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Abstract. Clustering methods provide an useful tool to tackle the problem of ex-
ploring large-dimensional data. However many common approaches suffer from
being applied in high-dimensional spaces. Building on a dissimilarity-based rep-
resentation of data, we propose a dimensionality reduction technique which pre-
serves the clustering structure of the data. The technique is designed for cases in
which data dimensionality is large compared to the number of available observa-
tions. In these cases, we represent data in the space of soft D-ranks, by applying
the concept of fuzzy ranking. A clustering procedure is then applied. Experimen-
tal results show that the method is able to retain the necessary information, while
considerably reducing dimensionality.

1 Introduction

The exploration of large-dimensional data has always been an ubiquitous problem in
science and information technologies. Clustering methods provide an useful tool to
tackle this problem. Several clustering algorithms have been modified in the direction
of incorporating fuzzy concepts (starting with the Fuzzy c-Means algorithm [1, 2]).

Many common approaches suffer from being applied in high-dimensional spaces.
For instance, one of the most common methods, k-means clustering, is based on itera-
tively computing distances and cluster averages. Increasing the data space dimension-
ality may introduce a large number of suboptimal solutions (local minima), and the
nearest-neighbour criterion which is the basis of the method may even become use-
less, in the sense that the distances of a given query point from its nearest and farthest
neighbours tend to converge [3].

Clustering algorithms often seek for areas where data is especially dense. However
it is often the case that the cardinality of the data sets available is not only small with
respect to the size of the data space, which would lead to insufficient sampling of the
space: sometimes it is even less than the number of variables. This means that the data
span only a subspace within the data space. In these conditions, it is not even easy to
define the concept of volumetric density, let alone estimating it.

A further problem is again related to distances in high space dimensionality. Defin-
ing clusters on the basis of distance requires that distances can be estimated. However
there are results [4] stating that, when space dimensionality is high or even moderate (as



low as 10-15), the distance of a point to its farthest neighbor and to its nearest neighbor
tend to become equal. Therefore the evaluation of distances, and the concept of “nearest
neighbor” itself, become less and less meaningful with growing dimension.

A notable complexity reduction in the presence of large-dimensional data sets is
provided by representations based on mutual distances between points. If the cardinality
of the data set is small compared to the input space dimensionality, then the matrix
of mutual distances or other pairwise pattern evaluation methods such as kernels [5]
may be used to represent data sets in a more compact way. Pękalska and Duin[6] have
developed a set of methods based on representing each pattern according to a set of
similarity measurements with respect to other patterns in the data set.

We adopt the same representation, whereby the data matrix is replaced by a pairwise
dissimilarity matrix D. Let X be a data set of cardinality n, X = {x1, x2, . . . , xn}. We start
by computing the dissimilarity matrix dik = d(xi, xk) ∀i, k according to the dissimilarity
measure d(x, y) between points x and y (e.g, the Euclidean distance). The dissimilarity
matrix may as well be given as input, in which case it could not even be a symmetric
matrix (for instance when obtained from subjective measurements by a panel of experts,
or in the behavioral sciences) and no function d(x, y) may exist.

The matrix D may now be used as the representation of all points of the set X
in a space with dimension n. Note that k-means type algorithms only work in metric
spaces, and usually their extensions to non-metric cases are somewhat arbitrary. By
representing data with this dissimilarity-based technique, we could apply this family of
clustering algorithms even to non-metric data, e.g. categorical or mixed.

2 Clustering with fuzzy ranks

To tackle the dimensionality problem, a typical countermeasure found in traditional
statistics is moving from the analysis of values (in our case, distances) to the analysis
of their ranks. Rank is the position of a given value in the ordered list of all values.
However in this work we adopt a fuzzy definition [7] of the concept of ranks.

