
ERAF: A R PACKAGE FOR REGRESSION AND
FORECASTING

M. Filippone,1 F. Masulli, 1,2 S. Rovetta1,3

1INFM - Istituto Nazionale per la Fisica della Materia
Via Dodecaneso 33, 16146 Genova, Italy

2Dipartimento di Informatica, Universita’ di Pisa
Via F. Buonarroti 2, 56125 Pisa, Italy

masulli@di.unipi.it

3 Dipartimento di Informatica e Scienze dell’Informazione
Universita’ di Genova, Via Dodecaneso 35, 16146 Genova, Italy

Abstract We present a package for R language containing a set of tools for regression
using ensembles of learning machines and for time series forecasting. The pack-
age contains implementations of Bagging and Adaboost for regression, and al-
gorithms for computing mutual information, autocorrelation and false nearest
neighbors.
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Introduction

R is a programming language and environment for statistical computing
similar to the S language and environment which was developed at Bell Lab-
oratories [Becker, 1984; Venables and Ripley, 2002; Ihaka and Gentleman,
1996]. It provides a large set of tools optimized for a wide range of problems.
It is based on objects such as vectors, matrices, and more complex structures
(data frames, lists). There are many operators acting directly on these ob-
jects, which make any computation fast and expressed in a straightforward
way. These properties, its GNU license 1 and a generic resemblance to Matlab
(which shares with R the presence of matrices and vectors as native objects),
have boosted its diffusion in the statistical and machine learning communities.

Among the available tools there are packages for multilayer perceptrons,
for support vector machines, for multivariate optimization. Moreover, the lan-
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guage features all standard programming constructs (conditional instructions,
loops) and a very handy 2D and 3D graphics drawing capability.

It is an interpreted language allowing to the user an easy interactive de-
velopment and usage of programs. The peculiar conventions adopted make it
a straightforward task and allow even very complicated constructs to be ex-
pressed compactly. The drawback of those properties is a possible penaliza-
tion of speed. Therefore, it is possible to call external C, C++, or Fortran
routines from within an R program. This is useful when parts of the code are
computation-intensive and difficult to optimize in R. Moreover, recently a R to
C compiler has been released (see http://hipersoft.cs.rice.edu/rcc/).

In this paper we present an overview of ERAF, a R package containing a
set of algorithms implementing Ensembles for Regression and for time series
Analysis and Forecasting we have implemented 2. In next sections we illustrate
some learning machines made available from other R packages (Sect. 1) and
the tools included in ERAF: namely some ensemble methods that can be used
in regression tasks (Sect. 1) and a set of procedures for time series analysis
making possible to transform a forecasting problem in a regression problem
(Sect. 2). In Sect. 3 we present a test case. Conclusions are in Sect. 4.

1. Ensembles for regression

Base learners and ensembles

Many base learners are available in R as components of standard packages,
includingMultilayer perceptrons (MLP) and Support vector machines (SVM).

Multilayer perceptrons (MLP) are implemented in R through the function
nnet of the package nnet contributed by Venables and Ripley [Ripley, 1996;
Venables and Ripley, 2002]. The following parameters can be set: type of
architecture (multilayer or single layer perceptron), number of hidden layer
units nnhl, weight decay parameter λ, stopping criterion (on cost threshold
and/or on maximum number of iterations); initialization values for weights,
and activation function for output units.

Support vector machines (SVM) [Cortes and Vapnik, 1995] are implemented
in R through the function svm of package e1071. The implementation is the
porting of Chang and Lin code [Chang and Lin, 2001; Chang and Lin, 2002].
The adjustable parameters are: kernel type (linear, polynomial, Gaussian), ker-
nel parameters (γ for Gaussian kernel, p and b0 for polynomial kernel), regu-
larization parameter C , and ε in Vapnik’s loss function.

Due the large number of parameters to be set in both nnet and svm, we
included in ERAF package two meta-learners allowing the user to to evaluate
the test set error (root mean square), while scanning the parameters, in order to
speeding-up the model selection procedure.
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The generalization of a learning machine using a finite data set has been
studied in the frameworks of the notions of margin [Vapnik, 1998] and of
classical bias-variance decomposition of the error [Geman et al., 1992], that
recently have been shown to be equivalent [Domingos, 2000].

Ensemble methods [Valentini and Masulli, 2002] aggregate the output of a
set of base learners and can increase generalization on the same data set, as they
can boost margins, reduce variance, and also bias. The overall effectiveness of
a learning machine depends on the specific characteristics of the base learners
(more details are, e.g., in [Valentini and Dietterich, 2003]).

In ERAF package we implemented the Bagging [Breiman, 1996] and the
Adaboost [Freund and Schapire, 1996] algorithms that are two powerful en-
semble methods based on data set re-sampling that have been extensively stud-
ied in classification task. The implementations we have enclosed in ERAF
package are tailored for regression tasks.

