
Implementing Stochastically-Timed

COWS for the Prism Probabilistic Model

Checker.

Michele Sevegnani

Master of Science

School of Informatics

University of Edinburgh

2008

Abstract

This thesispresents the implementationof theCOWS2Prism system, a compiler

for stochastic COWS (Calculus for Orchestration of Web Services) into Prism.

The process calculus COWS is intended to aid in the precise description of

Web Services compositions. This places the present informal development

approach associated with Web Services into a formal reasoning framework.

The COWS calculus concerns itself with behavioural aspects although two

timed extensions exist: Stochastic COWS and Timed COWS (for reasoning

about non-functional aspects such as quality of service). In the dissertation we

provide a syntax and a semantics for stochastic COWS, and then a detailed

description of the design and implementation of the COWS2Prism system. We

also give a well commented example of compilation of a COWS service into

the Prism format.

i

Declaration

I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or professional

qualification except as specified.

(Michele Sevegnani)

ii

To my family and all my teachers.

iii

Table of Contents

1 Introduction 1

1.1 Background . 2

1.2 COWS2Prism system design . 2

1.3 COWS2Prism system implementation 3

2 Background 4

2.1 Process Calculi . 6

2.2 Stochastic Process Algebras . 8

2.3 COWS . 9

2.3.1 Syntax . 10

2.3.2 Operational semantics . 12

2.4 Stochastic COWS . 17

2.4.1 Stochastic analysis . 21

2.5 The Prism Probabilistic Model Checker 21

2.6 Related Work . 22

3 COWS2Prism System Design 24

3.1 The source language (High-Lan COWS) 24

3.2 Compiler . 25

3.2.1 Environment . 26

3.2.2 Fresh names generator . 27

3.2.3 Type System . 30

3.2.4 Compiler: details . 40

3.3 Translation engine . 42

3.3.1 Recursion handling: discussion 44

4 COWS2Prism System Implementation 47

4.1 Lexer . 49

iv

4.2 Parser . 49

4.3 Data types . 51

4.4 Static analyser . 52

4.5 Translation engine . 54

4.6 Output . 55

4.7 Usage . 56

5 Results and Evaluation 57

6 Conclusion and Future Work 65

A High-Lan COWS Grammar 67

A.1 Regular Expressions . 69

A.2 Notes . 69

B Video on-demand example source files 70

B.1 High-Lan COWS source file . 70

B.2 Prism source file . 71

Bibliography 73

v

Chapter 1

Introduction

In recent years, the increasing success of e-business, e-learning, e-government,

and other similar emerging models, has led the World Wide Web, initially

thought of as a system for human use, to evolve towards an architecture

for service-oriented computing (SOC) supporting automated use. SOC ad-

vocates the use of loosely coupled ‘services’, to be understood as autonomous,

platform-independent, computational entities that canbedescribed, published,

discovered, and assembled, as the basic blocks for building interoperable and

evolvable applications. Current software engineering technologies for SOC,

however, remain at the descriptive level and lack rigorous formal foundations.

Many researchers have therefore put forward the idea of using process calculi

that, due to their algebraic nature, convey in a distilled form the compositional

programming style of SOC.

COWS (Calculus for Orchestration of Web Services) is a foundational lan-

guage for specifying and combining service-oriented systemswhosedesignhas

been influenced by WS-BPEL, the OASIS standard language for orchestration

of web services. COWS combines in an original way a number of ingredients

borrowed from well-known process calculi, e.g. asynchronous communica-

tion, polyadic synchronisation, pattern-matching, protection, delimited receiv-

ing and killing activities, while remaining different from any of them. The

principles which have driven the design of COWS take inspiration from WS-

calculus, a process language introduced in a previous work (Lapadula et al.,

2006). COWS has proved to be sufficiently expressive both for modelling

imperative and orchestration constructs, e.g. web services, flow graphs, fault

and compensation handlers, and for encoding other process and orchestration

1

Chapter 1. Introduction 2

languages, e.g. Localised π-calculus, Orc, WS-calculus. Since its introduction,

some mild linguistic extensions have been proposed to model timed activities,

service discovery and service negotiation. Moreover, a number ofmethods and

tools have been devised to analyse COWS specifications, such as a type system

to check confidentiality properties, a stochastic extension to enable quantitative

reasoning on service behaviours, and a logic and a model checker to express

and check functional properties of services.

This dissertation presents a complete overview of theCOWS2Prism system,

an implementation of stochastic COWS into Prism. It consists of a compiler for

models specified in High-Lan COWS, a functional-like language closing resem-

bling the original COWS syntax. The corresponding output is the definition of

a Continuous Time Markov Chain for the Prism probabilistic model checker.

The following sections summarise the contents of this dissertation.

1.1 Background

Several proposals for the modelling of the primitives needed in the SOC

paradigm have appeared in the literature. In Chapter 2, we briefly survey the

most important of them, mainly focusing on process calculi based approaches.

The related concepts of communication, synchronisation, concurrency and the

notion of transition system are introduced. We then shift our attention to

stochastic extensions of process calculi, highlighting the motivations leading

to their development, and their peculiar characteristics, such as, for instance

the concept of race condition. We specifically comment on COWS and stochas-

tic COWS, providing a syntax and a labelled operational semantics for both of

them. We also discuss the importance of the stochastic model checker Prism

for the quantitative analysis of probabilistic systems modelling SOC scenarios.

Moreover, the possible links with stochastic COWS are invedtigated. Finally,

we list some related works.

1.2 COWS2Prism system design

Stochastic COWS is extremely appealing for implementation, thanks to its

powerful primitives such as kill activity and protection, and the cleanness of

the axioms and rules in the semantics. As a matter of fact, an implementation

Chapter 1. Introduction 3

can straightforwardly be obtained from the detailed information specifying the

evolution of the modelled system provided by the labels in the semantic rules.

In Chapter 3 we describe the design of a compiler capable of computing the

transition system of a COWS service and translating it into a continuous-time

Markov chain. Particular care is taken in the formal exposure of the functions

and encodings corresponding to the conceptual sub-units of the compiler, i.e.

fresh names generation, type inference and translation. The compiler is defined

for specifications in a simplified version of stochastic COWS, called High-Lan

COWS.

1.3 COWS2Prism system implementation

In Chapter 4 we comment on an implementation of the COWS2Prism system

in the functional language OCaml. In particular, we describe how the im-

plementation resembles the COWS2Prism system theoretical definition, and

we analyse the advantages offered by the ocamllex and ocamlyacc tools pro-

vided by the standard OCaml distribution. Moreover, issues regarding com-

putational complexity are considered. Where the implementation was more

challenging, extracts of the source code are reported, in order to better explain

our implementation choices. We also mention the data structures used in the

various sub-units of the system. Chapter 5 presents an example showing the

COWS2Prism system at work. Finally, Chapter 6 is devoted to the conclusion

and future work.

Chapter 2

Background

Service Oriented Computing (SOC) paradigm is beginning to emerge as a widely

accepted model for integrating disparate applications and systems. In partic-

ular, its most successful current realisation based on Web Services, is gaining

popularity mainly because of its extraordinary interoperability characteristics.

The key of this success has been the use of a publish-find-bind model based on

open XML standards. The description of a web service is typically given in a

WSDL document. WSDL is a XML-based language made for representing, in

an abstract and structured way, the operations that a web service can execute.

The information about the providers that give an implementation of a partic-

ular type of web service is stored in a UDDI service registry. After obtaining

the description of the web service, the user can send requests to it, usually

using SOAP messages over HTTP protocol. A more detailed introduction to

these topics can be found in (Cerami, 2002). The widespread deployment of

networked applications of this kind and adoption of the Internet has fostered

an environment in which many distributed services are available. More and

more often, SOC systems deliver application functionality as services to other

services rather than services to end-user applications. As a result, there is a

great demand for the automation of business processes and workflows among

organisations and individuals, in order to take advantage of the opportunities

of reusability and service composition offered by the SOC paradigm. Indeed,

processes being built today need the business agility to quickly adapt to cus-

tomer needs and market conditions. This would include incorporating new

customers, partners, or suppliers used in a process. Solutions to such prob-

lems require service composition of concurrent and distributed services in the

4

Chapter 2. Background 5

face of arbitrary delays and failures of components and communications. The

difference with respect to classic program or process composition is that the

composed services are not statically designed, but on the contrary, they are

constructed dynamically in terms of discovering the other services they need

to include. In other words, the service paradigm provides the capabilities for

dynamic run-time composition rather than requesting a statically planned ar-

chitecture. Consider for instance the following wide-area computing problem

presented in (Misra and Cook, 2006):

A client contacts two airlines simultaneously for price quotes.
He buys a ticket from either airline if its quoted price is no more
than $300, the cheapest ticket if both quotes are above $300, and any
ticket if the other airline does not provide a timely quote. The client
should receive an indication if neither airline provides a timely
quote.

As can be seen, the computational pattern involves the acquisition of data from

one or more remote services, calculation with these data, and invocation of yet

other remote services with the results. Notice also that these primitive oper-

ations are intrinsically part of the service composition paradigm. Nowadays,

two terms are used to indicate composition of services: orchestration and chore-

ography. Orchestration is about describing and executing a single view point

model, whereas choreography is about specifying and guiding a global model.

Though the difference between the two terms can be sometimes abused or

blurred, substantially orchestration has a more centralised flavour, as opposed

to the more distributed vision of choreography. Orchestration paradigms can

be roughly categorised into three trends:

• technology-driven languages: all XML dialects and standardisation ef-

forts (e.g. WS-BPEL (Andrews et al., 2003), XLANG (Thatte, 2001));

• model oriented: workflow aspects are prominent (e.g. Petri nets (Reisig,

1986; Peterson, 1981), YAWL (van der Aalst and Hofstede, 2002));

• process algebraic or messaging-based: the orchestration is ruled by com-

munication primitives (e.g. CCS (Milner, 1980),π-calculus (Milner, 1999),

Join-calculus (Fournet and Gonthier, 1996), Orc(Misra and Cook, 2006),

and more recently COWS (Lapadula et al., 2007a)).

Chapter 2. Background 6

In the last few years, many researchers have exploited the studies on process

calculi as a starting point to define a clean semantic model and lay rigorous

methodological foundations for service-based applications and their composi-

tion.

2.1 Process Calculi

Despite their wide adoption, all the XML languages such as WS-BPEL are not

provided with formal semantics, although they do have detailed (and often

cumbersome) informal specifications. Even though it seems a problem only

inside the academia, the consequences of this absence can be felt every day

in the real word as costs for the organisations using and developing SOC

systems. Indeed, as we learnt from Software Engineering, every flaw in the

design and every delay in the debugging of the system are paid for in terms

of monetary losses by the organisations. Therefore, formalisms that facilitate

the modelling and simulation of the system (hopefully before it is physically

deployed) and formal verification of the interactions among sites involved in

the orchestration task should be received well among business organisations.

For instance, process calculi permit us to implement a model of the system and

perform both quantitative and qualitative analysis on it. As a consequence,

it is easy to check if some desirable properties (e.g., liveness and fairness) are

satisfied, even before the real system has been implemented. Clearly, this is

a significant advantage over the technology-driven languages and it explains

the effort of the research in this field in the last years.

Robin Milner developed his Calculus of Communicating Systems (CCS)

over the years 1973 to 1980. The primitives and the concepts behind CCS

served as foundations for most of the following theories. Indeed, the CCS

approach to synchronisation of processes over complementary names and the

restriction operator can widely be identified in most of the current calculi. A

further important merit of CCS is that it served as the base for the development

of the π-calculus: the first process calculi which introduced the concept of

mobility. We will come back later to π-calculus.

Tony Hoare invented the language CSP (Communication Sequential Pro-

cesses) (Hoare, 1985). In this case, the synchronisation paradigm is completely

different from the one of CCS: Two processes can interact only if they are both

Chapter 2. Background 7

capable of actions on the same name. Moreover, the hiding construct has no

counterpart in CCS. We will see later how CSP has strongly influenced the

design of PEPA (Hillston and Thomas, 1998).

CCS lacks in representing mobile processes where the network topology

dynamically changes. A first attempt to tackle this issue was an extension of

CCS where names could be exchanged among processes. A further refinement

has been carried out by Milner, Parrow and Walker in (Milner et al., 1992),

where the π-calculus was proposed. The practical usefulness of the calculus

has been demonstrated in application studies on mobile telecommunication

networks and high speed networks. As a matter of fact, communication links

are identified by names, and computation is represented purely as the commu-

nication of names across links. The combination of name communication and

scope extrusion (namely the ability to dynamically change the scope of names)

is the essential difference between the π-calculus and earlier processes calculi.

These features, as said before, confer mobility (i.e. capability of changing in-

terconnection topology) to the calculus as well as great expressiveness. As a

consequence, several computational paradigms have been shown to be encod-

able in π-calculus. For instance, Milner (Milner, 1992) exhibited an encoding

of the π-calculus in the λ-calculus.

More recently, several new formalisms have been proposed. Some promi-

nent examples are the fusion calculus (Parrow and Victor, 1998), the ambient

calculus (Cardelli and Gordon, 1998) and the Spi-calculus (Abadi and Gordon,

1997). The trend shows that new algebras tend to focus on a particular do-

main of application. For instance, bio-inspired languages (such as Brane-

calculus, Beta-binders, Bio-ambients) tomodel biological phenomena or calculi

expressly conceived to representweb-services interactions. In this last category

we find, among the others, Orc, COWS, SCC.

Some central concepts are shared among all the calculi. One of the most

important is the notion of transition system. A transition system is essentially

a graph which can be syntactically derived from a term in a given calculus.

The nodes stand for reachable states of the system, while the edges encode

the action the system has to perform in order to pass from a state to the other.

Intuitively, it captures all the possible behaviours of a system. In order to

derive the transition system, some rules have to be specified so that only valid

moves are allowed. This is accomplished by a set of axiom in the semantics of

Chapter 2. Background 8

the calculus which describe how a term can evolve to another term. Observe

that a process calculus can have several semantics and consequently, several

underlying transition systems. A basic classification of transition systems is

built on the different type of semantics: Labelled or unlabelled.

Additional crucial concepts are the notions of bisimulation. Those relations

are based on the requirement that any move of a certain process has to be

matched by an analogous move of the bisimilar process. It is often possible

to define a bisimulation relation between two processes in terms of graph

theoretic properties. Hence, it can be verified by checking if some properties

hold on the corresponding transition systems. It is worthwhile to highlight

that the definition of bisimulation relations over processes in calculi equipped

with mobility (such as π-calculus) are more involved than those over terms

in CCS-like formalisms due to the fact that the issues of naming and name

substitution have to be taken into account.

2.2 Stochastic Process Algebras

Process algebras extended with stochastic information have generated a lot of

research in recent years. The standard approach is to introduce an additional

parameter r for each action specified in the semantics in order to store infor-

mation about its duration. The intended meaning is that the probability to

leave the state before time t is governed by a negative exponential distribution.

Formally, F(t) = 1− e−rt. The dynamic behaviour of a model in case of con-

flicting actions (i.e. more than one activity is enabled) is controlled by a race

condition. This means that all the activities attempt to proceed but only the

fastest succeeds. It is worthwhile to observe that the fastest activity could be

different on successive occasions because of the nature of the random variables

determining the durations of activities. As a consequence of the stochastic

extension, the non-deterministic branching (as in CCS) is replaced by proba-

bilistic branching. The probability that a particular activity (labelled with rate

r) completes is defined as the ratio of r to the sum of the activity rates of all

the enabled activities. To form the stochastic process a state is associated with

each node of the graph, and the transitions between states are defined by the

arcs of the graph. Typically, it is assumed that the model is finite so that the

number of nodes in the derivation graph is finite. Since all activity durations

Chapter 2. Background 9

are exponentially distributed, the total transition rate between two states will

be the sum of the activity rates labelling arcs connecting the corresponding

nodes in the derivation graph.

