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Abstract

When humans engage in face-to-face conversation,
they use their voices, faces, and bodies together in a
rich, multimodal, continuous, interactive process. For
a robot to participate fully in this sort of natural, face-
to-face conversation in the real world, it must also be
able not only to understand the multimodal communic-
ative signals of its human partners, but also to produce
understandable, appropriate, and natural communicat-
ive signals in response. A robot capable of this form of
interaction can be used in a large number of areas: for
example, it could take the role of a home companion, a
museum tour guide, a tutor, or a personal health coach.
While a number of such robots have been successfully
deployed, the full potential of socially interactive robots
has not been realised, due both to incomplete models
of human multimodal communication and to technical
limitations. However, thanks to recent developments
in a number of areas— including techniques for data-
driven interaction models, methods of evaluating inter-
active robots in real-world contexts, and off-the-shelf
component technology—the goal of developing a nat-
urally interactive robot is now increasingly achievable.

1. Natural face-to-face conversation . . .

Face-to-face conversation can be seen as both the
most basic and the richest form of human interaction.
As Bavelas, Hutchinson, Kenwood et al. [1] point out,
face-to-face conversation has three main features that
other forms of communication do not. First, it per-
mits unrestricted verbal expression: in principle, all
participants in a conversation can speak entirely freely,
unless the social situation constrains the details of the
language that can be used in practice. Secondly, in a
face-to-face setting, the participants have access to all
of the non-verbal elements available in human com-
munication, including facial displays, body language,

gestures; these elements can provide redundant inform-
ation to help with the interpretation of the verbal con-
tent, and can also permit participants to convey inform-
ation that is difficult to communicate with words alone.
Finally, face-to-face conversation is inherently a two-
way process that allows for instantaneous collabora-
tion among the participants: speakers may provide con-
tinuous verbal and non-verbal “back-channel” feedback
during the conversation, and may even produce over-
lapping speech and gestures. Indeed, as has long been
noted by Herb Clark and colleagues [e.g., 2], conversa-
tion is inherently a form of collaborative joint action
where the participants work together to confirm that
everything is mutually understood, through verbal ac-
tions such as confirmation questions as well as non-
verbal actions such as gazing directly at an interlocutor.

For these reasons, Bavelas et al. suggest that face-
to-face conversation should be used as a prototype for
other communication systems; that is, that other forms
of communication should be considered based on how
they differ from face-to-face conversation on one or
more of the above dimensions. This in turn implies that
for artificial systems, the richest and most usable form
of interaction is one that mimics face-to-face conversa-
tion as closely as possible.

The metaphor of face-to-face conversation has
been applied to human-computer interface design for
some time. However, for the most part, the influence
has been simply at the level of metaphor [3]: artifi-
cial systems have not been developed with the idea that
their users would literally engage them in conversation,
but rather that the systems would incorporate concepts
from natural conversation to inform the design of user
interfaces [e.g., 4]. However, as interface technology
has become increasingly sophisticated, it has become
possible to incorporate more and more of the advant-
ages of face-to-face conversation much more directly
into human-computer interfaces, whether at the level of
speech-based dialogue systems [5], embodied conver-
sational agents [6], or even—as we will discuss in the
remainder of this paper—socially intelligent robots [7].
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Figure 1: A socially intelligent robot

2. . . . with socially intelligent robots

In 2003, Fong, Nourbakhsh and Dautenhahn [7]
prepared a comprehensive survey of socially interactive
robots, which they defined as “robots for which social
interaction plays a key role.” They focussed particu-
larly on peer-to-peer human-robot interaction; that is,
where the robot exhibits human-like social skills such
as expressing and/or perceiving emotions, using nat-
ural non-verbal cues like gaze and gestures, and pos-
sibly learning or developing various social competen-
cies. They discussed a number of issues relevant to
the then-developing field: approaches and challenges in
the design of such robots; issues related to the embod-
iment of a robot (physical shape, caricatured vs. real-
istic appearance, etc.); the role of emotion, personality,
and user modelling in social robotics; along with ap-
proaches to human-oriented perception and learning.