Bagging

Bagging (Bootstrap AGGregatING) [Breiman, 1996] makes a bootstrapping
on a dataset consisting in creating new data sets by sampling with replacement
from the original data, with equal probabilities for each data item. The basic
algorithm creates a model for each new data set and then combining the dif-
ferent estimations thus obtained, by an averaging operation. More formally,
starting from the original dataset L = {(x1, y1), · · · , (xl, yl)} we build p new
training sets Lk with k = 1, · · · , p sampling from L with replacement. A
model fk(x,Lk) is identified from each new dataset, then the predictive model
is built as

f(x,L) =
1

p

p
∑

i=1

fk(x,Lk) (1)

Adaboost

Adaboost [Freund and Schapire, 1996] stands for ADAptive BOOSTing,
meaning that the procedure is adaptive with respect to the level of complexity
of the training set. The implemented algorithm for regression follows [Drucker,
1997].

The algorithm starts by assigning a probability p
(1)
i = 1/l to be sampled to

each of the l data items belonging to the set L = {(x1, y1), · · · , (xl, yl)}. A
training set L1 is generated by sampling with replacement from the original set
l(1) examples, and the first learner is trained. We obtain f (1) which gives the
output ŷ

(1)
i for each xi ∈ L. Then we compute the loss L

(1)
i selectable among
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the following:

L
(1)
i =

|ŷ
(1)
i − yi|

D
; L

(1)
i =

(

|ŷ
(1)
i − yi|

D

)2

; L
(1)
i = 1 − e−

|ŷ
(1)
i

−yi|

D

(2)
where D is a normalization constant such that Li ∈ [0, 1], i.e.,

D = max
i

|ŷ
(1)
i − yi|. (3)

Then we compute L̄(1) =
∑l(1)

i=1 L
(1)
i p

(1)
i , i.e., the average of the L

(1)
i weighted

on p
(1)
i , and β(1) = L̄(1)

1−L̄(1) , a quantity whose value is inversely related to
the quality of learning as measured on L: Now the sampling probabilities are
updated as follows:

p
(1)
i = p

(1)
i

(

β(1)
)1−L

(1)
i

(4)

and of course they are normalized to 1. With this procedure we can assign
a larger sampling probability to the examples featuring the larger error. It is
iterated until a value of T is reached such that L̄(T ) is larger than 0.5 or a
selected number of iterations is reached.

The ensemble thus obtained yields a output on a given xi which is computed
as the median of the ŷ

(t)
i weighted with the corresponding β(t). (The median is

used to give robustness to the method.) We consider ŷ
(t)
i and the corresponding

β(t) of all T machines which took part to the procedure. They are renamed so
that ŷ

(1)
i < ŷ

(2)
i < · · · < ŷ

(T )
i , keeping intact the association between a ŷ

(t)
i

and β(t). Then log 1
β(t) is summed over t until

∑

t

log
1

β(t)
≥

1

2

∑

t

log
1

β(t)
(5)

If t∗ is the minimum value of t such that (5) holds, the output ŷi is that made
by machine t∗, that is, ŷi = ŷ

(t∗)
i .

2. Time series analysis and forecasting

From forecasting to regression

The forecasting problem requires modeling an unknown system, which is
assumed to generate the observed time series. Given a time series of n ele-
ments (s1, s2, · · · , sn) obtained by sampling an observed variable of the sys-
tem, the Takens-Mane [Takens, 1981; Mane, 1981] theorem guarantees that its
dynamics can be reconstructed in the space of vectors

yi = (si, si+T , · · · , si+(d−1)T ) (6)
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T and d must be selected appropriately for the dynamics to be correctly re-
constructed. Therefore we have implemented the mutual information, auto-
correlation, and nearest neighbors algorithms [Abarbanel, 1996] as T can be
estimated as the the first minimum of mutual information or as the first zero
crossing of autocorrelation, and then we can estimate d using, e.g, false near-
est neighbors algorithm [Abarbanel, 1996]. ERAF package includes also two
local learners for forecasting, as proposed in [Abarbanel, 1996].

Mutual information

The algorithm for computing mutual information implements the following
definition [Abarbanel, 1996]:

I(T ) =
∑

si,si+T

P (si, si+T ) log2

(

P (si, si+T )

P (si)P (si+T )

)

(7)

The interval (a, b) is split into in k contiguous subintervals (typically hundreds)
A = (u, v) = ∆1 ∪ ∆2 ∪ ∆3 ∪ · · · ∪ ∆k, with ∆1 =

(

u, u + v−u
k

)

, and
∆j =

[

u + (j − 1) v−u
k

, u + j v−u
k

)

, j = 2, · · · , k.
To obtaining P (si) we count how many si belong to each subinterval, then

divide by N . P (si) is therefore an object of type {Pi}i=1,k. To obtain the joint
probability we build a k × k matrix J . Element Ji,j counts how many pairs
(si, si+T ) are such that si ∈ ∆i and si+T ∈ ∆j i (this quantity is then divided
by the number of pairs N − 1). Therefore mutual information is computed as:

I(T ) =

k
∑

i=1

k
∑

j=1

Ji,j log2

(

Ji,j

PiPj

)

(8)

where the summation is limited to PiPj 6= 0.