Techniques to solve the underlying Markov process can be used to infer in-

formation about the temporal behaviour of the modelled system. Procedures

to obtain both approximate and correct solutions are available. Moreover, an

important rôle is played by simulation techniques. As a matter of fact, the nu-

merical analysis of hugeMarkov processes can be computationally intractable.

Therefore, simulation techniques are often the only approach to analyse the

system. The main difference between simulators and solvers is that a simu-

lator produces a single trajectory of the given system whereas a solver gives

exact solution. Hence, in order to derive useful statistics about the time evolu-

tion of a given system many runs of a simulator have to be executed and then

averaged. The more runs we perform the better we approximate the correct

solution. However, in some domains such as computational system biology,

the stochastic noise present in a single run of the simulator can be useful to

understand border-line behaviours of the system. Widely adopted algorithms

for this task are for example the Gillespie Algorithm and the related Tau-leap

Algorithm.

The most important examples of stochastic calculi are PEPA, stochastic π-

calculus (Priami, 1995). Since their introduction several extensions to other

calculi have been proposed.

2.3 COWS

COWS (Calculus for Orchestration of Web Services) is a novel approach for

orchestrating distributed systems. This recently proposed model is the result

of an original combination of various constructs borrowed from other process

calculi. COWS is mainly intended as a foundational language for SOC and

therefore, its design has been strongly influenced by the principles underlying

WS-BPEL. Despite this fact, it is not specifically tied to web services’ current

technology. An exhaustive presentation of the calculus and its features is

given in (Lapadula et al., 2007a). The authors present the encoding of several

orchestration constructs (e.g. fault and compensation handlers) and imperative

constructs (such as matching and sequential composition) and the encodings

Chapter 2. Background 10

s ∈ S F u!w | g | s | s | {|s |} | kill(k) | [d]s | S(n1, . . . ,n j) | S

g F 0 | p?w.s | g + g

Table 2.1: COWS syntax.

of three other orchestration languages. COWS has recently been extended

with timed orchestration constructs (Lapadula et al., 2007b) in order to fully

express the semantics of WS-BPEL. In (Prandi and Quaglia, 2007) instead, it is

presented a stochastic extension.

2.3.1 Syntax

In what follows, we consider the monadic version of the calculus defined

in (Prandi and Quaglia, 2007). The syntax of COWS is parametrised by four

countable and pairwise disjoint sets: the set of names N (ranged over by m, n,

o, p, m′, n′, o′, p′, . . .), the set of variablesV (ranged over by x, y, x′, y′, . . .), the

set of killer labels K (ranged over by k, k′, . . .), and the set of service identifiers I

(ranged over by S, S′, . . .). The unionN∪V∪K (denoted by E) represents the

set of the entities of the calculus. Identifiers u, v, w, u′, v′, w′ are used to range

overN∪V, and d, d′ to range over E. The set I is defined as
⋃n

i=0Ii whereIi is

the set of the i-ary identifiers. COWS computational entities are called services.

They are inductively generated by the grammar given in Table 2.1, where, for

some service s, a defining equation S = s or S(n1, . . . ,n j) = s is given. The set of

all the defining equations is denoted withD. Additionally, all ni are assumed

to be distinct, with 1 ≤ i ≤ j. A service s is a structured activity built from basic

activities, i.e. the empty activity 0, the kill activity kill(), the asynchronous

invoke activity ! , the receive activity ? and the service identifiers S and S(),

by means of prefixing . , choice + , parallel composition | , protection {| |}

and delimitation [] .

Let us briefly present the intended interpretation of a COWS service. The

empty activity 0 has to be considered as the service which can do nothing.

Sometimes we freely omit from service syntax the trailing “.0”. Asynchronous

invoke activity u!w and receive activity p?w.s are the communication primitives

of a service. An input-guarded service p?w.s waits for a possible communica-

Chapter 2. Background 11

g�g u!w�g kill(k)�g

s�g

{|s |}�g

s�g

[d]s�g

s1 �g ∧ s2�g

s1 | s2�g

Table 2.2: Predicate s�g.

tion over p with service u!w′ and then proceeds as s after the instantiation of

the input parameter w. Entities p,u and w in u!w and p?w.s are called endpoint

and parameter respectively. The delimitation [d] can be seen as a scope declara-

tion for entity d. A parallel composition s1 | s2 expresses concurrent behaviour.

Informally speaking, this service consists of s1 and s2 acting in parallel and

interacting via shared links. Conversely, a service s1 + s2 can behave like s1

or alternatively like s2. The kill activity kill(k) is the capability to uncondi-

tionally terminate a service not surrounded by protection (i.e. {|s |} cannot be

terminated).

Note that in the original definition of the calculus given in (Lapadula et al.,

2007a), communication endpoints involved in the request and invoke activities

are identified by two distinct names called partners and operations. Although

this naming mechanism is more flexible than the atomic naming used in most

process calculi, we chose to simplify the notation by letting endpoints be de-

noted by single identifiers. Another syntactical deviationwe adopt is to express

recursive behaviours by means of service identifiers rather than by replication.

The only binding construct is delimitation: In [d]s the occurrence of [d] is

a binding for d with scope s. An entity is free if it is not under the scope of

a binder. It is bound otherwise. We write fe(s) and be(s) for the set of free

and bound entities in s respectively. An occurrence of one term in a service is

guarded if it is underneath a request activity. We extend the previous definition

as follows:

Definition 1 (Guarded service). A service s is a guarded service (written s�g) if

all the possible occurrences of service identifiers in s are guarded. Predicate

�g is defined in Table 2.2.

Example 2. Consider service s1 = p!w | {|S |p?w.R |}. As expected, predicate s1�g

detects unguarded service identifier S. As a matter of fact, S�g does not hold.

Therefore, the rule for parallel composition cannot be applied and s1 is not a

guarded service. Now take instead service s2 = [x]p!w |p?x.R(p). Since s2 is a

Chapter 2. Background 12

guarded service, the following derivation can be inferred

p!w�g ∧ p?x.R(p)�g

p!w |p?x.R(p)�g

[x]p!w |p?x.R(p)�g

For the sake of brevity we may sometimes write s{d
′
1
, . . . ,d′

j/d1, . . . ,d j} for the

simultaneous substitution of dis by d′
i
s in the term s and use [d1, . . . ,d j]s as a

shorthand for [d1] . . . [d j]s. Finally,

Definition 3 (Closed service). A service s is a closed service if variables and killer

labels in s are all bound.

Examples of closed services are [x]p?x.0 |m!n and [x]p?x.S(n1,n2) | [k]kill(k).

2.3.2 Operational semantics

As in (Prandi and Quaglia, 2007), the operational semantics ofCOWS is defined

only for closed services. Moreover, it is assumed that services occurring in

defining equations are guarded, and that there is no homonymy either among

bound entities or among free and bound entities. If a service does respect the

latter property, we may sometimes call it a homonymy free service.

The labelled transition relation
α
−→ is the least relation over services induced

by the rules in Tables 2.5 and 2.6 and by symmetric rules for the commutative

operators of parallel composition and choice. Label α is generated by the

following grammar:

α F †k | † | p?w | p!n | p?(x) | p!(n) | p ·σ ·σ′

where, for some name n and variable x, σ ranges over ε, {n/x}, {(n)/x}, and σ′ over

ε, {n/x}. The meaning of labels †k and † is that a request for terminating a term

from within the delimitation [k] is being or it was executed, respectively. Label

p?k denotes computational steps corresponding to the execution of a request

activity over endpoint p with parameter w. Similar interpretation is given to

label p!n. Label p ·σ ·σ′ stands for executions of a communication over endpoint

p. Particularly, component σ′ keeps track of the substitution induced by the

communication and σ records whether it has already been applied (σ = ε) or

not. This sort of labels is meant to implement a best-match communication

mechanism, i.e. if more than one matching receive activity is ready to process

Chapter 2. Background 13

kill(k) ↓k
s ↓k

{|s |} ↓k

s ↓k

[d]s ↓k

s1 ↓k ∨ s2 ↓k

s1 | s2 ↓k

p?n.s ↓p?n
s ↓p?n

{|s |} ↓p?n

s ↓p?n

[d]s ↓p?n

s1 ↓p?n ∨ s2 ↓p?n

s1 | s2 ↓p?n

s1 ↓p?n ∨ s2 ↓p?n

s1 + s2 ↓p?n

Table 2.3: Predicates s ↓k and s ↓p?n.

halt(g) = halt(u!w) = halt(kill(k)) = 0

halt(s1 | s2) = halt(s1) |halt(s2)

halt({|s |}) = {|s |}

halt([d]s) = [d]halt(s)

halt(S) = halt(s) S = s

halt(S(m1, . . . ,m j)) = halt(s{m1, . . . ,m j/n1, . . . ,n j}) S(m1, . . . ,m j) = s

Table 2.4: Function halt().

a given invoke, then only the most defined one progresses. Labels like p?(x),

p!(n) and p · {(n)/x} ·σ′ are to be interpreted as corresponding labels p?x, p!n and

p · {n/x} ·σ′. The additional parentheses only record that the scope of the entity

is undergoing modification.

To define the labelled transition relation, we use some auxiliary functions.

We write s ↓p?n if, for some s′, service s has an unguarded subterm of the shape

p?n.s′. Similarly, s ↓k means that some unguarded killer activity kill(k) is a

subterm of s. Predicates s ↓p?n and s ↓k are defined inductively on the syntax

of services in Table 2.3. Their respective negations are s 6↓p?n and s 6↓k. We

will also use function over services halt() defined in Table 2.4. It describes

service behaviours correspondingly to the execution of kill activity: it takes

a service s as an argument and returns the service obtained by only retaining

the protected activities inside s. Finally, we use d(α) to denote the set of

entities occurring in α, except for α = p · {n/x} ·σ′ or α = p · {n/x} ·σ′ which we let

d(p · {n/x} ·σ′) = d(p · {n/x} ·σ′) = {n,x} and for α = p ·ε ·σ′ which is d(p ·ε ·σ′) = ∅.

We comment on salient points of the operational semantics by starting

with rules in Table 2.5. The execution of activity kill(k) forces termination of

all unprotected parallel activities (rules (kill) and (par kill)) inside the scope of

Chapter 2. Background 14

kill(k)
†k
−→ 0 (kill) p?w.s

p?w
−−−→ s (req) p!n

p!n
−−→ 0 (inv)

g1
α
−→ s

(choice)
g1 + g2

α
−→ s

s
α
−→ s′

(prot)
{|s |}

α
−→ {|s′ |}

s1
p!n
−−→ s′1 s2

p?n
−−→ s′2

(com n)

s1 | s2s1
p·ε·ε
−−−→ s′1 | s

′
2

s1
p!n
−−→ s′1 s2

p?x
−−→ s′2 (s1 | s2) 6↓p?n

(com x)

s1 | s2
p·{n/x}·{n/x}
−−−−−−−−−→ s′1 | s

′
2

s1
p·σ·σ′
−−−−→ s′1 σ′ = {n/x} ⇒ s2 6↓p?n

(par conf)

s1 | s2
p·σ·σ′
−−−−→ s′1 | s2

s
p·{n/x}·{n/x}
−−−−−−−−−→ s′

(del sub)

[x]s
p·ε·{n/x}
−−−−−−→ s′{n/x}

s1
†k
−→ s′1

(par kill)

s1 | s2
†k
−→ s′1 |halt(s2)

s1
α
−→ s′1 α , p ·σ ·σ′ α , †k

(par pass)
s1 | s2

α
−→ s′1 | s2

s
†k
−→ s′

(del kill)

[k]s
†
−→ [k]s′

s
α
−→ s′ d < d(α) s ↓d⇒ (α = †∨α = †k)

(del pass)
[d]s

α
−→ [d]s′

Table 2.5: Operational semantics of COWS (first part).

delimiter [k]. When †k reaches it, the killer label is deactivated by transforming

it into † (rule (del kill)). The existence of delimitation [k] is ensured by the

assumption that the semantics is only defined for closed services. Sensitive

code can be protected from killing by putting it in protection {| |}. The protected

term, {|s |} behaves like s as shown by rule (prot). Note that rule (del pass) defines

an eager execution strategy of kill activities. This means that whenever a kill

activity occurs unguarded within a service s delimited by d, service [d]s can

only execute actions of the form †k or †. An invoke activity can only take

place if its parameter is a name (axiom (inv)). A receive activity waits for

a communication over endpoint p and then proceeds as s (axiom (req)). The

execution of a receive permits to take a decision between alternative behaviours

(rule (choice)). Variable instantiation can take place, involving the whole scope

of variable x, due to a pending communication action of shape p · {n/x} · {n/x} (rule

(del sub)). Execution of parallel services is interleaved (rule (par pass)), butwhen

a kill activity or a communication is performed. Communication allows the

synchronisation of an invoke activity p!nwith either the best-matching request

activity p?n.s (rule (com n)), or with a less defined p?x.s if a best-match is not

offered by the locally available context (rule (com x)). Surrounding parallel

Chapter 2. Background 15

s
p?x
−−→ s′

(open req)

[x]s
p?(x)
−−−→ s′

s1
p!(n)
−−−→ s′1 s2

p?(x)
−−−→ s′2 (s1 | s2) 6↓p?n

(close nx)

s1 | s2
p·ε·{n/x}
−−−−−−→ [n] (s′1 | s

′
2{
n/x})

s
p!n
−−→ s′

(open inv)

[n]s
p!(n)
−−−→ s′

s1
p!(n)
−−−→ s′1 s2

p?x
−−→ s′2 (s1 | s2) 6↓p?n

(close n)

s1 | s2
p·{(n)/x}·{n/x}
−−−−−−−−−−→ s′1 | s

′
2

s
p·{(n)/x}·{n/x}
−−−−−−−−−−→ s′

(close del)

[x]s
p·ε·{n/x}
−−−−−−→ [n]s′{n/x}

s1
p!n
−−→ s′1 s2

p?(x)
−−−→ s′2 (s1 | s2) 6↓p?n

(close x)

s1 | s2
p·ε·{n/x}
−−−−−−→ s′1 | s

′
2{
n/x}

s{m1, . . . ,m j/n1, . . . ,n j}
α
−→ s′ S(n1, . . . ,n j) = s

(ser id)

S(m1, . . . ,m j)
l dec(α)
−−−−−→ s dec(α,s′)

s
α
−→ s′ S = s

(ser id0)

s
l dec(α)
−−−−−→ s dec(α,s′)

Table 2.6: Operational semantics of COWS (second part).

services are scanned to find a best match for p!n(rule (par conf)) until either a

p?n.s or the delimiter of the variable scope is encountered. In the first case the

attempt to establish an interaction between p!n and p?x.s is blocked by the non

applicability of the rules for parallel composition.

Rules listed in Table 2.6 deal with the management of the scope of binders

and service identifiers. This technique closely resembles the analogous mech-

anism for closing and opening the scope used in the definition of the labelled

transition system of the π-calculus. Basically, a binder is removed when an ac-

tivity is opened. In this manner, possible synchronisations are allowed because

they can pass over a parallel composition. Whether a communication takes

place, the scope is closed by reintroducing the delimiter in the residual service.

