑c

i=1
uih = 1) that applies, e.g., to the Fuzzy C-Means (FCM) [3], to this

minimal set of constraints:

uih ∈ [0, 1] ∀i, h (1)

0 <

n
∑

h=1

uih < n ∀i (2)

∨

i

uih > 0 ∀h. (3)

Roughly speaking, these requirements simply imply that clusters cannot be
empty and each pattern must be assigned to at least one cluster.

There are two formulations of the Possibilistic C-Means (PCM) algorithm [5],
[6]. Here we consider the latter which attempts to minimize the following func-
tional:

J(U, V ) =

n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 +

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) (4)

with respect to U and the set of centroids V = {v1, . . . ,vc}. The first term
of J(U, V ) is the expectation of distortion, while the latter is an entropic term
which allows us to avoid the trivial solution with all memberships equal to zero.



Setting the gradient of J(U, V ) with respect to the uih and vi to zero we
obtain:

uih = exp

(

−
‖xh − vi‖

2

ηi

)

(5)

vi =

n
∑

h=1

uihxh

n
∑

h=1

uih

(6)

To perform the optimization of J(U, V ) we apply the Picard iterations method,
by simply iterating Eq.s 5 and 6. Each iteration consists of two parts: in the
first one the centroids are kept fixed and the memberships are modified using
Eq. (5), while in the second one we keep the memberships fixed and update the
centroids using Eq. (6). The iteration ends when a stop criterion is satisfied,
e.g., memberships change less than an assigned threshold, or when no significant
improvements of J(U, V ) are noticed. The constraint on the memberships uih ∈
[0, 1] is satisfied given the form of Eq. 5.

The parameter ηi regulates the tradeoff between the two terms in Eq. 4 and
is related to the width of the clusters. In [5,6], the authors suggest to estimate
ηi using a weighted mean of the intracluster distance of the i-th cluster:

ηi = γ

n
∑

h=1

uih‖xh − vi‖
2

n
∑

h=1

uih

(7)

where the parameter γ is typically set to one. The parameter ηi can be updated at
each step of the algorithm or can be fixed for all iterations. The former approach
can lead to instabilities since the derivation of the algorithm have been obtained
considering ηi fixed. In the latter a good estimation of ηi can be obtained only
when starting from a preliminary solution of the clustering solution, given, e.g.,
from an algorithm based on the probabilistic constraint, such as the FCM. For
this reason often the PCM is usually applied as a refining step for a clustering
procedure.

Note that the lack of of competitiveness among clusters due to the relaxation
of the probabilistic constraints makes the PCM approach equivalent to a set of
c independent estimation problems that can be solved one at a time through c

independent Picard iterations of Eq. 5 and Eq. 6, i.e., one for each cluster.

The main drawback for the possibilistic clustering, as well as for most cen-
tral clustering methods, is its inability to model in a non-parametric way the
density of clusters of generic shape (parametric approaches such as Possibilistic
C-Spherical Shells [5], instead, have been proposed).



3 Possibilistic clustering in feature space

In order to overcome this limit, we propose the Possibilistic C-Means in Feature
Space (PCM-FS) algorithm. It is based on a kernelization of the PCM obtained
by applying a mapping Φ from the input space S to a high dimensional feature
space F (Φ : S → F) to the patterns, and applying the PCM to them in the
new space F . The objective function to be minimized becomes:

JΦ(U, V Φ) =

n
∑

h=1

c
∑

i=1

uih‖Φ(xh) − v
Φ
i ‖

2 +

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) . (8)

Note that the centroids v
Φ
i of PCM-FS algorithm lie in the feature space. We

can minimize JΦ(U, V Φ) by setting its derivatives with respect to v
Φ
i and uih

equal to zero, obtaining:

v
Φ
i =

n
∑

h=1

uihΦ(xh)

n
∑

h=1

uih

= bi

n
∑

h=1

uihΦ(xh), bi ≡

(

n
∑

h=1

uih

)

−1

(9)

uih = exp

(

−
‖Φ(xh) − v

Φ
i ‖

2

ηi

)

. (10)