Let ρi j be the rank of data point j with respect to data point i according to the set
of dissimilarities {d(xi, ·)} when sorted in decreasing order with respect to values. This
value is termed D-rank. It can be written in an algebraic fashion as:

ρi j =

n
∑

k=1

θ
(

di j − dik

)

, (1)

where the function θ(x) is an extended Heaviside step, taking on the values 0 for x < 0,
1 for x > 0, and 0.5 for x = 0, so ρi j ∈ [0, . . . , n − 1] ∀i ∈ {1, . . . , n}. This extension of
the Heaviside step represents the standard way to deal with ties in rank-order statistics.

It is now possible to measure the closeness of data points x1, . . . , xn by the concor-
dance of their respective D-rank vectors ρ(x1), . . . , ρ(xn). We can therefore represent a
data point xi by the vector of its D-ranks:

xi −→ ρ(xi) = [ρi1, . . . , ρin] (2)

This definition has several advantages. It embeds the problem into a space of dimension
n, which, by assumption, is smaller than the cardinality of the original data. Metric and
non-metric cases are treated alike, since the new measure is numeric in both cases.



Using this representation of data, any metric clustering algorithm can be applied. In
the experiments, we will refer to the procedure illustrated in the following section.

In a fuzzy set-theoretic perspective, it is more natural to define the relation “larger”
among two numbers as a degree to which one number is larger than another. The prob-
lem of ranking fuzzy quantities has been reviewed for instance by Bortolan and Degani
[8]. and, more recently, by Wang and Kerre [9, 10].

For instance, suppose that we are to compare (a) d1 = 3 with d2 = 4, and (b) d1 = 3
with d2 = 3.01. Clearly in both case (a) and case (b) we can rightfully say that d2 > d1,
but it is also clear that in (a) this is “more true” than in (b). Therefore, we can make the
following substitution:

θ
(

di j − dik

)

−→
1

1 + e(di j−dik)/β
(3)

where:
lim
β→0

1

1 + e(di j−dik)/β
= θ

(

di j − di j

)

(4)

So the computation of fuzzy rank can be expressed as

ρi j =

n
∑

k=1

1

1 + e(di j−dik)/β
(5)

The parameter β is a fuzziness parameter: for large β the ranking function is definitely
fuzzy, while for β = 0 we obtain the original, crisp ranking function.

The two expressions (1) and (5) for the rank function ρ.. are compared in a simple
example, illustrated in Figure 1, where the following set of values is used: {d, 2, 3, 5}.
The diagram is a plot of ρd. (in the two expressions, crisp and fuzzy) for d in the range
[0, 7]. Two plots are shown for the fuzzy expression, one for β = 0.05 and another for
β = 0.25 (smoother).

Fig. 1. Comparing crisp and fuzzy rank functions.

This new definition of rank allows us to integrate into a clustering algorithm the no-
tion that two ranks may be clearly defined (this happens when comparing very different
values), and in this case the soft rank behaves similarly to the standard, crisp definition
of ranks; or they may be less clearly defined (when the values to be compared are not
very different), and in this case the soft rank takes into account the degree of closeness
between the values. We want to exploit this added capability, and in the next section we
present one possible proposal.



3 Clustering algorithms using D-ranks

To exploit the concept of soft-ranks, we apply a standard agglomerative hierarchical
clustering algorithm to the soft D-ranks. We adopt the agnes procedure [11], which is
available in the R language and environment [12], because it provides the agglomerative
coefficient, which is defined as the average height of the mergers in a dendrogram.

We use the agglomerative coefficient to assess the value of β for which the clustering
is best defined. However, with growing β the clusters in the soft D-rank space tend to
collapse into one, since soft D-ranks tend all to their middle value n/2. Since we need
to compare these values obtained on different scales, we use a different index which
takes into account this problem. We define the weighted agglomerative coefficient aw

as follows:
aw = a

(

max{ρi j} − min{ρi j}

n

)

(6)

that equals zero for trivial clusters (one cluster for the whole data set).