Rules (open req) and (open inv) open the scope of the parameter in a request and

invoke, respectively. Note that this is recorded in the labels by surrounding

the parameters with parentheses, i.e. p?(x) and p!(n). Rule (close nx) handles

those scenarios when both n and x underwent a scope opening. As can be seen,

variable x is instantiated in the receiving subterm and the scope is closed by

reintroducing a delimiter [n] in the residual. The instantiation of x is recorded

in the label by setting element σ= ε. Rule (close x)manages in a similar way the

cases in which only the scope of the request parameter x has been previously

opened. The only difference is that no delimiter is reintroduced. Rule (close n)

Chapter 2. Background 16

is used when the scope delimiter for the invoke activity is within the scope of

delimiter for the request activity, like e.g. in [x] ([n]p!n |p?x.s). In this case no

delimiter is reintroduced and no instantiation is performed. As amatter of fact,

σ = {(n)/x} in the label. Observe that in all the last three rules a possible best-

match can still be found in the surrounding parallel services. Rule (close del)

executes the instantiation left pending by the application of rule (close n), rein-

troduces delimiter [d] and sets σ = ε. Rules (ser id) and (ser id0) state that the

behaviour of a service identifier is given by is defining service. Additionally,

in the first rule formal parameters have to be substituted by actual parameters.

Auxiliary functions l dec() and s dec(,) assure that the resulting service re-

spects the non-homonymy condition by decorating bound names. The details

of their actual implementation will be exhaustively discussed in Chapter 4.

Transition systems generated by the operational semantics presented above

enjoy several important properties. Let us list some definitions and set up some

notational conventions.

Definition 4 (Computation step). Reduction s
α
−→ s′ is called a computation step

if α = † or α = p ·ε ·σ′, for some p and σ′.

Definition 5 (Computation). A sequence of connected transitions of the form

s0
α1
−−→ s1

α2
−−→ s2

α3
−−→ s3 . . .

is called a computation from service s0, where, for each i,
αi
−→ is a computation

step.

Definition 6 (Derivative). Let s′ and s be two services. s′ is said a derivative of

s if s′ can be reached from s by a finite number of computation steps.

Definition 7 (Derivative set). The derivative set of a service s (written Ψ(s)), is

the set including s and all of its derivatives. A service s is finite ifΨ(s) is finite.

The most important property is undoubtedly that transition systems as-

sociated with the semantics are guaranteed to be finitely-branching, i.e. every

node has a finite number of successors. This is implied by the use of recursive

definitions rather than replication, by the non-homonymy assumption and by

the fact that service identifiers do not occur unguarded. The main advantage

with respect to, for instance, the semantics given in (Lapadula et al., 2007a), is

that Markovian techniques can effectively be applied by enriching the labels

Chapter 2. Background 17

req(p;kill(k)) = req(p;u!w) = req(p;0) = 0

req(p;p′?w.s) =


ρ(p) if p = p′

0 otherwise
req(p; {|s |}) = req(p;s)

req(p; g1 + g2) = req(p; g1)+ req(p; g2) req(p;p1 |p2) = req(p;p1)+ req(p;p2)

req(p; [d]s) =


0 if p = d or s ↓d

req(p;s) otherwise
req(p;S) = req(p;s) if S = s

req(p;S(m1, . . . ,m j)) = req(p;s{m1, . . . ,m j/n1, . . . ,n j}) if S(n1, . . . ,n j) = s

Table 2.7: Apparent rate of a request

to include information about the duration of activities. This is indeed the ap-

proach followed by the authors in (Prandi and Quaglia, 2007) for the definition

of a stochastic extension of COWS.

2.4 Stochastic COWS

In (Prandi and Quaglia, 2007), is presented a stochastic extension of COWS.

Following the standard approach for stochastic extension of process calculi de-

scribed in Section 2.2, an additional parameter λ ∈R+ (called rate) is introduced

for each action specified in the semantics in order to store information about its

duration. The intuitive meaning is that the probability a computational state

is successfully executed before time ∆t is governed by a negative exponential

distribution with parameter λ. The probability of a computational step s
α
−→ s′

is defined as the ratio between its rate and the exit rate of service s i.e. the sum

of the rates of all the activities enabled in s.

In the sequel,we consider a slightlymodified version of the original stochas-

tic COWS. Before embarking on the presentation of the stochastic semantics,

we define some auxiliary functions. The apparent rate of request activities is

specified by function req : E×S→R. As can be understood from its definition

in Table 2.7, req(p;s) sums up the rates of all the request over endpoint pwhich

are enabled in s. An analogous function (called inv(;)) computing the appar-

ent rate of invoke activities is reported in Table 2.8. The apparent rate of α in

service s (written ♯(α,s)) is computed as described in Table 2.9, using the two

functions defined above. Finally, function ρ : E → R+ associates a stochastic

Chapter 2. Background 18

inv(p;kill(k)) = inv(p;p?w.s) = inv(p;0) = 0

inv(p;u?w.) =


ρ(p) if p = u

0 otherwise
inv(p; {|s |}) = inv(p;s)

inv(p; g1 + g2) = inv(p; g1)+ inv(p; g2) inv(p;p1 |p2) = inv(p;p1)+ inv(p;p2)

inv(p; [d]s) =


0 if p = d or s ↓d

inv(p;s) otherwise
inv(p;S) = inv(p;s) if S = s

inv(p;S(m1, . . . ,m j)) = inv(p;s{m1, . . . ,m j/n1, . . . ,n j}) if S(n1, . . . ,n j) = s

Table 2.8: Apparent rate of an invoke

♯(α,s) =



req(p;s) if α ∈ {p?w,p?(x)}

inv(p;s) if α ∈ {p!n,p!(n)}
[
req(p;s), inv(p;s)

]
if α = p ·σ ·σ′

0 otherwise

Table 2.9: Apparent rate of α in service s.

rate to each entity. Sometimes, we use meta-variables λ, δ and γ to range over

rates of kill, invoke and request activities, respectively.

In order to add stochasticity to the calculus, rules in the semantics presented

in Tables 2.5 and 2.6 have to be adapted. This is actually done by substituting

labels αwith new enhanced labels, recording additional information about rates

and choice. Namely, an enhanced label θ is a triple (α,ϕ,ϕ′) prefixed by a

choice-address ϑ. The first component of the triple is a label in the reduction

relation defined by the COWS semantics. Elements ϕ and ϕ′ can either be a

rate or a pair of request-invoke rates in the form
[
γ,δ
]
. The prefix ϑ is a string

from the alphabet {+0,+1}∗ used to distinguish between the left and the right

branch of a choice service. We write ϑ ·ϑ′ or ϑϑ′ to indicate the string resulting

from the concatenation of strings ϑ and ϑ′. Sometimes, we omit the empty

prefix by writing θ instead of εθ. Axioms (kill), (req), (inv) defining behaviours

of kill, request and invoke activities, are updated as follows:

kill(k)
(†k,ρ(k),ρ(k))
−−−−−−−−−→ 0 p?w.s

(p?w,ρ(p),ρ(p))
−−−−−−−−−−→ s p!n

(p!n,ρ(p),ρ(p))
−−−−−−−−−−→ 0

Rule (par pass) is modified by recording the apparent rate of α in s2 in the ϕ′

Chapter 2. Background 19

component. It takes the shape shown below.

s1
ϑ(α,ϕ,ϕ′)
−−−−−−−→ s′1 α , p ·σ ·σ′ α , †k

(par pass)

s1 | s2
ϑ(α,ϕ,ϕ′+♯(α,s2))
−−−−−−−−−−−−→ s′1 | s2

Rules (par kill) and (par conf) are modified in a similar way:

s1
ϑ(†k,ϕ,ϕ′)
−−−−−−−→ s′1

(par kill)

s1 | s2
ϑ(α,ϕ,ϕ′+♯(†k,s2))
−−−−−−−−−−−−−→ s′1 |halt(s2)

s1
ϑ(p·σ·σ′,ϕ,[γ,δ])
−−−−−−−−−−−−→ s′1 σ′ = {n/x} ⇒ s2 6↓p?n

(par conf)

s1 | s2
ϑ(p·σ·σ′,ϕ,[γ+♯(α,s2),δ+♯(α,s2)])
−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s2

Note that the apparent rate for killer and empty activities is ♯(†k,s)= 0 for some

service s. Modifications necessary to compute the rate of a synchronisation

between an invoke and a request activity affect rules (com n), (com x), (close n),

(close x), and (close nx). Their definition is reported in Table 2.10. In this case,

the strategy is to store both request and invoke rates γ and δ in theϕ component

of the enhanced label, and to update both request and invoke apparent rates

γ′′ and δ′′ in ϕ′. This last step is accomplished by using function ♯(α,s), where

s is the subterm not performing α. Rule (choice) and its symmetric not listed in

Table 2.5 are substituted by the following two rules.

g1
ϑ(α,ϕ,ϕ′)
−−−−−−−→ s

(choice0)

g1 + g2
+0ϑ(α,ϕ,ϕ

′+♯(α,g2))
−−−−−−−−−−−−−−−→ s

g1
ϑ(α,ϕ,ϕ′)
−−−−−−−→ s

(choice1)

g1 + g2
+1ϑ(α,ϕ,ϕ

′+♯(α,g1))
−−−−−−−−−−−−−−−→ s

All the other rules are transparent with respect to the extra information added

in the enhanced label. This means that elements ϕ and ϕ′ and the prefix ϑ are

not affected by the application of these rules. It is worthwhile to note that the

stochastic semantics is defined only for homonymy-free, guarded and closed

services.

Finally, we extend Definition 4 to embrace the new features of stochastic

COWS.

Definition 8 (Stochastic computation step). Reduction s
ϑ(α,ϕ,ϕ′)
−−−−−−−→ s′ is called a

stochastic computation step if α = † or α = p ·ε ·σ′, for some p and σ′.

Chapter 2. Background 20

s1
ϑ(p!n,δ,δ′′)
−−−−−−−−→ s′1 s2

ϑ′(p?n,γ,γ′′)
−−−−−−−−−→ s′2

(com n)

s1 | s2
ϑϑ′(p·ε·ε,[γ,δ],[γ′′+♯(p?n,s1),δ′′+♯(p!n,s2)])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s

′
2

s1
ϑ(p!n,δ,δ′′)
−−−−−−−−→ s′1 s2

ϑ′(p?x,γ,γ′′)
−−−−−−−−−→ s′2 (s1 | s2) 6↓p?n

(com x)

s1 | s2
ϑϑ′(p·{n/x}·{n/x},[γ,δ],[γ′′+♯(p?x,s1),δ′′+♯(p!n,s2)])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s

′
2

s1
ϑ(p!(n),δ,δ′′)
−−−−−−−−−→ s′1 s2

ϑ′(p?x,γ,γ′′)
−−−−−−−−−→ s′2 (s1 | s2) 6↓p?n

(close n)

s1 | s2
ϑϑ′(p·{(n)/x}·{n/x},[γ,δ],[γ′′+♯(p?x,s1),δ′′+♯(p!(n),s2)])
−−→ s′1 | s

′
2

s1
ϑ(p!n,δ,δ′′)
−−−−−−−−→ s′1 s2

ϑ′(p?(x),γ,γ′′)
−−−−−−−−−−→ s′2 (s1 | s2) 6↓p?n

(close x)

s1 | s2
ϑϑ′(p·ε·{n/x},[γ,δ],[γ′′+♯(p?(x),s1),δ′′+♯(p!n,s2)])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′1 | s

′
2{
n/x}

s1
ϑ(p!(n),δ,δ′′)
−−−−−−−−−→ s′1 s2

ϑ′(p?(x),γ,γ′′)
−−−−−−−−−−→ s′2 (s1 | s2) 6↓p?n

(close nx)

s1 | s2
ϑϑ′(p·ε·{n/x},[γ,δ],[γ′′+♯(p?(x),s1),δ′′+♯(p!(n),s2)])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [n] (s′1 | s

′
2{
n/x})

Table 2.10: Stochastic COWS operational semantics: communication rules

Chapter 2. Background 21

2.4.1 Stochastic analysis

In (Prandi and Quaglia, 2007), the authors describe a transformation technique

of stochastic transition systems into Continuous Time Markov Chains. The

main benefit of this procedure is to allow quantitative reasoning on the service

generating the transition systemundergoing the translation bymeans ofCTMC

analysis tool such as, for instance, the probabilistic model checker Prism. Let

us recall a fundamental definition:

Definition 9 (Continuous Time Markov Chain (CTMC)). A CTMC is a triple

C = (Q,q0,R) where Q is a set of states, q0 is the initial state, R :Q2→ R+ is the

transition matrix. We write R(q1,q2) = r to mean that q1 evolves to q2 with rate r.

A CTMC is finite if set Q is finite.

The idea behind the transformation is to infer a rate for a transition between

two states in the chain from a label θ in the transition system. Formally, this is

achieved by associating a CTMC to service a s (written C(s)), where the set of

statesQ is the derivative set of s (i.e.Ψ(s)), s is the initial state, and the transition

matrix is computed as follows:

R(s,s′) =
∑

s
θ
−→s′

µ(θ) (2.1)

Function µ can be defined in several different ways, each one capturing a

different analysis approach. The formula we use is:

µ(θ) =



γ
γ
δ
δ′min(γ′,δ′) if θ = ϑ(p,

[
γ,δ
]
,
[
γ′,δ,

]
)

ϕ if θ = ϑ(†,ϕ,ϕ′)
(2.2)

It intuitively says that communication rate of the synchronisation between two

services is taken to be proportional to the slowest one. Note that in order to

have a computable procedure, the derivative set of service s has to be finite.

2.5 The Prism Probabilistic Model Checker

Prism (Kwiatkowska et al., 2002) is a probabilistic model checking tool initially

developed at theUniversity of Birmingham and nowmaintained at the Univer-

sity of Oxford (see (Parker et al., 2008)). It has been successfully used to analyse

Chapter 2. Background 22

performance, probabilistic termination, quality of service properties, and de-

pendability for a wide range of systems, included polling systems, randomised

distributed algorithms, workstation clusters and wireless cell communication.

A typical model-checking session consists in giving as input a transition system

describing a model and a specification of some property written in the proba-

bilistic temporal logics PCTL and CSL; The resulting output is the probability

that the model satisfies the given property. Some examples of properties we

wouldwish to verify are the probability that a queue becomes full within t time

units is less thanor equal to 0.05 (expressed inCSL asP≤0.05
[
true U≤t f ull

]
) or the

probability that a queue is not full in the long run is greater than or equal to 0.99

(written S0.99
[
¬ f ull

]
). Prism performs automatic analysis of such properties

using either formal verification techniques based on numerical computation,

or discrete-event simulation. The internal computations are performed by

three different model checking engines. The first is based on symbolic model

checking using multi-terminal binary decision diagrams (MTBDD), the sec-

ond uses sparse matrices and full vectors, while the latter is a hybrid of the

other two. The current implementation supports several probabilistic models:

discrete-timeMarkov chains, CTMCs andMarkov decision processes. Another

important feature of Prism is the ability of directly check models defined by

means of transition matrices.

2.6 Related Work

A timed extension of COWS (called C�WS) is described in (Lapadula et al.,

2007b). The introduction of a wait activity allows a complete formalisation of

theWS-BPEL semantics, in particular wait, until and pick timed constructs. The

newly introduced activity �e specifies the time interval, whose value is given

by evaluation of e, the executing service has to wait for. Moreover, this is the

only activity consuming time during its execution. The labelled semantics of

C�WS is extended with the addition of labels modelling time elapsing.