Autocorrelation

The autocorrelation is defined as:

C(T ) =
∑

i

(si − s̄)(si+T − s̄) (9)

where s̄ = 1
N

∑N
i=1 si is the average of s [Abarbanel, 1996]. The algorithm is

written in C.

False nearest neighbors

The false nearest neighbors algorithm [Abarbanel, 1996] allows us to esti-
mate the embedding dimension of a dynamical system. After choosing T cor-
responding to the first minimum of mutual information or to the first zero cross-
ing of autocorrelation, we consider an element y(k) = (sk, · · · , sk+(d−1)T )
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Figure 1. (a) The Lorenz time series (b) False nearest neighbors vs embedding dimension

and we search the vector y
NN (k) = y(u) = (su, · · · , su+(d−1)T ) closest to

it. To assess whether the vectors y(k) and nearest neighbor y
NN (k) are close

or far in passing from the current space to the space obtained by adding the
next coordinate, we check for one of the following two conditions [Abarbanel,
1996]:

|sk+dT − su+dT |
√

∑d
m=1 (s(k + (m − 1)T ) − s(u − (m − 1)T ))2

> 15 (10)

|s(k + dT ) − s(u + dT )|
1
N

∑N
k=1(s(k) − s̄)2

> 2 (11)

If one of them is fulfilled, we consider y
NN (k) as a false neighbor of y(k)

We repeat the procedure for all vectors y(k) and compute the percentage of
false neighbors. The computation is made starting from d = 1 up to a selected
maximum value of d. The algorithm for searching the vector y

NN (k) is writ-
ten in C and optimized following [Nene and Nayar, 1997] and is quite well
performing in terms of speed. Selection of T and data processing are made by
a procedure written in R.

3. Case study

In this section we present some experimental results concerning the appli-
cation of ensemble methods on a time series forecasting problem. In particular
we compare their performance with those of base learners.
The time series chosen is the well known Lorenz chaotic series obtained sam-
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MLP SVM Bagging Bagging Adaboost Adaboost
MLP SVM MLP SVM

rmse 2.13 2.76 2.42 2.89 2.02 3.02

Table 1. Results on the Lorenz time series.

pling the x variable, solution of this system of differential equations [Abar-
banel, 1996]:







ẋ = σ(y − x)
ẏ = −xz + rx − y
ż = xy − bz

σ = 16
b = 4

r = 45.92
(12)

Using a short time sampling (e.g. τs = 10−2) the forecasting problem is
easy and all considered learning machines (MLP, SVM and their bagged and
boosted versions) obtained similar good generalization results. In the follow-
ing, we present a numerical experiment where we strongly sub-sampled the
series x (τs = 0.2) obtaining the series of 1000 values shown in Fig. 1.

The problem was to forecast the last 200 values using the first 800 for train-
ing. The minimum of mutual information was T = 1. We used this value in
the construction of the time-delayed coordinates vectors. Be applying the false
nearest neighbors algorithm to those vectors we obtained d = 4 as an estimate
of the embedding dimension.

Using this value of d we trained many MLP and SVM in order to find the
best set of parameters that leads to the minimum of the root mean square error
(rmse) on the test set. All the necessary software is made available by the
ERAF package.

Then we built ensemble methods with base learners with the best set of pa-
rameters. All the ensembles were made up by 100 base learners using training
sets of the same dimension of the original training set. The best set of param-
eters for this problem were γ = 5, C = 5 and ε = 0.005 for SVM using
Gaussian kernel and nnhl = 36 and λ = 0.1 for MLP (see Sect. 1). All the
results are shown in Table 1. In Fig. 2 we can see the differences between the
regression lines for the best MLP and Adaboost with MLP.

4. Conclusions
The procedures contained in the ERAF package we have described in this

paper allow the R programmer to face regression and time series forecasting
problems using state of the art methods. In particular, ERAF makes available:
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Figure 2. (a) Regression line for Adaboost with MLP (b) Regression line for MLP

Bagging and Adaboost meta-learners that can improve the generalization
results in regression tasks of base learners, such as multi-layer percep-
tron and support vector machines, already available in R;

Tools for calculating mutual information, autocorrelation and false near-
est neighbors allowing the user to turn a forecasting problem into a re-
gression problem, on the basis of the embedding theorem and related
prescriptions.

We are extending the ERAF package in order to make available local fore-
casters [Abarbanel, 1996], and the procedures for Singular-Spectrum Analy-
sis [Vautard and Ghil, 1989; Vautard et al., 1992] able to extract trends from a
time series.
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Notes

1. The R language is available at http://www.r-project.org/ for the most common computer
platforms (Windows, Linux, Mac OS).

2. The package is available at http://mlsc.disi.unige.it/R.
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