4 Experiments

The method was tested on the publicly available Leukemia data by Golub et al. [13]. The
Leukemia problem consists in characterizing two forms of acute leukemia, Acute Lym-
phoblastic Leukemia (ALL) and Acute Mieloid Leukemia (AML). The original work
proposed both a supervised classification task (“class prediction”) and an unsupervised
characterization task (“class discovery”). Here we obviously focus on the latter, but we
exploit the diagnostic information on the type of leukemia to assess the goodness of the
clustering obtained.

The training data set contains 38 samples for which the expression level of 7129
genes has been measured with the DNA microarray technique (the interesting human
genes are 6817, and the other are controls required by the technique). Of these samples,
27 are cases of ALL and 11 are cases of AML. Moreover, it is known that the ALL class
is in reality composed of two different diseases, since they are originated from different
cell lineages (either T-lineage or B-lineage). In the data set, ALL cases are the first 27
objects and AML cases are the last 11. Therefore, in the presented results, the object
identifier can also indicate the class (ALL if id ≤ 27, AML if larger).

The test was performed according to the proposed method for a number of differ-
ent fuzziness levels β. The weighted agglomeration coefficient aw was used to assess
the “best” fuzziness level, and diagrams were compared for several linkage methods.
Specifically, the linkage methods used are: single (or nearest neighbor linkage); av-
erage (UPGMA); complete (or farthest neighbor linkage); weighted (WPGMA); ward
(Ward’s method with analysis of cluster variance).

The method which can be expected to find the most interesting clusters is Ward,
since it is known to yield small and compact clusters not affected by the “chaining”
effect, and this is fully confirmed by the experimental analysis.

Figure 2 shows the weighted agglomeration coefficient for the various linkage meth-
ods, with varying fuzziness level. The diagram shows that a peak is visible for a given
value of β, especially for the less discriminative methods. For the method which finds
the clearest clusters, the peak is hardly noticeable. Over a certain fuzziness threshold,



the rank vectors tend to collapse in a single big cluster, and the agglomerative coeffi-
cient a rises; however the weighted agglomerative coefficient aw plotted in the diagram
correctly shows that this clustering is less and less significant.

Fig. 2. Weighted agglomeration coefficient as a function of the fuzziness level β, for various
linkage methods.

Figure 3 shows the dendrograms obtained for some values of β with Ward’s linkage
method. The weighted agglomerative coefficient has a slight peak of 0.86 around β =
50, and inspection of the corresponding dendrogram reveals that indeed the clusters
found are very adherent to the available domain knowledge. For instance, the first split
in the dendrogram is between a cluster containing all ALL cases plus one AML case
(observation 35), on the left, and a cluster containing only AML cases, on the right.

The subtypes of ALL are also fairly well evidenced, since all T-cell cases are in a
major sub-cluster of the ALL cluster (on the right), with only two B-cell cases in the
T-cell cluster.

For AML cases also prognostic informations are available, however the original
work found no strong correlation between the molecular profile and therapy outcome
(success or failure). This can also be found in the dendrogram we present here, since for
cases 28-33 the outcome is failure and for cases 34-38 it is success, but no clustering is
perceivable among these cases.

The analisys of clustering results thus reveals that the same conclusion which were
obtained by several research step in ref. [13] are also found in a single application of
our proposed method.

For comparison, we performed a cluster analysis according to three different meth-
ods: 1) agglomerative clustering on the original, 7129-dimensional data; 2) agglom-
erative clustering on the distance matrix; and 3) agglomerative clustering on the con-
ventional rank matrix. In all cases, the obtained dendrograms do not show this level
of match with respect to the knowledge available in the literature, thus confirming the
superiority of the proposed method.



β = 0.1
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Fig. 3. Dendrograms obtained with different levels of fuzzines β with Ward’s linkage method.



5 Conclusions

We have presented a technique to perform clustering of high-dimensional data sets by
mapping these data in a lower dimensional space, the space of fuzzy D-rank vectors.
Several clustering techniques can be applied, and we used the standard agnes procedure
to obtain an indication of the best value for the fuzziness parameter β. The analysis con-
firms the quality of the proposed procedure by comparison to the knowledge available
in the literature, and its superiority to the other methods experimented.
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