Several different approaches have been proposed for the simulation and

analysis of COWS models. The first one was CMC (COWS interpreter and

Model Checker) (Mazzanti, 2007): A web-based interface towards a remote

on-the fly interpreter for the COWS language with checking capabilities of

UCTL expressions. The tool is conceived for non-stochastic COWS, hence

Chapter 2. Background 23

quantitative analysis of themodels is not supported. An interesting peculiarity

of the interpreter is that no limitations on the number of states in the transition

system are set. As a matter of fact, both finite and infinite transition systems

are explored by the user by iteratively specifying the number of states each

iteration has to consider.

A second approach has been chosen in (Prandi and Quaglia, 2007); It con-

sists in applying continuous-time Markov chain based analysis to stochastic

COWS terms. In practice, the CTMC associated with the transition system

generated from a stochastic COWS process is manually computed and used as

input for the probabilistic model checker Prism. In this way, properties of the

system expressed formally in CTL are automatically analysed against the con-

structed model. This strategy is the one followed in our implementation of the

COWS2Prism system, which is indeed intended as a tool for the automation

of the tedious and error-prone procedure described above. We are not aware

of the existence of tools for timed COWS.

Chapter 3

COWS2Prism System Design

The logical structure of the COWS2Prism system is presented in Figure 3.1.

The compiler translates the source code into a run-time representation closely

resembling the original COWS specifications. Moreover, details regarding

stochastic rates are stored into the environment. Observe that a paramount

rôle in this transformation is played by the fresh names generator and the type

system. The translation engine computes the transition system corresponding to

the input model and translates it into a Continuous Time Markov Chain.

3.1 The source language (High-Lan COWS)

Wemake two simplifications to the stochastic COWS presented by the authors

in (Prandi and Quaglia, 2007). First, rates are removed from the constructs

of the language and are instead handled separately. This modification makes

service definitions in High-Lan COWS less cumbersome and more readable.

Another additional benefit is that a name is always used with the same rate

giving consistency to the definition. Furthermore, aminor improvement is that

a global rate is easy to specify.

Source language

High−Lan COWS

Output language

(CTMC)
Transformation

engine

Compiler

Environment

Fresh names generator

Type system

Figure 3.1: Logical structure of the COWS2Prism system.

24

Chapter 3. COWS2Prism System Design 25

s ∈ S F e!e | g | s | s | {|s |} | kill(e) | [e]s | S(e1, . . . ,e j) | S

g F 0 | e?e.s | g + g

a ∈D F S(e1, . . . ,e j) = s | S = s

Table 3.1: High-Lan COWS syntax.

The second simplification we make is that the High-Lan COWS language

does not support type annotations. As a consequence, services defined in

a High-Lan COWS program are built up on generic entities and all the type

constraints in the original COWS definition (see Table 2.1) are dropped (i.e. we

do not distinguish among names, variables and killer labels). We call E (ranged

over by e) the set of High-Lan COWS basic entities and S the set comprising

all the High-Lan COWS services. A grammar for High-Lan COWS is given in

Table 3.1.

3.2 Compiler

The compiler is the central component of the COWS2Prism system. It parses

the syntactic definition of High-Lan COWS services listed in the input file and

transforms them into a run-time representation usable as input for the transla-

tion engine. Additionally, the name-rate bindings specified in the definition are

stored into the environment. All the modifications performed on a High-Lan

COWS model are carried out by two separate compiler sub-units: the fresh

names generator and the type system. The first one removes any homonymy

among entities, while the second encodes a High-Lan COWS term into a closed

COWS term.

Before embarking on with their formal description, we provide some useful

definition. Furthermore, we recall some standard terminology and notation

taken from (Sangiorgi and Walker, 2001).

Definition 10 (Program). A program is a tuple Z = 〈σ,δ,Env〉 where σ ∈ S∪S

and δ ∈D∪D. Proceeding from left to right, its components are called service,

definitions and environment.

Conceptually, a program Z is the internal representation of a High-Lan

Chapter 3. COWS2Prism System Design 26

COWSmodel being used by the various sub-units of theCOWS2Prism system.

Observe that a program is in some way polymorphic because the first two

components σ and δ can both be defined according to the High-Lan COWS

syntax or to theCOWS syntax. This gives us the advantage of uniform notation

in our description. In the first case, we call Z a High-Lan COWS program

otherwise it is said to be a COWS program. The sets of all High-Lan COWS

and COWS programs are indicated by Z andZ, respectively. The environment

component is described later on in this chapter.

Definition 11 (Type environments). An assignment of a type to a name is of the

form a : T, where a is a name, called the name of the assignment, and T is a

type, called the type of the assignment.

A type environment (or simply typing) is a finite set of assignments of types

to names, where the names in the assignments are all different.

We use Γ,Λ to range over the set of type environments E. The notation

supp(Γ) is used to indicate the support of Γ, i.e. the names in the environment.

A type environment Γ can be thought of as a finite function from names to

types. Therefore, we write Γ(a) for the type assigned to a by Γ, assuming that

a ∈ supp(Γ). The empty environment is indicated with ∅. To facilitate reading,

we sometimes omit curly brackets outside a type environment. For example,

we write a : T,b : S for the type environment that assigns T to a, S to b and is

undefined on the other names. We sometimes regard a type environment Γ as

a set of elements in the form a : T. In this case, standard set operations (i.e.

union (∪), intersection (∩), difference (\) and symmetric difference (∆)) have

the expected semantics.

3.2.1 Environment

The environment (denoted by Env) is the COWS2Prism system component

handling name-rate bindings. It provides them to the translation engine so

that a finite stochastic transition system can be computed. In this context, a

name is deemed as the string representation of an entity. To stress this fact, we

will write ẽ to indicate the string used for the naming of entity e. Note that

function˜is defined forbothHigh-Lan COWSandCOWS entities. Inparticular,

ẽ =˜̂e, where ê is the COWS entity corresponding to High-Lan COWS entity e.

Stochastic rates are non-negative real numbers as stated in previous chapter,

Chapter 3. COWS2Prism System Design 27

whilst entities are used in the High-Lan COWS input model as described in

Table 3.1. According to Definition 11, the set of Env names is Ẽ and the set of

types isR+. Additionally, wewrite ρ(e) to indicate the rate of entity e. Formally,

it is a shorthand for the notation Env(̃e).

3.2.2 Fresh names generator

In order to assure the non-homonymy condition is met in High-Lan COWS

services, a procedure to generate fresh names has to be defined. Note that in

this context, we use the word name to refer to strings identifiers for different

entities e ∈ E. Without loss of generality, in the following we assume that

services do not have free entities, i.e. we reinforce the closeness condition in

Definition 3 over COWS services which, on the contrary, allows free names. To

handle services not satisfying this assumption, two functions close : S→ S and

close−1 : S×E→ S can be defined:

close(s) =


[e1] . . . [e j]s if fe(s) = {e1, . . . ,e j}

s otherwise

close−1([e1] . . . [e j]s,N) = s ∀ei ∈N with 1 ≤ i ≤ j

As can be seen, the syntactic modification introduced by function close always

assures that no free entities occur in the resulting output service. Furthermore,

function close−1 removes this modification giving back the original term, if the

set of entities given as input corresponds to its set of free names.

At this stage, the fresh names needed to refresh term s can easily be com-

puted by counting the occurrences of a delimiter construct over the same entity.

This is accomplished by the procedure described in Table 3.2. Note that [[]]

is a homomorphism on parallel composition, summation and protection op-

erators and 0 is its neutral element. For this reason, their respective rules are

omitted in the definition. By abuse of notation, we sometimes write [[]] for

[[]]∅.

Let us briefly explain the main features of the encoding. First of all, Λ

is defined as an environment for entities e ∈ E, where types ϑ belong to the

alphabet 0∗. As shown in Table 3.2, the refreshing encoding simply appends

to each entity e in the input term s its string Λ(e) = ϑ. The only exception

is the rule handling delimiters. As a matter of fact, each occurrence of a

delimiter introduces a fresh name by appending (using operator ·) an extra 0

Chapter 3. COWS2Prism System Design 28

[[e!e′]]Λ =



e ·ϑ!e′ if Λ(e) = ϑ

e!e′ ·ϑ if Λ(e′) = ϑ

e ·ϑ!e′ ·ϑ′ if Λ(e) = ϑ and Λ(e′) = ϑ′

e!e′ otherwise

[[e?e′.s]]Λ =



e ·ϑ?e′. [[s]]Λ if Λ(e) = ϑ

e?e′ ·ϑ. [[s]]Λ if Λ(e′) = ϑ

e ·ϑ?e′ ·ϑ′. [[s]]Λ if Λ(e) = ϑ and Λ(e′) = ϑ′

e?e. ′[[s]]Λ otherwise

[[kill(e)]]Λ =


kill(e ·ϑ) if Λ(e) = ϑ

kill(e) otherwise

[[S(e1, . . . ,e j)]]Λ =



S(e1, . . . ,ei ·ϑ, . . . ,e j) if Λei = ϑ

with 1 ≤ i ≤ j

S(e1, . . . ,e j) otherwise

[[[e]s]]Λ = [e ·ϑ ·0][[s]]Λ′ where Λ′ = (Λ \ {(e : ϑ)})∪ (e : ϑ ·0)

Table 3.2: Rules defining a refreshing encoding for High-Lan COWS services.

to it. Note that all successive occurrences of that name under the scope of the

same delimiters are also modified in the sameway. This because the associated

string ϑ in the environment is also elongated by a trailing 0 symbol.

The initial environment for the encoding is indicated byΛ0. It is defined by

Λ0 = {(e : ε) |e ∈ be(s)} (3.1)

where s is the input service for the encoding and ε denotes the empty string.

The computational time complexity of the encoding is linear in the number

of activities. Formally, if service s contains n activities, the execution of [[s]]Λ0
is

performed in timeO(n). This is explained by the fact that the procedure simply

scans service s from left to right to refresh the names.

Finally, the procedure can be extended in a similar way to refresh a set of

defining equations. Moreover, environment Env has to be updated in order

to have new bindings for the fresh names. In this manner, all the names in a

High-Lan COWS program Z = 〈s0,D,Env〉 can be refreshed as follows:

[[Z]] =
〈
s1, [[D]], [[Env]]Λ f

〉
(3.2)

Chapter 3. COWS2Prism System Design 29

[[D]] = {[[d]] |d ∈D}

[[S = s]] = S = close−1([[close(s)]]Λ0
, fe(s))

[[S(e1, . . . ,e j) = s]] = S(e1 ·0, . . . ,e j ·0) = close−1([[close(s)]]Λ0
, fe(s))

[[Env]]Λ =
⋃

e′∈supp(Λ)
⋃n

i=1{(̃e : ρ(e
′)) |e = e′ ·σi ∧ σi = 0i}

n = |Λ(e′)|

Table 3.3: Refreshing rules for High-Lan COWS defining equations and envi-

ronment Env.

where s1 = close
−1([[close(s0)]]Λ0

, fe(s0)) and the encoding for defining equations

and the environment are defined in Table 3.3. Note that environment Λ f

is the “union”of all the environments (denoted by Λi
f
) produced by the last

application of the encoding during the refreshing of service s0 andD. Formally,

Λ f = {(e : ϑ) |Λ
i
f
(e) = ϑ ∧ |ϑ| =max

j
|Λ

j

f
(e)|} (3.3)

with i, j ∈ {1, . . . , |D|+1}.

Example 12. Suppose the components ofHigh-Lan COWSprogramZ= 〈t, {d},Env〉

are defined as below

t = [x] [a] (a!x | [a] (kill(a) |p?x. [x] [a]a!x))

d = S(a) = a!p | [x]a?x.0

Env = {̃a : λ1, x̃ : λ2, p̃ : λ3}

Let us show the steps performed by the encoding to refresh service t. The set

of free names is fe(t) = {p}. Hence, applying function closewe get

t0 = close(t) = [p] [x] [a] (a!x | [a] (kill(a) |p?x. [x] [a]a!x))

At this stage, we show the steps leading to a refreshed term. Initially, the

refreshing function is applied to t0:

[[t0]]Λ0
= [p0][[[x] [a] (a!x | [a] (kill(a) |p?x. [x] [a]a!x))]]

Λ1

where Λ0 = {(x : ε), (a : ε), (p : ε)}. As a matter of fact, be(t0) = {x,a,p}. According

to the rules in Table 3.2, Λ1 = {(x : ε), (a : ε), (p : 0)}.

Analogously, letting t1 = [x] [a] (a!x | [a] (kill(a) |p?x. [x] [a]a!x)) we get

[[t1]]Λ1
= . . . = [x0][a0][[(a!x | [a] (kill(a) |p?x. [x] [a]a!x))]]

Λ2

Chapter 3. COWS2Prism System Design 30

where the updated environment Λ2 is {(x : 0), (a : 0), (p : 0)}.

Denoting [a] (kill(a) |p?x. [x] [a]a!x) with t2, and further applying the refreshing

procedure, we can write

[[a!x | t2]]Λ2
= [[a!x]]Λ2

| [[t2]]Λ2
= a0!x0 | [[t2]]Λ2

Then, the right sub-term becomes

[[t2]]Λ2
= [a00]([[kill(a)]]Λ3

| [[t3]]Λ3
)

where t3 = p?x. [x] [a]a!x and Λ3 = {(x : 0), (a : 00), (p : 0)}. Trivially, [[kill(a)]]Λ3
is

transformed into kill(a00), while the fresh term corresponding to t3 is given by

[[t3]]Λ3
= . . . = p0?x0. [x00][a000]a000!x00

Summarising, the whole refreshed term is

t4 = [p0][x0][a0](a0!x0 | [a00](kill(a00) |p0?x0. [x00][a000]a000!x00))

Final environment Λ1
f
is {(x : 00), (a : 000), (p : 0)}. The last step consists in the

application of close−1 to get rid of the extra delimiter added in the first stage by

close:

t5 = close−1(t4, {p}) = [x0][a0](a0!x0 | [a00](kill(a00) |p0?x0. [x00][a000]a000!x00))

As can be seen, service t5 is a refreshed version of initial term t1. The second

component of Z is refreshed as follows

[[d]] = S(a0) = a0!p0 | [x0]a0?x0.0

and the final environment is Λ2
f
= {(a : 0), (p : 0), (x : 0)}. Finally, environment

Env can be updated as described in Table 3.3. More in details,

[[Env]]Λ f
= {(ã0 : λ1), (ã00 : λ1), (ã000 : λ1), (x̃0 : λ2), (x̃00 : λ2), (p̃0 : λ3)}

where Λ f = {(x : 00), (a : 000), (p : 0)} is the result of the merging of final environ-

ments Λ1
f
and Λ2

f
.

3.2.3 Type System

In the following, we present an algorithm which infers the most general typing

for a homonymy-free High-Lan COWS service, and proving its correctness.

Chapter 3. COWS2Prism System Design 31

The algorithm is similar in style to the one introduced in (Gay, 1993) for sort

inference in the polyadic π-calculus. A crucial advantage given by our type

system is that all High-Lan COWS services satisfying an inferred typing can

straightforwardly be encoded into closed COWS services readily utilisable by

the translation engine.

Types T are given by the following grammar

τ ∈ TF N | V | Vf | K | Kf | Ri

where i ∈N. Types N, V, K are meant to indicate COWS entities belonging

to sets N , V and K respectively, types Vf and Kf are used to denote unbound

(i.e. free) variables and killer labels respectively, while Ri is the type for service

identifiers in set Ii. Following Definition 11, an environment Γ is formed by

E and T as the sets of names and types respectively. Additionally, we define a

special environment fail to denote failures in the type inference. It is assumed

that supp(fail) = ∅.

