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Novelty Detection

Novelty/Outlier

“an observation that deviates so much from other observations as

to arouse suspicion that it was generated by a different

mechanism.”

D. Hawkins
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Novelty Detection

Novelty/Outlier detection can be used for two different reasons:

reduce their impact in the modeling stage (outlier rejection)

flag events/detect changes in order to take decisions on the
system (novelty detection)

Two types of novelties:

Event based (Additive Outliers)

Model based (Innovative Outliers)
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Novelty Detection

Novelty detection is employed in many fields:

Mechanical Engineering (Fault detection)

Condition Monitoring

Hydrology

Surveillance

Approaches:

Neural networks

Extreme value theory

Support Vector methods

Statistical approaches (Frequentist and Bayesian)
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Novelty Detection

The performances of novelty detection systems can be measured
by means of:

Accuracy

False Positive and False Negative rates

In every application it is important to balance the cost of False
Negatives and False Positives.
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Novelty Detection

Modeling the system in a training stage

Training set:
X = {x1, . . . , xn}

The model describes what is “normal”, on the basis of the
training set X
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Maximum Likelihood Approach for i.i.d. data

Assume a parametric form for p(x), i.e. p(x) = p(x |θ)

Likelihood

L =
n

∏

i=1

p(xi |θ)

ML approach leads to an estimate θ̂ of θ

a test point can be tested using quantiles
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Information Theoretic Novelty Detection

We recast the novelty detection problem in the framework of
information theory

i.i.d. data:

Gaussian case (univariate and multivariate)
Mixture of Gaussians (univariate and multivariate)

time series (linear autoregressive)

M. Filippone and G. Sanguinetti Information Theoretic Novelty Detection



Novelty Detection
Information Theoretic Novelty Detection

Conclusions and Future Works

Gaussian
Mixture of Gaussians
Autoregressive Time Series

Kullback Leibler divergence

Definition:

KL [p‖q] =

∫

p(x) log

[

p(x)

q(x)

]

dx

it measures the dissimilarity between probability distributions

it is not symmetric and it does not obey to the triangular
inequality
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Information theoretic measure for novelty detection - i.i.d.
case

We denote with x∗ a new data point from the same model
We propose to evaluate the expected information content of x∗ as
a measure of novelty

p(x |θ̂) with θ̂ estimated on X

p(x |θ̂∗) with θ̂∗ estimated on X ∪ {x∗}

Kullback Leibler divergence between p(x |θ̂) and p(x |θ̂∗)
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KL divergence - Example
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Univariate Gaussian Case

xi ∼ N (m, s2)

We introduce:

ẑ =
(x∗ − m̂)

ŝ

The KL divergence results in:

KL = f (n, ẑ2)

The distribution of ẑ2 is known:

ẑ2 =
(x∗ − m̂)2

ŝ2
∼

(

n + 1

n − 1

)

F(1,n−1)

The distribution of the KL divergence is independent from the
statistics!!
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Univariate Gaussian Case - F -test

The analysis of ẑ2 leads to the F -test

The thresholds for novelty can be set by using the quantiles of
an F(1,n−1) with the desired different rejection rates

a test point can be tested comparing its ẑ2 score with the
thresholds

Most powerful test!!
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Example - 5 data points
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Example - 10 data points
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Univariate Gaussian Case - Experimental comparison

Generate a training set of n points from a N (m, s2);

Generate 106 test points from the same N (m, s2);

Compute the number of outliers (false alarm rate);

Repeat 200 times, and average the false alarm rate.
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KL vs ML - Univariate Gaussian
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Multivariate Gaussian Case

Training data:
xi ∼ N (m, S)

Introduce:
ẑ2 = (x∗ − m̂)T Ŝ−1(x∗ − m̂)

The KL divergence results in:

KL = f (n, ẑ2)

Again, the KL divergence does not depend on the statistics!!