In the decade since that survey was published,
work in social robotics—and in human-robot interac-
tion (HRI) generally—has advanced considerably: the
field now includes two dedicated journals [8], [9] and
three conference series [10]–[12], along with numer-
ous other discussion and venues, confirming that it is
an active and growing area of research. Interactive ro-
bots have been deployed and evaluated in a wide range
of situations; for example, the list of Best Papers from
the recent HRI 2015 conference [10] includes robots de-
signed to be an empathy-invoking conversational com-
panion [13], a helper in a cooperative physical task
[14], a mediator for remote negotiation teams [15], and
an autonomous mobile helper in a shopping mall [16].
Techniques for evaluating interactive robots have also
moved forwards considerably: the Godspeed question-
naire series [17] has been widely used and validated as
an instrument for user studies in HRI, while another of
the HRI 2015 best papers described a large-scale study
examining the moral norms for robot agents [18].

3. Building blocks for the future

Developing a robot able to engage in face-to-face
conversation has been a goal of the robotics field for
some time; indeed, in popular culture, the prototypical
model of a robot is of a natural conversational partner
(e.g., Figure 1). However, while (as described above)
there has been a great deal of progress in this field, even
the most advanced interactive robots are able to oper-
ate only in constrained environments, support a limited
set of communicative behaviours, and are generally de-
signed to operate in very specific interaction contexts.
Also, any given robot system is usually tightly tied to
its initial development context: developing a robot able
to support a new interactive context has generally meant
starting practically from scratch, as the hardware and
software that is suitable for one setting often cannot eas-
ily be translated to a different one.

As the field moves from the current state of the
art towards developing interactive robots that support
natural, real-world face-to-face conversation, several
factors must be taken into account. Hartholt, Traum,
Marsella et al. [19] discussed the factors required for
intelligent embodied agents to have wider applicability,
which include the following: the agents must be able to
reproduce human abilities in perception, reasoning, and
behaviour generation; these abilities must be combined
into a larger overall system; and the agents must be gen-
eral and reusable, in a range of interactive situations.

Until now, the development of naturally interactive
social robots has been limited by two main factors that
have together imposed practical limitations on the range
of interactive behaviours for such robots. On the one
hand, the mechanisms underlying natural human em-
bodied communication remain imperfectly understood,
making it difficult to implement high-quality models for
the artificial agents. And even where theoretical, de-
scriptive models exist, they are often not in a state where
they can be directly implemented on an artificial agent.
On the other hand, the current techniques in input pro-
cessing, interaction management, and output generation
have also not been able to support the full range of com-
municative behaviours observed in natural communica-
tion, either because they cannot represent the necessary
level of detail, or else because they simply cannot re-
cognise or reproduce the behaviours at all.

Thanks to recent developments, it is now becom-
ing possible to address all of the above factors in the
course of developing robust, interactive robot agents.
These developments fall into three main areas: novel
techniques for data-driven interaction models, increas-
ingly sophisticated off-the-shelf components, and more
effective strategies for real-world user evaluation.
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3.1. Data-driven interaction models

The earliest versions of multimodal interactive sys-
tems generally used expert-written hand-coded rules to
drive their behaviour. While such hand-coded rules can
work well in constrained settings, they do not scale
well to more complex, real-world interactions. Also,
defining the rules requires expert knowledge and high-
quality models of the intended behaviour: so in areas
such as fully embodied face-to-face communication,
where such models do not generally exist, this also
means that rules can be prohbitively difficult to develop
for all but the most constrained interactive situations.

More recently, researchers in multimodal interac-
tion have begun to explore a range of data-driven tech-
niques for developing interaction models [20]. All of
these techniques make use of recorded data from real
interactions, in both human-human and human-machine
contexts, but the way that they employ the data varies:
for example, some researchers have had success train-
ing models directly on the data [21], [22], while oth-
ers have created data-driven simulated users for use in
techniques such as reinforcement learning [23]. Most
existing research in this area to this point has required
the use of annotated training data, which can be difficult
to obtain and process. However, novel machine learning
techniques such as deep learning [24]—in which repres-
entations are learned directly from the raw data—have
made it possible to develop models for a wide range of
applications directly from raw recorded data, with little
need for annotation or feature selection.