We define operation ⊎ on environments as follows

Γ1⊎Γ2 =



fail if Γ1 = fail

Γ1∪Γ2 if supp(Γ1)∩supp(Γ2) = ∅

Γ1 \ {(e : τ) |e ∈ supp(Γ2)} ∪ Γ2 otherwise

Therefore, the intended meaning of Γ1 ⊎ Γ2 is to merge together Γ1 and Γ2,

using type assignments in Γ2 whenever there are conflicts between the two

environments.

Auxiliary function f : E2→ E is used to merge two environments, detecting

potential conflicts. The merging strategy is implemented as described below:

f (Γ1,Γ2) =



Γ1∆Γ1 ∪ h(Γ1,Γ2) if h(Γ1,Γ2) , fail

fail if Γ1 = fail∨Γ2 = fail

fail otherwise

where ∆ denotes the symmetric set difference operation and h : E2→ E is

h(Γ1,Γ2) =



fail if ∃e.(Γi(e) = Kf∧Γ j(e) , Kf)

fail if ∃e.(Γi(e) = Rm∧Γ j(e) =Rn∧m , n)

{(e : τ) |Γ1(e) = Γ2(e)}∪ {(e : N) |Γi(e) = N∧Γ j(e) = Vf} otherwise

with i, j ∈ {1,2} and i , j. As can be seen in the above definition, conflicts

arise whenever the two input environments do not agree in the typing of an

Chapter 3. COWS2Prism System Design 32

entity. The only exception is when one environment assigns type N to an entity,

while the other Vf. In this case, type N has higher priority, hence it survives

after the merging, whereas Vf is discarded. Observe that the non-homonymy

assumption assures us that conflicts of the kind N−V are not possible, since

entities typed as V cannot be in the same scope of N entities. Wewill reconsider

this point in greater detail below.

Function check : E→ E checks if the input environment contains free killer

labels and free variables. In the first case, an unsolvable conflict is detected

and environment fail is returned. In the second case, all the free variables are

transformed into names. It is specified as follows

check(Γ) =



fail if Γ = fail

fail if ∃e.(Γ(e) = Kf)

Γ⊎{(e : N) |Γ(e) = Vf} otherwise

Definition 13. An environment Γ ∈ E is said to be a valid environment if Γ , fail

and if it does not contain type assignments such that (e : τ), where τ ∈ {Vf,Kf}.

Since COWS services have no explicit results, our typing rules take the

form Γ ⊢ s, where Γ is a temporary environment used to derive a potential valid

environment for service s via function check. We can read Γ ⊢ s as asserting that s

uses its entities consistently with the types given inΛ= check(Γ). Basically, each

rule corresponds to one syntactic construct in the High-Lan COWS syntax. It is

worthwhile to recall that service s is assumed not to have homonymy among

its entities. Let us briefly explain the salient points of the inference rules.

The simplest High-Lan COWS service is the empty activity 0. It is not

capable of anycommunicationandhence, it is consistentwith anyenvironment:

Γ ⊢ 0 (Nil)

The typing rule for service identifiers

Γ∪{(ni : N) | i ∈ {1, . . . , j}}∪ {(S : R j)} ⊢ S(n1, . . . ,n j) (Rec)

extends temporary environment Γ with types N for arguments n1, . . . ,n j and

type R j for S, where j denotes its arity. Similarly, rule (Rec0) handles the typing

of nullary service identifiers.

Asynchronous invoke activities u!w are defined in the COWS syntax (see

Table 2.1) over names and variables, whereas High-Lan COWS syntax (defined

Chapter 3. COWS2Prism System Design 33

in Table 3.1) only uses basic entities belonging to set E. This means that in

COWS u,w ∈ N ∪V. Accordingly, typing rule (Out) has to assign type N or V

to entities u and w. Considering the fact that only closed services can have a

valid environment, the strategy we followed was to initially assign type Vf to

both u and w in Γ. All the possible type modifications necessary to satisfy the

closeness condition are postponed to the application of function check. The rule

is then

Γ∪{(u : Vf), (w : Vf)} ⊢ u!w (Out)

Kill activities are typed by:

Γ∪{(k : Kf)} ⊢ kill(k) (Kill)

As can be seen, type Kf instead of K is assigned to entity k in Γ. We will

explain below (see rule (DelK)) why we adopted this strategy. Note that no en-

vironment failure can arise in the previous four rules because they all consider

terminal symbols in the High-Lan COWS grammar. Thus, Γ is always an empty

environment.

The delimitation of entities is handled by three different rules: (DelV), (Del)

and (DelK). The first one states that if Γ ⊢ s holds and entity d has not been

previously declared in Γ or it was used with type Vf, then Γ⊎ {(d : V)} ⊢ [d]s

holds, i.e. typeV is arbitrarily assigned to d. Similarly, the second rule is applied

when entity d has previously been typed as N. In this case, no modifications

are made on Γ, because the closeness property is already met. Rule (DelK) deals

with the case in which entity d was previously typed as Kf in Γ. The result

is that the type of d is set to K because d is bound in [d]s. Observe that the

non-homonymy assumption saves us from considering cases when Γ(d) = V

and Γ(d) = K, because they can never occur.

Rule (Prot) states that Γ ⊢ {|s |} holds only if Γ ⊢ s.

Three other rules are needed to type request activities p?w.s. Rule (InpK)

is used whenever p or w have already been declared as Kf in Γ. Since this is

not allowed by the COWS syntax, the typing system detects the conflict and

thus, fail ⊢ p?w.s holds. Rules (Inp) and (InpW) both force the typing of p to N.

The only difference is in the handling of entity w. In the first case w is already

present in temporary environment Γ, then no modification has to be carried

out. Therefore, Γ⊎ {(p : N)} ⊢ p?w.s holds. In the second case w is used for the

first time and the same strategy used in rule (Out) is adopted.

Chapter 3. COWS2Prism System Design 34

Γ ⊢ 0 (Nil) Γ∪{(S : R0)} ⊢ S (Rec0)

Γ∪{(ni : N) | i ∈ {1, . . . , j}}∪ {(S : R j)} ⊢ S(n1, . . . ,n j)(Rec)

Γ∪{(u : Vf), (w : Vf)} ⊢ u!w (Out) Γ∪{(k : Kf)} ⊢ kill(k) (Kill)

Γ ⊢ s
(Prot)

Γ ⊢ {|s |}

Γ ⊢ s Γ(d) = N
(Del)

Γ ⊢ [d]s

Γ ⊢ s d < supp(Γ)∨Γ(d) = Vf
(DelV)

Γ⊎{(d : V)} ⊢ [d]s

Γ ⊢ s Γ(d) = Kf
(DelK)

Γ⊎{(d : K)} ⊢ [d]s

Γ ⊢ s w ∈ supp(Γ) Γ(p) , Kf Γ(w) , Kf
(Inp)

Γ⊎{(p : N)} ⊢ p?w.s

Γ ⊢ s w < supp(Γ) Γ(p) , Kf
(ImpW)

Γ⊎{(p : N), (w : Vf)} ⊢ p?w.s

Γ ⊢ s Γ(p) = Kf∨ Γ(w) = Kf
(InpK)

fail ⊢ p?w.s

Γ1 ⊢ s1 Γ2 ⊢ s2
(Par)

f (Γ1,Γ2) ⊢ s1 | s2

Γ1 ⊢ s1 Γ2 ⊢ s2
(Sum)

f (Γ1,Γ2) ⊢ s1 + s2

Table 3.4: Typing rules for High-Lan COWS services.

The typing rules for s1 | s2 and s1 + s2 must ensure that s1 and s2 use their

entities in a consistent manner. This task is accomplished by function f defined

above. We therefore require

Γ1 ⊢ s1 Γ2 ⊢ s2
(Par)

f (Γ1,Γ2) ⊢ s1 | s2

in the case of parallel composition. Rule (Sum) dealing with summation of

services is similar.

The typing rules for High-Lan COWS services are summarised in Table 3.4.

Note that the time complexity of the inference algorithm is linear in the number

of activities defined in the input service.

Finally, we present a formal encoding of High-Lan COWS services into

COWS services. Firstly, an auxiliary function map : T→ E∪I acting as a

mapping from types to COWS entities and service identifiers is defined as

Chapter 3. COWS2Prism System Design 35

(|e!e′|)A
Λ
= ê!ê′ ê ∈map(Λ(e)) ê′ ∈map(Λ(e′))

(|e?e′.s|)A
Λ
= ê?ê′. (|s|)A

Λ
ê ∈map(Λ(e)) ê′ ∈map(Λ(e′))

(|kill(e)|)A
Λ
= kill(̂e) ê ∈map(Λ(e))

(|S|)A
Λ
= Ŝ Ŝ ∈map(Λ(S)) Ŝ ∈ I0

Ŝ ∈ supp(A)

(|S(e1, . . . ,e j)|)
A
Λ
= Ŝ(ê1, . . . , ê j) êi ∈map(Λ(ni)), 1 ≤ i ≤ j

Ŝ ∈map(Λ(S)) Ŝ ∈ I j

Ŝ(ê1, . . . , ê j) ∈ supp(A)

(|[e]s|)A
Λ
= [̂e] (|s|)A

Λ
ê ∈map(Λ(e))

Table 3.5: Formal encoding of High-Lan COWS services into COWS services.

follows:

map(τ) =



N if τ = N

V if τ = V

K if τ = K

Ii if τ = Ri with i ∈N

The encoding, indicated by (| |) : S×2D×E→S, is defined in Table 3.5, where

trivial rules for parallel composition, summation, protection and empty activi-

ties are not listed. Note that the encoding is defined for valid environments, i.e.

Λ has to be a valid environment in (| |)
Λ
. The rôle of the encoding is to substitute

generic High-Lan COWS entities (i.e. not typed) with COWS entities, according

to the type directives stored in environment Λ. Moreover, it is checked that

every service identifier is associated with a valid defining equation in set A.

Observe that this step is indeed necessary because the High-Lan COWS syntax

does notmake this sort of assumption, while, on the contrary, theCOWS syntax

does. SetA is regarded as an environment where names are the left hand-sides

of the equations and types are the right hand-sides. COWS entities and service

identifiers are indicated in the encoding by the notation ê and Ŝ respectively.

Lemma14. Whenever Γ ⊢ s holds, ifΛ= check(Γ) is a valid environment forHigh-Lan

COWS service s, then, for some A⊂D, COWS service s′ = (|s|)A
Λ
satisfies the following

properties:

(i) s′ is a closed service;

(ii) there are no mismatching service identifiers in s′;

Chapter 3. COWS2Prism System Design 36

(iii) a defining equation a ∈ A is associated to each service identifier in s′

Proof. To prove the lemma, we prove each point separately.

(i) By Definition 3, we have to show that there are no free occurrences of

killer labels and variables in service s′. Trivially, s′ does not have free

killer labels by construction of function check. Let us now assume Λ is a

valid environment for service s, and x1, . . . ,x j are all the free variables of

s. This means that Λ(xi) = Vf, with 1 ≤ i ≤ j. By definition of functions

check and ⊎, this is impossible. As a matter of fact, the third case in the

definition of check states that all the entities previously typed as Vf are

instead typed as N. Therefore, there are no free variables occurring in s′.

(ii) Let us assume Λ= check(Γ) is a valid environment for service s, and S1,S2

are two service identifiers in s such that Λ(S1) = Ri and Λ(S2) = R j, with

i, j. Since service identifiers are terminal symbols in theHigh-Lan COWS

grammar the only two rules we have to consider are (Par) and (Sum). In

both cases, environment Γ is given by f (Γ1,Γ2). Assuming S1 ∈ supp(Γ1)

and S2 ∈ supp(Γ2), function f falls in its second case. Therefore, Γ =

fail and consequently Λ = fail by definition of function check. This is a

contradiction because fail is not a valid environment.

(iii) By construction of encoding (| |) .

�

Let us present some examples showing how the type system works.

Example 15. Consider the following High-Lan COWS service:

s0 = kill(k1) | [k2][x]p?x.kill(k2)

As can be seen, entity k1 occurs free, thus we expect the type system to fail.

This is indeed shown by the derivation below:

k1 : Kf ⊢ kill(k1)

k2 : Kf ⊢ kill(k2)
(ImpW)

k2 : Kf,p : N,x : Vf ⊢ p?x.kill(k2)
(DelV)

k2 : Kf,x : V,p : N ⊢ [x]p?x.kill(k2)
(DelK)

k2 : K,x : V,p : N ⊢ [k2][x]p?x.kill(k2)
(Par)

Γ ⊢ s0

Chapter 3. COWS2Prism System Design 37

where Γ = {k1 : Kf,k2 : K,x : V,p : N} is the temporary environment. The final

environment Λ is given by

Λ = check(Γ) = fail

Example 16. Let us define a High-Lan COWS service as follows:

s0 = {|n1!n2 |p?x.0 |}

The inferred environment is

Λ = check(Γ) = {n1 : N,n2 : N,p : N,x : N}

where temporary environment Γ is computed by the derivation below.

n1 : Vf,n2 : Vf ⊢ n1!n2

∅ ⊢ 0
(InpW)

p : N,x : Vf ⊢ p?x.0
(Par)

n1 : Vf,n2 : Vf,p : N,x : Vf ⊢ n1!n2 |p?x.0
(Prot)

n1 : Vf,n2 : Vf,p : N,x : Vf︸ ︷︷ ︸
Γ

⊢ s0

This example shows how all the occurrences of free variables in temporary

environment Γ are replaced with names by function check.

Example 17. Consider service s = [x]p?x.S(p) |S(p1,p2). Here, service identifier

S is used with two different arities. This means that a valid environment for

service s cannot be inferred by the type system. As a matter of fact, function f

fails to merge the two environments when rule (Par) is applied as it is shown in

the following derivation tree:

p : N,S : R1 ⊢ S(p)
(ImpW)

p : N,S : R1,x : Vf ⊢ p?x.S(p)
(DelV)

p : N,S : R1,x : V ⊢ [x]p?x.S(p) p1 : N,p2 : N,S : R2 ⊢ S(p1,p2)
(Par)

fail ⊢ s
Hence, the final environment is Λ = check(fail) = fail.

Example 18. Applying the typing rules listed in Table 3.4 to [k] (kill(k) |p!k) we

get:
k : Kf ⊢ kill(k) p : Vf,k : Vf ⊢ p!k

(Par)
fail ⊢ kill(k) |p!k

(DelV)
fail ⊢ [k] (kill(k) |p!k)

In this case function f reports the conflicting type assignments for entity kwhen

rule (Par) is applied.

Chapter 3. COWS2Prism System Design 38

Γ∪{(S : R0)} ⊢ S = s (Def0)

Γ∪{(ni : N) | i ∈ {1, . . . , j}}∪ {(S : R j)} ⊢ S(n1, . . . ,n j) = s (Def)
Γ1 ⊢ a1 . . . Γn ⊢ an n = |A| ai ∈ A 1 ≤ i ≤ n

(Defs)
Γ1⊎ . . .⊎Γn ⊢ A

Table 3.6: Typing rules for High-Lan COWS defining equations.

Example 19. The typing for service [x]p?x.0 |p!n is given by

∅ ⊢ 0
(InpW)

p : N,x : Vf ⊢ p?x.0 p : Vf,n : Vf ⊢ p!n
(Par)

p : N,x : Vf,n : Vf ⊢ p?x.0 |p!n
(DelV)

p : N,x : V,n : Vf︸ ︷︷ ︸
Γ

⊢ [x]p?x.0 |p!n

and by Λ = check(Γ) = {p : N,x : V,n : N}. Application of rule (Par) shows the

priority given by function f to type N over type Vf for the typing of entity p.