M. Filippone and G. Sanguinetti Information Theoretic Novelty Detection



Novelty Detection
Information Theoretic Novelty Detection

Conclusions and Future Works

Gaussian
Mixture of Gaussians
Autoregressive Time Series

KL vs ML - Multivariate Gaussian
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Information Theoretic Novelty Detection

Based on the connection between the information theoretic
approach and statistical testing in the Gaussian case, we propose
two extensions:

Mixture of Gaussians (univariate and multivariate)

time series (linear autoregressive)
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Mixture of Gaussians

Pdf:

p(x |θ) =
c

∑

k=1

πkN (x |mk , s2
k )

KL divergence between:

p(x |θ̂) the mixture learned on X (for example using the EM
algorithm)
p(x |θ̂∗) the mixture learned starting from p(x |θ̂) and EM step
on X ∪ {x∗}

No closed form for the KL divergence between two mixtures!!
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Approximation of the KL divergence

Two-stage approximation

second order approximation of the logarithm

p(x |θ̂∗) = p(x |θ̂) + δp(x |θ̂)

log

[

p(x |θ̂)

p(x |θ̂∗)

]

= − log

[

1 +
δp(x |θ̂)

p(x |θ̂)

]

crisp responsibilities
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Example - the pdf
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Example - the approximation
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Mixture of Gaussian - KL divergence

the approximation of the KL divergence is:

KL = f (n, ẑ2
k , π̂k , ŝk)

where:

ẑ2
k =

(x∗ − m̂k)2

ŝ2
k

Monte Carlo simulation to obtain the quantiles of the KL
divergence

We can take into account the variability of the means and the
variances!!
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Mixture of Gaussian - Results
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Mixture of Gaussian - Results
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Iris - Results
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Iris - Results
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Autoregressive model - AR(d)

In many applications the i.i.d. assumption is not valid

A well established framework for modeling temporal
correlation in a series of observation is given by autoregressive
models:

xt+1 = α
Txt + εt+1 + µ

α = (α1, . . . , αd)

xt = (xt , xt−1, . . . , xt−d+1)

εt+1 ∼ N (0, γ2) and i.i.d.

µ allows to model series with any mean value m
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Autoregressive model - Parameter Estimation

ck = E[(xi − m)(xi−k − m)] k = 1, . . . , d

Introducing the vector c = (c1, c2, . . . , cd)T and the matrix C :

C =











c0 c1 . . . cd−1

c1 c0 . . . cd−2
...

...
. . .

...
cd−1 cd−2 . . . c0











we see that:
α = C−1c
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Autoregressive model - Parameter Estimation

Once we have α̂, we can estimate the other parameters of the
model µ and γ.
Let’s focus on γ̂2

γ̂2 =
1

n − d

n−1
∑

i=d

(

xi+1 − α̂
Txi − µ̂

)2
=

1

n − d

n−1
∑

i=d

ε̂2
i+1

In a ML approach to novelty detection we test a new data point on
the basis of γ̂2
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Autoregressive model - Information theoretic measure

Updated version of the parameters when we add a new data
point x∗: α̂∗, µ̂∗, and γ̂2

∗

Information content of x∗ in the null hypothesis that it has
been generated from the same model:

KL
[

N (ε|0, γ̂2)‖N (ε|0, γ̂2
∗
)
]

= f

(

γ̂2
∗

γ̂2

)
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Approximating the KL divergence

Let’s focus on the ratio γ̂
2
∗

γ̂2

Write the estimated parameters as their true values plus a
term that is given by the fact that the estimation is based on
a finite set of observations. For α, for example:

α̂ = α + ∆α α̂∗ = α + ∆α∗

Substitute these relations into γ̂2 and γ̂2
∗

Compute a first order expansion of γ̂
2
∗

γ̂2

M. Filippone and G. Sanguinetti Information Theoretic Novelty Detection
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Approximating the KL divergence

The ratio becomes a function of this form:

γ̂2
∗

γ̂2
≃

n − d

n − d + 1

[

1 +
∆

∑

n−1
i=d

ε2
i+1

]

where:
∆ = ε2

∗
+ correction terms
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Approximating the KL divergence

The leading term of the ratio ∆
P

n−1
i=d

ε
2
i+1

is therefore:

ε2
∗

∑

n−1
i=d

ε2
i+1

∼
1

n − d
F(1,n−d)

We propose this approximation:

∆
∑

n−1
i=d

ε2
i+1

∼
1

n − d
F(1,n−d) (1 + O(1/n))

We compute τ = 1 + O(1/n) to match the expected value of
the F -distribution with the actual distribution of the ratio

∆
P

n−1
i=d

ε
2
i+1
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AR(10) - Results
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AR(50) - Results
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Conclusions and Future Works

We recast novelty detection in the framework of information
theory

Important connections with statistical testing

Control of the false positive rate even for small data sets

Model selection is crucial

Extension to the exponential family (?)

Regularization (?)

Extend to model based novelties
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