Applying similar techniques to the problem cur-
rently under consideration can go a long way to allevi-
ate the issues arising from the lack of fully operational
models: we could begin by implementing a high-level
description from the literature, and then fine-tune the
details of the model through data-driven learning. Par-
ticularly if we apply the ideas from deep learning, the
necessary initial models of multimodal behaviour could
possibly be learned directly from un-annotated recor-
ded interactions, using pre-existing multimodal corpora
[25] or, where necessary, newly recorded data. The
models would then be fine-tuned through user evalu-
ation as described in Section 3.3.

3.2. Off-the-shelf components

Previously, developing a socially interactive robot
would have required significant work in a number of
basic technical areas. For example, detecting and pro-
cessing the multimodal social signals of a human part-
ner would require development of technologies such as
computer vision and auditory sensors, while generating

the multimodal agent behaviour would require contri-
butions from the very basic low-level areas of robotics
such as motor control and path planning, as well as from
fields such as computer animation to ensure that the
generated behaviour is sufficiently expressive. How-
ever, recent developments in component technologies
have made it possible to develop robust robots that can
be deployed into a variety of real-world contexts, us-
ing off-the-shelf technology as building blocks. For ex-
ample, in the area of input processing, useful compon-
ents include audiovisual sensors such as the Microsoft
Kinect [26], face processing libraries such as OKAO
[27], along with physiological sensors such as the E3
wristband [28]. When it comes to embodied agent
platforms, libraries such as the Virtual Agent Toolkit
[29] have made it possible to create high-quality anim-
ated characters, while reasonably-priced, commercially
available robots such as those shown in Figure 2 offer
the same opportunity for physically embodied agents.

3.3. User evaluation techniques

As described in Section 3.1, we propose that a solu-
tion to the modelling problem lies in learning from data.
In the context of systems that are built using data-driven
techniques, a popular form of evaluation involves com-
paring the system behaviour to that recorded in the un-
derlying data. However, while such techniques are use-
ful as a “sanity check” during development, the danger
in relying purely on data-driven measures in an inter-
active setting is that they are known to penalise output
that differs in any way from the exact examples in the
data. This in turn tends to favour “average” behaviour
that does not make use of the full system capabilities,
and that is often not preferred by actual users in prac-
tice [30], [31].

This means that the developed agents and their
models must be evaluated through interactions with real
users, which can be a difficult and time-consuming task.
However, the development of crowdsourcing platforms
such as Amazon Mechanical Turk and Crowdflower
have made it possible to carry out real-user evaluations
on a significantly larger scale than ever before [32], and
the results of such studies have been found to correlate
well with those from lab-based studies [33]. This tech-
nique has even been applied to the evaluation of inter-
active robots, using techniques such as robot simulators
and prerecorded videos [34], [35]. Although ultimately
it is necessary to test robot agents with actual humans
in the real world, the addition of crowdsourcing to the
process can greatly help with evaluating and improving
the interaction models during the development process.
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Figure 2: A selection of modern interactive robots
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4. Potential application domains

A robot able to learn to interact with humans in a
natural, face-to-face setting has a wide range of poten-
tial applications, particularly in contexts where trained,
skilled target users are not expected: for example,
in short-term, public-space interactions, or in contexts
where the robot should interact with users such as chil-
dren or elderly people. The range of possible applica-
tion domains includes the following:

Virtual receptionists and tour guides These agents
monitor and respond to the behaviour of parti-
cipants in a dynamically changing, multi-party
situation, where only some of the participants
need attention at any time, and where the type of
response required varies widely.

Robots acting as lab demonstrators or tutors This
scenario combines multi-party social interaction
with task-based behaviour in the physical world. It
is also an area where robots can have a real-world
impact, for example by performing repetitive or
dangerous demonstrations in areas such as physics
or chemistry.

Assistive robots in the home environment An assist-
ive robot must understand the needs of the user,
whether explicitly or implicitly stated, and to carry
out tasks in the physical world (e.g., retrieving ob-
jects or switching devices on or off). Crucially, it
must also be able to do all of this while ensuring
that the user understands what the robot is doing
and why it is doing it.

Companion robots for the elderly A robot in this
context must understand and respond with a wide
range of multimodal social behaviours in order to
develop an appropriate relationship with its human
partner.

As the recent advances described above are applied
to the active research area of social robotics, more and
more robots will be able to be trained and deployed into
such domains, allowing untrained real-world users to
interact with and benefit from the presence and assist-
ance of such robots.
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