At this stage, it is useful to extend the typing system and the encoding to

handle defining equations. In what follows, metavariables A, A′, B and B′ will

be used to range over sets D and D. Firstly, we introduce the typing rules

listed in Table 3.6. The intended meaning of (Def0) and (Def) is analogous to the

one of rules (Rec0) and (Rec) in Table 3.4. It is worthwhile to note that service

s is ignored. Rule (Defs) collects all the typing environments of the defining

equations belonging to set A. Whenever mismatching service identifiers are

encountered, only the last one is considered, while the previous are discarded.

This behaviour is due to definition of function⊎. As a consequence, the inferred

environment is always valid. The inference of this rule is computable because

A ⊂D is assumed to be finite.

Finally, (| |) is extended to encode a set A of High-Lan COWS defining

equations into a set A′ ⊂D of COWS defining equations as follows:

(|A|)
Γ
= ‖A0‖A ∪ ‖An‖A (3.4)

where

A0 = {Ŝ = s |S ∈ supp(A) ∧ Ŝ ∈map(Γ(S)) = I0}

An = {Ŝ(ê1, . . . , ê j) = s |S(e1, . . . ,e j) ∈ supp(A) ∧ Ŝ ∈map(Γ(S)) = I j ∧ êi ∈ N}

with 1 ≤ i ≤ n, and transformation function ‖ ‖ as shown in Table 3.7. The en-

Chapter 3. COWS2Prism System Design 39

‖Ŝ = s‖A = Ŝ = (|s|)A
Λ

Λ = check(Λ′) Λ′ ⊢ s

‖Ŝ(n̂1, . . . , n̂ j) = s‖A = Ŝ(n̂1, . . . , n̂ j) = (|s|)A
Λ
Λ = check(Λ′) Λ′ ⊢ s

Λ(ni) = N 1 ≤ i ≤ j

Table 3.7: Transformation ‖ ‖ .

coding initially processes every defining equation by converting the left hand-

sides intoCOWS. After that, it takes care of the encodingof the right hand-sides.

The first phase is carried out with the creation of setsA0 andAn, whereas trans-

formation function ‖ ‖ terminates the transformation procedure. Note that

the latter is defined only for valid environments, i.e. typing environment Λ

inferred form a right hand-side has to be valid. Observe also that, equations

specifying service identifiers with mismatching arities are removed. This is

expressed by the equality constrains map(Γ(S)) = I0 and map(Γ(S)) = In in the

definition of A0 and An, respectively.

Example 20. Let service s = [x] (p?x.S(n1) + p?x.S(n2)) be a High-Lan COWS

service and A a set of defining equations:

A = {S = n!m,S(n) = n!m}

The environments inferred from s and A, are Γ = {(p : N), (n1 : N), (n2 : N), (x : V)}

and ΓD = {(S : R1)}, respectively. Note that the typing for the first defining

equation is lost. Before converting s into aCOWS service bymeans of encoding

(| |) , set A has to be transformed. For this purpose we use the encoding (|A|)
ΓD
.

We show all the intermediate steps. Initially, set An = {Ŝ(̂n) = n!m} is created,

where Ŝ ∈ I1 is a COWS service identifier and n̂ ∈ N is a COWS name. After

that,

A′ = (|A|)
ΓD
= ‖An‖A = {Ŝ(̂n) = (|n!m|)A

Λ
} = {Ŝ(̂n) = n̂!m̂}

where Λ = {(n : N), (m : N)} and n̂,m̂ ∈ N are COWS entities. Finally, service s

can be translated:

(|s|)A
′

Γ
= [̂x] (̂p?x̂. Ŝ(n̂1) + p̂?x̂. Ŝ(n̂2))

where all the High-Lan COWS entities are converted into equivalent COWS

entities by function map. In particular, x̂ ∈V, p̂, n̂1, n̂2 ∈ N and S ∈ I1.

Chapter 3. COWS2Prism System Design 40

s�g

S(n1, . . . ,n j) = s ◭g

s�g

S = s ◭g

a1 ◭g ∧ . . .∧ an ◭g n = |A| ai ∈ A 1 ≤ i ≤ n

A ◭g

Table 3.8: Are right hand-sides all guarded?

3.2.4 Compiler: details

The compiler can be thought of as a black-box device accepting some sort of

data and producing an output as the result of its internal computations on the

given input. Before presenting the details of how its sub-components interact

to produce the desired result, we describe function ◭g, an useful predicate

over sets of COWS defining equations. It is introduced in Table 3.8. Expression

A ◭g is verified only when all the right hand-sides s of the defining equations

in set A are guarded services, where A ⊂ D and predicate �g is defined in

Table 2.2.

Definition 21 (Valid COWS program). Let A be a set of defining equations,

{s1, . . . ,sn} the set of its right hand-sides, and Z = 〈s,A,Env〉 a COWS program.

We write s′ to denote a service in the set s∪ {s1, . . . ,sn}. Program Z is a valid

program if

(i) s′ is a homonymy free and closed COWS service and it does not have

mismatching service identifiers;

(ii) for every service identifier S occurring in s′, S ∈ supp(A);

(iii) A ◭g holds;

(iv) supp(Env) = (fe(s)∪be(s))∪
⋃n

i=1(fe(si)∪be(si)) i.e. a rate is associated to

each entity used in Z.

The translation engine takes as input valid COWS programs and converts

them into CTMCs. Therefore, the compiler can really be viewed as a procedure

for their generation starting from the corresponding High-Lan COWS model

specification. Wedefine such a procedure in Table 3.10 by heavily relying on the

results presented earlier in this chapter. Function →֒v:Z→Z is only defined for

initial environments Env′ such that a rate is associated to every entity occurring

in s′ and A′. The first step performed by →֒v is to refresh the input program

Chapter 3. COWS2Prism System Design 41

input: High-Lan COWS program Z′ = 〈s′,A′,Env′〉

1. Program Z′ is refreshed according to Equation 3.2.

The resulting High-Lan COWS program is Z′′ = [[Z′]] =

〈s′′,A′′,Env〉.

2. Typing environments for s′′ and A′′ are inferred. They

are Γ = check(Γt), where Γt ⊢ s
′′ and ΓD = check(Γ′t), where

Γ′t ⊢ A
′′.

3. The set of defining equations A′′ is encoded into COWS as

described in Equation 3.4. The result is: A = (|A′′|)
ΓD
.

4. High-Lan COWS service s′′ is converted into COWS by the

encoding described in Table 3.5. The result is s = (|s′′|)A
Γ
.

5. Property A ◭g is tested.

output: COWS program Z = 〈s,A,Env〉

Table 3.9: Function →֒v

Z. Subsequently, typing environments are inferred for service s′′ and set of

defining equations A′′. Observe that the procedure is assumed to terminate

with an error whenever ΓD = fail or Γ = fail. On the contrary, if the inference is

successful, the computation of the output COWS program Z is carried on. Also

when an invocation of (| |) fails in the translation, →֒v is interrupted. Finally,

it is checked whether all the services used as right hand-sides are guarded. If

A passes this test, COWS service Z is used as output value. The function has

linear time complexity.

Lemma 22. Let Z′ = 〈s′,A′,Env′〉 be a High-Lan COWS program. Program Z =

〈s,A,Env〉, obtained by Z′ →֒v Z is a valid program.

Proof. We prove each point in Definition 21 separately. In the following s′

stands for a service belonging to set s∪R, where R = {s1, . . . ,sn} is the set of the

right hand-sides of A.

(i) By construction of function →֒v (step 1) and encoding [[]] , service s′ is

homonymy-free. Moreover, by constructionof →֒v (step 2) andLemma14,

Chapter 3. COWS2Prism System Design 42

s′ is closed and no mismatching service identifiers occur in it. Finally, s′

is a COWS service by construction of →֒v (steps 3 and 4) and (| |) .

(ii) By construction of →֒v (steps 3 and 4) and (| |) .

(iii) By construction of →֒v (step 5) and ◭g.

(iv) By construction of →֒v (step 1) and [[]] .

�

3.3 Translation engine

The translation of a valid COWS program Z into a CTMC C(Z) is conceptually

related to two different sub-procedures: The first one generates the stochas-

tic transition system associated to Z, while the second transforms it into a

transition matrix fully specifying C(Z).

Definition 23. The labelled stochastic reduction relation
θ
=⇒ is the least relation over

valid COWS programs such that:

〈s,A,Env〉
θ
=⇒
〈
s′,A,Env

〉
if s

θ
−→ s′

where
θ
−→ is the stochastic COWS reduction relation described in Section 2.4,

but rules

s{m1, . . . ,m j/n1, . . . ,n j}
ϑ(α,ϕϕ′)
−−−−−−→ s′ A(S(n1, . . . ,n j)) = s

(ser id)

S(m1, . . . ,m j)
ϑ(l dec(α),ϕϕ′)
−−−−−−−−−−−→ s dec(α,s′)

s
ϑ(α,ϕϕ′)
−−−−−−→ s′ A(S) = s

(ser id0)

s
ϑ(l dec(α),ϕϕ′)
−−−−−−−−−−−→ s dec(α,s′)

As can be seen, the stochastic evolution of a program is fully driven by the

evolution of its service component. The new definition of rules (ser id) and

(ser id0) is used to handle the unfolding of recursion through the environment

of defining equations A. Moreover, it is important to remark that function

ρ used in the stochastic semantics of COWS to retrieve rates associated to

entities is overridden by the homonym function defined in Section 3.2.1. In

this case, rates are taken from global environment Env. We extend Definition 8

to programs:

Chapter 3. COWS2Prism System Design 43

input: COWS program Z = 〈s0,A,Env〉

Define a CTMC C = (Q,s0,R) where Q = ∅ and R = ∅

Initialise sets Q = Q = {ω(s0)}

repeat

pic a COWS service s ∈ Q and remove it from Q

for all (θ,s′) such that 〈s,A,Env〉
θ
=⇒ 〈s′,A,Env〉 is a stoch. red. step

if ω(s′) <Q

then add ω(s′) to Q and Q and add (s,ω(s′),µ(θ)) to R

else update (s,ω(s′),r) ∈ R with (s,ω(s′),r+µ(θ))

until Q , ∅

output: transition matrix R

Table 3.10: Function CTMC .

Definition 24 (Stochastic computation step). Reduction Z
ϑ(α,ϕ,ϕ′)
======⇒ Z′ is called

a stochastic computation step if α = † or α = p ·ε ·σ′, for some p and σ′.

For the sake of brevity, we omit similar extensions of Definition 6 (deriva-

tive) and Definition 7 (derivative set).

The CTMC associated to a program Z is directly computed by procedure

 CTMC:Z→C(Z) in Table 3.10. Its definition is inspired by theworkpresented

in (Deng and Papadimitriou, 1990). In that paper, the authors investigate a new

algorithm for the exploration of an unknown graph. The algorithm driving

the computation of function CTMC is a modified version of a breadth-first

graph traversal. Hence, the time complexity is O(|Ψ(Z)|+ |EΨ|), where the two

variables are the set of nodes and edges of theZ-transition system, respectively.

It is worthwhile to notice that, although this is a linear bound, the number of

states can be exponential with respect to the syntactic length of the programs.

The onlymodificationwith respect to the breadth-first traversal, is thatmultiple

connections between nodes have to be handled. Another important point is

that services are processed by function ω before being added to the Markov

chain. Intuitively, ω(s) is a syntactic modification which removes unneeded

empty activities and protections from s. It is specified in Table 3.11. Note that,

 CTMC is not computable in general. As a matter of fact, it is only defined for

programs having finite derivative sets.

Chapter 3. COWS2Prism System Design 44

ω({| {|s |} |}) = {|ω(s) |} ω({|0 |}) = 0

ω([d]0) = 0 ω(s |0) = ω(0 | s) = ω(s)

ω(p?u.s) = p?u.ω(s) ω(s + 0) =ω(0 + s) = ω(s)

ω(u!w) = u!w ω(kill(k)) = kill(k)

ω([d]s) = [d]ω(s) ω(S) = S

ω(S(n1, . . . ,n j)) = S(n1, . . . ,n j) ω({|s |}) = {|ω(s) |}

Table 3.11: Definition of function ω().

Summarising, the COWS2Prism system is defined as follows:

Z1 →֒v Z2 CTMC R (3.5)

where Z1 is the High-Lan COWS input service, Z2 is the COWS service used

by the COWS2Prism system for its internal computations, while the output R

is the transition matrix of a CTMC generated from Z2.

3.3.1 Recursion handling: discussion

At this stage, it is of paramount importance to discuss the management of

recursion unfolding by the COWS2Prism system.

We already recalled that translation procedure CTMC converges only on

programs generating finite transition systems. However, the stochastic seman-

tics only guarantees that a transition system is finitely branching. This is not

enough because the set of states can still be infinite. Another important ob-

servation is that infinite behaviours can be described by finite state transition

systems. Consider the following examples.

Example 25. We define a COWS program Z = 〈s,A,Env〉 where s = S(p), A =

{S(p) = [x]p?x.S(p) | p!n | q!n} and Env = {(p : λ1), (x : λ2), (n : λ3), (q : λ4), }. It is

immediate to see that Z gives rise to an infinite transition system, because at

every recursive step an additional q!n is added and it can never be consumed.

Namely,

Z
θ
=⇒
〈
S(p) |0 | q!n,A,Env

〉 θ
=⇒
〈
S(p) |0 | q!n |0 | q!n,A,Env

〉
θ
=⇒ . . .

θ
=⇒
〈
S(p) |0 | q!n | . . . |0 | q!n,A,Env

〉

Thus, the main loop in CTMC keeps adding processes to sets Q an Q and

never terminates.

Chapter 3. COWS2Prism System Design 45

Example 26. Let programZ =
〈
S(p),A,Env,

〉
, where,A= {S(p)= [x]p?x.S(p) |p!n}

and Env is a valid environment. In this case CTMC converges, producing a

one-state Markov chain. Initially, sets Q = Q = {S(p)}, while R is empty. Note

that the application of function ω does not affect S(p). In the main loop, S(p)

is used to evaluate computational step Z
θ
=⇒ 〈s1,A,Env〉, where s1 = S(p) |0. The

empty activity in the parallel composition is removed with ω(s1). Hence, Q is

not changed because it already contains state S(p), while element (S(p),s1,µ(θ))

is added to R and Q = ∅. The procedure terminates with output R.

To tackle these issues several approaches are viable:

• restrict the calculus by removing recursive definitions;

• restrict the syntax of the calculus in such a way that infinite transition

systems are impossible to be generated;

• ignore the problem.

In the first case, all infinite behaviours cannot be expressed in the reduced

calculus. Since COWS was introduced to model interactions among web ser-

vices, where infinite behaviours are common, this restriction introduces an

unacceptable lack of expressiveness. Therefore, we discarded this solution.

In the second case, a possible solution is to forbid parallel composition in

recursive definitions. This very approach was indeed adopted in (Deng et al.,

2005) when the authors analysed the properties of transition systems generated

by several different fragments of CCS. Despite the fact that this way of dealing

with the problem appears appealing, we also notice that it is too restrictive.

As a matter of fact, not only are services of the kind presented in Example 25

not legal, but also services like the one in Example 26 are forbidden. This is

not desirable because we are losing the ability to express services giving finite

transition systems.

The last proposal cannot really be considered a proper solution. Neverthe-

less, it is the approachwe adopted in theCOWS2Prism system implementation.

Our choice is motivated by the fact that the major limitation in CTMC analysis

is in the number of states of the chain. As a matter of fact, analysis based on

CTMCs becomes unproductive for models with more than one million states

(see (Schweitzer, 1990)). Therefore, the translation process in COWS2Prism

Chapter 3. COWS2Prism System Design 46

is interrupted whenever the number of states exceeds a fixed limit. In this

manner, our program is assured to be always terminating.