In principle, Eq.s 9 and 10 can be used for a Picard iteration minimizing JΦ(U, V Φ),
but as Φ is not known explicitly, we cannot compute directly them. Despite this,
if we consider Mercer Kernels [2] (symmetric and semidefinite kernels) which can
be expressed as a scalar product:

K(xi,xj) = Φ(xi) · Φ(xj), (11)

this relation holds (kernel trick [1]):

‖Φ(xi) − Φ(xj)‖
2

= K(xi,xi) + K(xj ,xj) − 2K(xi,xj). (12)

This allows us to obtain an update rule for the memberships by substituting
Eq. 9 in Eq. 10:

uih = exp

[

−
1

ηi

·

(

khh − 2bi

n
∑

r=1

uirkhr + b2

i

n
∑

r=1

n
∑

s=1

uiruiskrs

)]

. (13)

Note that in Eq. 13 we introduced the notation kij = K(xi,xj). The Picard iter-
ation then reduces to the iterative update of the memberships only using Eq. 13,
ending when an assigned stopping criterion is satisfied (e.g., when memberships
change less than an assigned threshold, or when no significant improvements of
JΦ(U, V Φ) are noticed).



Concerning the parameters ηi, we can applying in the feature space the same
criteria suggested for the PCM (Eq. 7) obtaining in such a way:

ηi = γ bi

n
∑

h=1

uih

(

khh − 2bi

n
∑

r=1

uirkhr + b2

i

n
∑

r=1

n
∑

s=1

uiruiskrs

)

(14)

The parameters ηi can be estimated at each iteration or once at the beginning
of the algorithm. In the latter case the initialization of the memberships, that
allows to provide a good estimation of the ηi, can be obtained as a result of a
Kernel Fuzzy c-Means [11].

Note that if we chose a linear kernel kij = xi ·xj the PCM-FS reduces to the
standard PCM, i.e., using a linear kernel is equivalent to put Φ ≡ I, where I is
the identity function. In the following, we will use a Gaussian kernel:

kij = exp

(

−
‖xi − xj‖

2

2σ2

)

(15)

for which
‖Φ(xi)‖

2 = Φ(xi) · Φ(xi) = kii = 1. (16)

As a consequence, patterns are mapped by the Gaussian kernel from data
space to the surface of a unit hypersphere in feature space.

Centroids in the feature space v
Φ
i are not constrained to the hyperspherical

surface as mapped patterns; therefore, centroids lie inside this hypersphere, and
due to the lack of competitiveness between clusters (that characterizes the pos-
sibilistic clustering framework), centroids of PCM-FS often collapse into a single
one, with slight dependency on the value of the cluster spreads ηi.

Note that PCM-FS retains the principal characteristics of PCM, including
the capability of estimating hyperspherical densities, this time in the feature
space. In the data space this corresponds to the capability to model clusters of
more general shape, a significant improvement with respect the original PCM.

4 One-Cluster Possibilistic C-Means in Feature Space

algorithm

We propose now the One-Cluster Possibilistic C-Means in Feature Space (One-
Cluster PCM-FS) algorithm aimed to model all data points in a single cluster in
features space. We assume the presence of a unique cluster in feature space, with
no regard to the number of clusters we expect to model in the data space. In
the following, we will denote with uh the membership of the h-th pattern to the
cluster. It is made up by three main steps: Core, Defuzzification, and Labeling.

The Core step is the ”fuzzy” part of the algorithm, aimed to producing a
fuzzy-possibilistic model of densities (membership function) in the feature space.
It is initialized by selecting a stop criterion (e.g., when memberships change less
than an assigned threshold, or when no significant improvements of JΦ(U, V Φ)
are noticed), setting the value of σ for the Gaussian kernel (in order to define



the spatial resolution of density estimation), and initializing the memberships
uh (usually as uh = 1). Then, after estimating the value of η using Eq. 14, we
perform the Picard iteration using Eq. 13.

The Defuzzification steps filters outliers from data points by selecting a
threshold α ∈ (0, 1) and using it to define an α-cut (or α-level set) on data
points:

Aα = {xh ∈ X | uh > α} (17)

Note that given the form of uh(Eq. 10) the threshold α defines a hypercircle
which encloses a hyperspherical cap. Aα is then the set of data points whose
mapping in feature space lies on the cap, whose base radius depends on α.
Points outside the α-cut are considered to be outliers.