Chapter 4

COWS2Prism System

Implementation

The COWS2Prism system has been implemented in a functional language

(OCaml), attaining to the design presented in the previous chapter. The system

is a command-line application taking as input a text file describing a High-Lan

COWS model. It consists of a single binary executable called cows2prism.

The purpose ofCOWS2Prism is to compute the CTMCcorresponding to the

stochastic transition system of a given High-Lan COWS service. The resulting

transition matrix is stored in an ASCII file which can be accepted as input by

the stochastic model checker Prism and then analysed. Additionally, a static

type-checker accurately reports syntax and type errors before a given source

file is executed. The complete specification of the High-Lan COWS language

used for the definition of models in the input files is reported in Appendix A.

A general overview of the components organisation in the COWS2Prism

system is depicted in Figure 4.1, while a detailed dependency graph between

each sourcefile (i.e. compilationunit) is drawn inFigure 4.2. Thegraphhasbeen

computed by ocamldep, the dependency analysis tool included in the OCaml

distribution, and ocamldot, a graph generation utility. We also took advantage

of the features of the first tool for the generation of compiling directives in

Makefile format.

The cows2prism program is implemented in the main.ml file. However, the

logic regarding the real functioning of the software is handled separately into

several different implementation files. Therefore, the rôle of main.ml is limited

to the organisation of the order of invocation of the several sub-components

47

Chapter 4. COWS2Prism System Implementation 48

Source file

.cow
tokens High−Lan COWS COWS

Output file

Prism ctmc

Lexer
Static

analyser

Translation

engine

Parser

Data

types

Figure 4.1: COWS2Prism system components organisation.

Syntaxtree

Rate Utils

Parser

Main

Action Check

Lexer

Graph

Fresh

Io

Lab

Figure 4.2: Compilation units

in the COWS2Prism system. Moreover, global data structures with in-place

modification are initialised, e.g. hash-tables rates and env for the name-rate

bindings and the defining equations, respectively.

In the remainder of this chapter we will explain the most important fea-

tures of the modules forming the COWS2Prism system. Each component is

presented in the order given in Figure 4.1, corresponding to the order of invo-

cation in the main module. Thus, the flow of computation proceeds from one

unit to the other in a cascade fashion. Finally, a brief description of the usage of

the program is included.

Chapter 4. COWS2Prism System Implementation 49

4.1 Lexer

The lexer is the front-end component of the COWS2Prism system. It processes

the source file (with extension .cow) producing a sequence of lexical units

called tokens or lexemes. At this stage, the input file is considered as a raw

sequence of characters and each token corresponds to a specific construct in

the High-Lan COWS input. The recognition process is driven by the regular

expressions listed in Appendix A.1. Observe that, despite the introduction of

several new key-words in the source language, these rules closely resemble the

High-Lan COWS syntax given in Table 3.1. The actual implementation (i.e. file

lexer.ml) of the lexer in our system is generated by ocamllex, the standard

OCaml lexical analyser generator. For this purpose, the lexical description is

coded in file lexer.mll. We briefly comment on the most important sorts of

token built during the lexing phase: service identifiers and entity identifiers.

The firsts are generated by rule

SID =
[′A′−′Z′] [′a′−′ z′ ′A′−′Z′ ′0′−′ 9′ ′ ′]∗

stating that a string can be regarded as a service identifiers only if it begins with

a capital letter. The seconds are recognised by the following regular expression:

EID =
[′a′−′ z′] [′a′−′ z′ ′A′−′Z′ ′0′−′ 9′ ′ ′]∗

In this case, entity identifiers can only start with a lower-case letter. In both

rules, the only legal characters are letters and ′ ′.

Finally, tokens corresponding to floating point numbers used for rates val-

ues are identified by

FLOAT =

(
[′0′−′ 9′]+ |

(
[′0′−′ 9′]+ ′.′ [′0′−′ 9′]+

))
(
[′E′ ′e′] [′+′ ′−′]? [′0′−′ 9′]+

)
?

| ”inf”

The actual transformation into OCaml float data type is performed by the

library function float of string.

4.2 Parser

The parser is the sub-system assembling the tokens produced by the lexer so

that they amount to syntactically correct sentences in the High-Lan COWS lan-

guage. In our case, the syntactic assembly rules are defined by the Backus-Naur

Chapter 4. COWS2Prism System Implementation 50

Form grammar defined in Appendix A. The implementation file parser.ml

is efficiently generated starting from YACC definition file parser.mly by the

ocamlyacc tool. Let us explain the main points in the grammar definition.

A .cow program is composed by a mandatory list of rate declarations, an

optional list of service defining equations and a service. This is given by the

following fragment of the grammar:

program F rates list opt de f list in service

Rate declarations are bindings between High-Lan COWS entities and float-

ing point rates, recognised by lexing rules EID and FLOAT respectively. They

are defined by:

rate F rate EID : FLOAT ;

Note that the last rate declaration has always to be a global rate declaration

(like for example: baserate : 1.5;).

The defining equations list is formed by semicolon-separated equations

defined by

de f F let SID (opt names list) = service

Service identifiers are tokenised by rule SID, whereas opt names list denotes a

list of comma-separated EID lexemes. Since the latter is an optional element,

service identifierswith no arguments are legal in theHigh-Lan COWS language.

For the missing grammar rules we refer the reader to Appendix A. We

just mention that rule service is conceptually analogous to rule s in Table 3.1.

The additional rules have only been added for the handling of unnecessary

parenthesis.

Another important rôle of the parser is to translate the abstract entities

induced by the grammar into actual OCaml values mimicking the High-Lan

COWS specifications. This is indeed possible by associating to every rule in

the grammar file parser.mly an OCaml function to be triggered whenever its

semantic value is recognised in the input. This mechanism allows ocamlyacc

to easily perform the required transformation. We will present the data types

used in this task in the following section.

Chapter 4. COWS2Prism System Implementation 51

4.3 Data types

Before starting, it is worth to clarify that the same data types are used both in

the High-Lan COWS and in the COWS implementation. This means that, from

an OCaml prospective, there is no difference between the two formalisms. We

adopted this approach to simplify the implementation of the translation (| |)

defined in Table 3.5. Therefore, in the following we may generally refer to

program, process and entity without any distinction.

All data typedeclarations are contained infilesrate.mlandsyntaxtree.ml.

The first states that a rate is implemented as a (string,float) pair, while the

second collects all the other type declarations. The basic entities are imple-

mented as string:

type name = Name of string

type var = Var of string

type klab = Klab of string

type id = Id of string

Note that, in COWS services, types name, var, klab and id are used to denote

elements of sets N , V, K and I respectively. Following the same approach,

different subsets of set E are implementedwith different OCaml types. Entities

inN∪V⊂ E are represented by type entity1, while entities inN∪V∪K = E

with type entity. This is shown below:

type entity1 = EntN of name | EntV of var

type entity = Ent1 of entity1 | EntK of klab

As we explained above, the same type nesting is adopted for High-Lan COWS.

However, all the details regarding the membership of an entity to a certain set

are ignored. Therefore, there is no semantic difference between those types.

The implementation of type service is as reported in Table 4.1. As can be

seen, the distinction between simple services and guarded services introduced

in COWS- High-Lan COWS grammars (see Table 2.1 and 3.1 respectively) is

preserved. Moreover, we assume that values of type service are elements of

S or S. Implementations of def and program are:

type def = Def of id * name list * service

type program = Program of rate list * def list * service

Values of type def belong to sets D or D. A program is the implementation of

the abstract program in Definition 10, where the rate list is the environment

Chapter 4. COWS2Prism System Implementation 52

type service =

Out of entity1 * entity1

| Guard of guard

| Par of service * service

| Prot of service

| Kill of klab

| Del of entity * service

| Rec of id * name list

and guard =

Nil

| In of name * entity1 * service

| Sum of guard * guard

Table 4.1: OCaml definition of type service.

Env. It is worth to notice that at this stage, definitions and rates are both

implemented as OCaml list data type.

The result of the parsing process is a value of type program (Z1 in Equa-

tion 3.5) representing the OCaml implementation of the High-Lan COWS pro-

gram in the original source file. It is then the static analysis phase that translates

it into an equivalent COWS program implementation. Wewill describe the de-

tails of this operation in the next section.

4.4 Static analyser

The static analyser is the component of the COWS2Prism system that performs

several preliminary checks and transformations on the input program before

it is used by the translation engine. Additionally, it creates a global environ-

ment for the efficient handling of entity-rate bindings. Note that the system

terminates whenever the static analyser fails, i.e. when some property does not

hold for the input program. If this is the case, the system reports to the user a

detailed message specifying the nature of the error. The implementation of the

static analyser is based on the definition of function →֒v described in Table 3.10.

It is spread among three different files: rate.ml, check.ml and fresh.ml.

File rate.ml defines function build env used for the creation of the global

Chapter 4. COWS2Prism System Implementation 53

environment. For efficiency reasons, it is implemented as a hash table data

structurewith in-placemodification. Inparticular,weused the(string,float)

Hashtbl.t type provided by the OCaml standard library. The string element

standing for the name of the entity is used as a key to retrieve in constant time

its rate, given by the float component.

File check.ml implements several checking functions for the input pro-

gram. The most important of these is undoubtedly function is guarded. As

the name suggests, it tests if all the service identifiers occur guarded in the

defining equations. Its implementation closely resembles predicate ◭g defined

by the rules listed in Table 3.8. Another function is is defined. It is used to

check whether every service identifier is associated with a defining equation.

Both functions force the COWS2Prism system to terminate whenever they fail.

Finally, functions warning unused rates and warning unused ids are defined.

The first scans the program looking for unnecessary rate definitions, while the

second detects unused service definitions. Note that for these two functions,

only a warning message is printed out when an error is found.

The fresh names generator and the type inference algorithm are both im-

plemented by file fresh.ml. They are used in this order by the static analyser

to modify the program generated in the lexing-parsing phase. The result of the

transformation is a program value corresponding to a valid COWS program

as stated in Definition 21. Considering that these two sub-component are of

crucial importance in the COWS2Prism system architecture, we will comment

more in detail on their implementation in the following.

The fresh names generator is the sub-component used to convert a program

into a homonymy free equivalent one. It is implemented by function freshen

by following the rules defining encoding [[]] in Tables 3.2 and 3.3. Each entity

being refreshed is modified by the addition of a string of zeros preceded by

character ˜. Note that the latter is not allowed in the regular expression for

EID. Hence, this assures that a name generated in this manner is different

than all the other names already used in the source file. For example, a killer

label EntK (Klab "k") becomes EntK (Klab "k˜00") after the refreshing and

string "k˜00" was not previously used for any other entities. For the efficient

handling of sets of entities, we used the set data structure provided by the

OCaml standard library. Thanks to this choice, an element in the set can be

retrieved in logarithmic time and the insertion of double elements does not

affect the set. The code is the following:

Chapter 4. COWS2Prism System Implementation 54

module Entity set = Set.Make (struct

type t = entity

let compare e1 e2 =

compare (Io.string of entity e1) (Io.string of entity e2)

end);;

where Set.Make is the functor actually building the set structure. The elements

are converted into strings by Io.string of entity an ordered by compare.

As described in the previous chapter, after a program has been refreshed, it

is correctly typed. In our implementation of theCOWS2Prism system, this task

is performed by the type inference algorithm. Its OCaml implementation is

function fix. It is defined exactly in the same way of the formal typing system

given in Tables 3.4 and 3.6, and encoding (| |) in Table 3.5 and Equation 3.4. An

important rôle in this function is played by several conversion functions. They

are used to transform an entity in a different kind of entity. For instance, it

is possible to transform a variable (i.e. Ent1 (EntV Var "e")) into a name (i.e.

Ent1 (EntN Name "e") with function name of var.

4.5 Translation engine

The translation engine is the back-end component of the COWS2Prism system

that computes the final output by processing values of type program received

from the static analyser. It corresponds to function CTMC and therefore, its

implementation is based on the algorithm presented in Table 3.10. This can be

mainly seen, in file action.ml, where function transition system is defined.

As a matter of fact, this iterative function is almost identical to the main loop of

 CTMC . Theonlymodificationwe introduced consists in a condition check that

breaks the loop whenever the size of the transition system becomes intractable.

In the current implementation of the COWS2Prism system, this happenswhen

the number of states reaches the order of one million states. Note that the

partial transition matrix computed till that point is returned as output. The

stochastic reduction relation
θ
=⇒ is implemented by function trans, set Q is an

OCaml standard queue with in-place modification (i.e. a value of type service

Queue.t) and sets Q and R are OCaml sets. Predicates used in the rules of

the COWS semantics are implemented as specified in Chapter 2. Auxiliary

functions for the management of labels and graphs algorithms are stored in

files rate.ml and graph.ml, respectively. The major advantage offered by

Chapter 4. COWS2Prism System Implementation 55

output F INT INT newline transition list eof

transition list F transition | transition newline transition list

transition F INT INT FLOAT

Table 4.2: Grammar for CTMCs in Prism format.

the OCaml programming language is that the rules for the generation of the

transition system can easily been implemented by means of pattern-matching

construct. For example, rule (kill) is straightforwardly implemented as follows:

let rec trans (s:service) env rates =

match s with

| Kill(k) -> let lambda = get rate rates (Io.string of klab k)

in lab = Enhanced lab ("",LabK k,Rho(lambda),Rho(lambda))

in [(Guard Nil,lab)]

| ...

| ...

4.6 Output

The final output is a plain text file containing the transition matrix of the CTMC

generated by the COWS2Prism system starting from an input .cow file. It is

saved to disk in a format supported by Prism, as specified by the grammar in

Table 4.2. The first line is always formed by two integers. The first one stands

for the cardinality of the set of states of the CTMC, while the second indicates

the number of transitions. Each transition is represented as a new line in which

three values are written. The first two integers specify the starting state and

the arriving state of the transition, respectively, while the last floating point

value denotes its rate. Note that this format resembles the representation of R

used by the translation engine. Therefore, the output process simply consist in

an iteration over the elements of this set, using function elements defined in

module Set of the OCaml standard library.

Chapter 4. COWS2Prism System Implementation 56

4.7 Usage

The COWS2Prism system can be executed by invoking the command-line

program cows2prism as follows:

cows2prism [-v] FILE [-o FILE]

The first option enables verbose mode, while the second and the last specify an

input and an output file, respectively. Note that only the second argument is

mandatory. When -o option is not used, a file with the same name of the input

file but the extension is used to store the output.

Chapter 5

Results and Evaluation

In this chapter,we illustrate an application of theCOWS2Prism system to a sim-

plified video on-demand scenario. The example consists of an user, a provider

and two different digital video libraries. The user invokes the provider asking

for the streaming of the desired video. The provider tries to get the video from

one of the video libraries and sends it back to the user. The most interesting

part of the orchestration is in the implementation of the provider service and

its priority policy in the invocations. In our model, the two video libraries

provide different typologies of service: One only distributes high-definition

content, whereas the other is more focused on low bit-rate videos. Therefore,

the provider first contacts the high quality library and then, if it fails, it uses

the other to get a low quality version of the same video. If both the invocations

fail, the user is reported with an error message. At the end of the transac-

tion, the provider and the two libraries are reset to their initial states. Thus,

further incoming user requests can be carried out. All the communications

in the model are characterised by a rate, indicating how fast an action could

be. An implementation of the considered scenario in High-Lan COWS is given

in Appendix B.1. It is worthwhile to observe that the actual implementation

presents some additional complications with respect to the description of the

scenario we presented above. This because COWS is an asynchronous calcu-

lus. Therefore, two synchronisations are needed to mimic the behaviour of

a synchronous communication. An alternative implementation in the Prism

language is reported in Appendix B.2.