The Labeling step separates the data points belonging to the single cluster in
feature space, in a number of ”natural” clusters in data space. It uses a convexity
criterion derived from the one proposed for One-Class SVM [4] assigning the
same label to a pair of points only if all elements of the linear segment joining
the two points in data space belong to Aα.

The Defuzzification and Labeling steps can be iterated with different values
of α, thus performing a very lightweight model selection, without involving new
runs of the Core step. Often, such as in the case of experiments presented in next
section, an a-priori analysis of the memberships histogram permits to obtain a
good evaluation of α without performing a true model selection. Indeed, the
presence of multiple modes in the membership histogram indicates the presence
of different structures of data in feature space, and allows us to find several levels
of α discriminating the different densities of data in feature space.

5 Experimental results and discussion

In this section we present some results obtained on a synthetic second data set
(Fig. 1) consisting in three disjoint dense regions (black dots) on a 10x10 square:
two rectangular regions, each of them corresponding to 1.24 % of the square
and composed by 100 patterns uniformly distributed, and a ring shaped region,
corresponding to 7.79 % of the square, that contains 300 patterns uniformly
distributed. An uniformly distributed noise of 1000 grey dots is superimposed
to the square.

We used a Gaussian kernel with standard deviation σ = 0.5 estimated as the
order of magnitude of the average inter-data points distance. The memberships
uh were initialized to 1. The stop criterion was

∑

h ∆uh < ε with ε = 0.01.
In the Defuzzification step we evaluated α using the histogram method. As

shown in Fig. 1(a), choosing α = .3667 that is the value of membership separating
the two modes of the histogram, we obtain a good separating surface in the data
space (Fig. 1(b)), with no need to perform any iteration for model selection.

As shown in the experiment, One-Cluster PCM-FS shows a high robustness
to outliers and a very good capability to model clusters of generic shape in
the data space (modeling their distributions in terms of fuzzy memberships).
Moreover it is able to find autonomously the natural number of clusters in the
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Fig. 1. (a) Histogram of the memberships obtained by One-Cluster PCM-FS with
σ = 0.5. The dotted line gets through to membership value .3667 that separates the
two modes of the graph; the value of α is then taken as α = .3667. (b) Data space:
black dots belong to the dense regions and the grey ones are the noisy patterns. The
contours correspond to points with membership equal to .3667.

data space. The outliers rejection ability is shared also by the standard PCM,
but is limited to the case of globular clusters. The standard PCM shows also a
good outliers rejection ability, but it works only with globular clusters.

One-Class SVM [4] is also able to find the ”natural” number of clusters of
generic shape in the data space, but it doesn’t model their distribution. More-
over, One-Class SVM needs a complete model selection procedure involving many
time consuming runs from scratch of the full algorithm.

In all the runs of One-Cluster PCM-FS the Core step, which involves the
minimization of JΦ(U, V Φ) (Eq. 8), resulted to be very fast, as only less than a
tenth of iterations of Eq. 13 where enough.

6 Conclusions

In this paper we have proposed the kernel possibilistic approach to clustering and
two clustering algorithms, namely the Possibilistic C-Means in Feature Space
and the One-Cluster Kernel Possibilistic C-Means in Feature Space algorithms
which are novel kernel methods for clustering in feature space based on the
possibilistic approach to clustering [5,6]. The proposed algorithms retain the
properties of the possibilistic approach to clustering, working as density estima-
tor in feature space and showing high robustness to outliers, and in addition are
able to model densities in the data space in a non-parametric way.



One-Cluster PCM-FS can be seen also as a generalization of One-Class SVM
as it is able to find a family of minimum enclosing hyperspheres in feature space;
each of such hyperspheres can be obtained by simply thresholding the mem-
berships. Note that, after fixed the value of the σ of the Gaussian kernel, the
model selection does not involve the optimization step of One-Cluster PCM-FS,
a.k.a. Core step, and can be performed very quickly. Moreover, often this is not
necessary, and an analysis of the histogram of memberships can easily permit
to find an optimal value for the threshold α, as in the case of the experiment
shown.
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