We devote the remaining part of the chapter to the detailed description of

the computations executed by the COWS2Prism system during the translation

57

Chapter 5. Results and Evaluation 58

d1 U(p, t) = p!t | [z,r] t?z.p!r

d2 V(p,v,r) = [ch,x,k] (p!ch | r!v | sV)

sV = r?x. (kill(k) | {|V(p,v,r) |})

d3 P(p,p1,p2) = [e,o,xv,xt,xch1 ,xr]p?xt.sP1

sP1
= [k1]p1?xch1 . (chs1?xv.sP3

| o!o | o?o.sP4
)

︸ ︷︷ ︸
sP2

sP3
= {|xt!xv |p?xr. (chs1!xr |P(p,p1,p2))︸ ︷︷ ︸

sP10

|} |kill(k1)

sP4
= [k2,xch2] (kill(k1) | {| p2?xch2 .sP6︸ ︷︷ ︸

sP5

|})

sP6
= chs2?xv.sP7

| o!o | o?o. (kill(k2) | {|sP11
|})

︸ ︷︷ ︸
sP8

sP7
= {|xt!xv |p?xr. (chs1!xr | chs2!xr |P(p,p1,p2))︸ ︷︷ ︸

sP9

|} |kill(k2)

sP11
= xt!e |p?xr.sP9

s = U(p, t) |P(p,p1,p2) | V(p1,vhigh,chs1) |V(p2,vlow,chs2)︸ ︷︷ ︸
sM1

Table 5.1: Video on-demand example.

Chapter 5. Results and Evaluation 59

of the model into a CTMC. In particular, we show the intermediate steps

performed by function CTMC given in Table 3.10, when the input is program

Z = 〈s, {d1,d2,d3},Env〉. The definitions of service s and defining equations d1,

d2 and d3 are shown in Table 5.1. As can be seen, Z corresponds to the formal

High-Lan COWS specification of of the video on-demand scenario. Note that it

is a guarded, closed and homonymy free program. Therefore, it can be used as

input by CTMC without further modifications. We assume the environment

assigns to each entity e a rate in the form µe. Hence, ρ(e) = µe. As described in

Table 3.10, the first instructionsperformedby the algorithmare the initialisation

of sets R, Q and Q. The first is empty while the others become {s}. The main

part of the algorithm is an iteration over set Q until the fixed point is reached.

We now describe the details of every iteration.

At the beginning of the first iteration s is removed from Q and then all the

possible stochastic reduction steps are computed. The only action program Z

can perform is the synchronisation over p. This action models the request of a

video (with title t) by the user to the provider. Accordingly,

Z = 〈s,A,Env〉
(p·ε·{t/xt},[µp,µp],[µp,µp])
==================⇒ 〈s1,A,Env〉 = Z1

whereA = {d1,d2,d3}. The details of the derivation of service s′ are given below.

The left branch Φ is

p!t
(p!t,µp,µp)
−−−−−−−→ 0

(par pass)

p!t | [z,r] t?z.p!r
(p!t,µp,µp)
−−−−−−−→ 0 | [z,r] t?z.p!r

(ser id)

U(p, t)
(p!t,µp,µp)
−−−−−−−→ 0 | [z,r] t?z.p!r

while the right one Υ is

p?xt.sP1

(p?xt,µp,µp)
−−−−−−−−→ sP1

(open req)

[xt]p?xt.sP1

(p?(xt),µp,µp)
−−−−−−−−−→ sP1

(del pass)

[e,o,xv,xt,xch1 ,xr]p?xt.sP1

(p?(xt),µp,µp)
−−−−−−−−−→ [e,o,xv,xch1 ,xr]sP1

(ser id)

P(p,p1,p2)
(p?(xt),µp,µp)
−−−−−−−−−→ [e,o,xv,xch1 ,xr]sP1

Chapter 5. Results and Evaluation 60

Hence,

Φ Υ
(close x)

U(p, t) |P(p,p1,p2)
θ
−→ 0 | [z,r] t?z.p!r | [e,o,xv,xch1 ,xr]sP1

(par conf)

U(p, t) |P(p,p1,p2) | sM1

θ
−→ 0 | [z,r] t?z.p!r | [e,o,xv,xch1 ,xr]sP1

| sM1
= s1

where θ = (p · ε · {t/xt}, [µp,µp], [µp,µp]). It is worthwhile to explain that the

apparent request rate is µp, because only the synchronising activities over

endpoint p are available in s. Applying functionω (i.e. s′
1
=ω(s1)), the algorithm

discovers that the resulting service is not a node of the partial transition system

built so far. Therefore, it adds s′
1
= [z,r] t?z.p!r | [e,o,xv,xch1 ,xr]sP1

| sM1
to sets

Q and Q. Moreover, the transition matrix becomes R = {(s,ω(s1),µ(θ))}, where

µ(θ) =
µp
µp

µp
µp

min(µp,µp) = µp.

The second iteration of the algorithm, adds service s2 to sets Q and Q. The

transition matrix is extended with element (s1,s2,µp1). In what follows, we

will implicitly apply function ω to improve the readability of our presentation.

Service s2 is defined as follows:

[z,r] t?z.p!r |[chh] ([e,o,xv,xr] [k1]sP2
{ch/xch1} | [xh,kh] (chs1!vhigh | sVh

)) |V(p2,vlow,chs2)

It represents the first communication between the provider and the high-

definition video provider. It conceptually means that future communications

between the two services can take place over endpoint chs1. This is authorised

by acknowledgement ch. Note that entities ch, x and k become chh, xh and kh

after the decoration performed by rule (ser id).

The third iteration discovers two new services s3 and s4:

s3 = [z,r] t?z.p!r | [chh] ([e,o,xr] [k1] (s
′
P3
| o!o | o?o.sP4

) | [xh,kh]sVh
) |V(p2,vlow,chs2)

s4 = [z,r] t?z.p!r | [chh] ([e,o,xv,xr] [k1] (chs1?xv.sP3
| sP4

) | s′
Vh
) |V(p2,vlow,chs2)

where s′
Vh
= [xh,kh] (chs1!vhigh | sVh

). The first is the result of the communication

over chs1 . It stands for the successful transmission of video vhigh from the

library to the provider. This is shown by the instantiation of variable xv in

s′
P3
= {| t!vhigh |p?xr.sP10

|} |kill(k1). The second is generated by the synchronisation

over endpoint o. This channel is internally used by the provider service to

model the time-out triggering the termination of the communication with the

Chapter 5. Results and Evaluation 61

high-definition service. At the end of the iteration, the sets become:

Q = {s3,s4}

Q = {s,s1,s2,s3,s4}

R = {(s,s1,µp), (s1,s2,µp1), (s2,s3,µchs1), (s2,s4,µo)}

The forth iteration derives service s5. It is generated by the execution of

reduction
(†,µk1 ,µk1)
−−−−−−−→which is triggered by the unguarded killer activity on k1 in

service s3. It takes the form:

s5 = [z,r] t?z.p!r | [chh] ([e,o,xr] [k1] {| t!vhigh |p?xr.sP10
|} | [xh,kh]sV) |V(p2,vlow,chs2)

The sets are updated as usual. Analogously, the fifth iteration gives s6 starting

from service s4.

s6 = [z,r] t?z.p!r | [chh] ([e,o,xv,xr] [k1] ([k2,xch2] {|sP5
|}) | s′Vh

) |V(p2,vlow,chs2)

The new configuration of the sets is

Q = {s5,s6}

Q = {s,s1,s2,s3,s4,s5,s6}

R = {(s,s1,µp), (s1,s2,µp1), (s2,s3,µchs1), (s2,s4,µo), (s3,s5,µk1), (s4,s6,µk1)} = R1

When the node corresponding to service s5 is considered, a communication

over t can take place. This synchronisation models the transmission of the

video from the provider to the user. The complete computation from s5 is

s5
(t·ε·{vhigh/z},µt,µt)
−−−−−−−−−−−−−→ s7

(p·ε·{r/xr},µp,µp)
−−−−−−−−−−−−→ s8

(chs1 ·ε·{
r/xh},µchs1 ,µchs1)

−−−−−−−−−−−−−−−−−−→ s9
(†,µkh ,µkh)
−−−−−−−→ s10

where services s7, s8, s9 and s10 are defined in Table 5.2. The state of the sets

after these five iterations is

Q = {s6}

Q = {s,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10}

R = R1∪{(s5,s7,µt), (s7,s8,µp), (s8,s9,µchs1), (s9,s10,µkh)} = R2

Starting from service s6, a communication with the second video library is

established. This is shown by the following computational step:

s6
(p2·ε·{chl/xch2 },µp2 ,µp2)
−−−−−−−−−−−−−−−−−→ s11

Chapter 5. Results and Evaluation 62

s7 = [r]p!r | [chh] ([e,o,xr] [k1] {|p?xr.sP10
|} | [xh,kh]sV) |V(p2,vlow,chs2)

s8 = [r,chh] ([e,o] [k1] {|sP10
|} | [xh,kh]sV) |V(p2,vlow,chs2)

s9 = [r,chh] ([e,o] [k1] {|P(p,p1,p2) |} | [kh] (kill(kh) | {|V(p1,vhigh,chs1) |}))

|V(p2,vlow,chs2)

s10 = [e,r,chh] ([o] [k1] {|P(p,p1,p2) |} | [kh] {|V(p1,vhigh,chs1) |}) |V(p2,vlow,chs2)

Table 5.2: Services s7, s8, s9 and s10.

At this stage, the iteration detects a branching point in the transition system.

The left branch is the sequence of actions taking place when the transmission

between the provider and the second video library is successful. It gives rise

to the computation below:

s11
(chs2 ·ε·{

vlow/xv},µchs2 ,µchs2)
−−−−−−−−−−−−−−−−−−−−→ s12

(†,µk2 ,µk2)
−−−−−−−→ s13

s13
(t·ε·{vlow/z},µt,µt)
−−−−−−−−−−−−−→ s14

(p·ε·{r/xl},µp,µp)
−−−−−−−−−−−−→ s15

The right branch represents the operations performed when a failure happens.

The computation is

s11
(o·ε·ε,µo,µo)
−−−−−−−−→ s16

(†,µk2 ,µk2)
−−−−−−−→ s17

s17
(t·ε·{e/z},µt,µt)
−−−−−−−−−−→ s18

(p·ε·{r/xl},µp,µp)
−−−−−−−−−−−−→ s19

Services si, with 11 ≤ i ≤ 19 are given in Table 5.3. The updated sets are

Q = {s15,s19}

Q = {s}∪ {si |1 ≤ i ≤ 19}

R = R2∪R
′
2
∪R′′

2
= R3

R′
2
= {(s6,s11,µp2), (s11,s12,µchs2), (s12,s13,µk2), (s13,s14,µt), (s14,s15,µt)}

R′′
2
= {(s11,s16,µo), (s16,s17,µk2), (s17,s18,µt), (s18,s19,µp)}

The remaining computational steps model the termination of the invoked

libraries. Both services s15 and s19 can perform a sequence of actions similar to

the computation from s8 to s10. In this case, however, both the video libraries

have to be terminated. Hence, all the possible computations are formed by

four reductions. For instance, if the high-definition library is terminated before

Chapter 5. Results and Evaluation 63

s11 = [z,r] t?z.p!r | [chh,chl] ([e,o,xv,xr] [k1] [k2] {|s
′
P6
|} | s′

Vh
| [xl,kl] (chs2!vlow | sVl

))

s12 = [z,r] t?z.p!r | [chh,chl]

([e,o,xr] [k1] [k2] {|sP7
| o!o | o?o. (kill(k2) | {|sP11

|}) |} | s′
Vh
| [xl,kl]sVl

)

s13 = [z,r] t?z.p!r | [chh,chl] ([e,o,xr] [k1] [k2] {| t!vlow |p?xr.sP9
|} | s′

Vh
| [xl,kl]sVl

)

s14 = [r]p!r | [chh,chl] ([e,o,xr] [k1] [k2] {|p?xr.sP9
|} | s′

Vh
| [xl,kl]sVl

)

s15 = [r,chh,chl] ([e,o,xr] [k1] [k2] {|sP9
|} | s′

Vh
| [xl,kl]sVl

)

s16 = [z,r] t?z.p!r | [chh,chl]

([e,o,xv,xr] [k1] [k2] {|chs2?xv.sP7
| sP8
|} | s′

Vh
| [xl,kl] (chs2!vlow | sVl

))

s17 = [z,r] t?z.p!r | [chh,chl] ([e,o,xv,xr] [k1] [k2] {|sP11
|} | s′

Vh
| [xl,kl] (chs2!vlow | sVl

))

s18 = [r]p!r | [chh,chl] ([e,o,xv,xr] [k1] [k2] {|p?xr.sP9
|} | s′

Vh
| [xl,kl] (chs2!vlow | sVl

))

s19 = [r,chh,chl] ([e,o,xv,xr] [k1] [k2] {|sP9
|} | s′

Vh
| [xl,kl] (chs2 !vlow | sVl

))

Table 5.3: Services si, with 11 ≤ i ≤ 19.

the other one, a possible computation from s15 is

s15
(chs1 ·ε·{

r/xh},µchs1 ,µchs1)
−−−−−−−−−−−−−−−−−−→ s20

(†,µk1 ,µk1)
−−−−−−−→ s21

s21
(chs2 ·ε·{

r/xl},µchs2 ,µchs2)
−−−−−−−−−−−−−−−−−→ s22

(†,µk2 ,µk2)
−−−−−−−→ s10

Note that all the computations converge to service s10. As a matter of fact, this

is the last service being added to set Q. The final output of function CTMC is:

R = R3∪Rk1 ∪Rk2 ∪Rchs1
∪Rchs2

Rk1 = {(s20,s21,µk1), (s24,s27,µk1), (s28,s10,µk1)}

Rk2 = {(s25,s26,µk2), (s23,s26,µk2), (s29,s10,µk2)(s22,s10,µchs2)}

Rchs1
= {(s15,s20,µchs1), (s19,s24,µchs1), (s26,s28,µchs1)}

Rchs2
= {(s15,s25,µchs2), (s19,s23,µchs2), (s27,s29,µchs2), (s21,s22,µchs2)}

The CTMC has been generated by Prism using the output of the cows2prism

program on source file video.cow (see Appendix B.1). The same result is

obtained by running the native Prism model (see Appendix B.2). The Markov

chain has 30 states and 34 transitions. Note that in both cases, an auto transition

is automatically added by Prism to the final state s10.

Chapter 5. Results and Evaluation 64

0

1

1

2

0.3

3

0.9

10

1

4

1

11

1

5

0.6

6

0.9

8

1

7

1

9

1

12

1

21

1

13

1

22

1

14

1

25

1

24

1

28

1

23

1

29

1

26

1

15 1

16

19

1

1

17

18

1

1

20

27

1

1

1 111

1

Figure 5.1: CTMC corresponding to the video on-demand example.

Chapter 6

Conclusion and Future Work

In this thesis we presented the COWS2Prism system, a compiler for COWS

into Prism. We formally introduced its design and we explained the details re-

garding its implementation. Our tool supports orchestration models specified

in the High-Lan COWS language, an untyped version of the calculus presented

in (Lapadula et al., 2007a). The output is the specification of a continuous-time

Markov chain written in the Prism format.

In Chapter 2 we gave a broad overview of the background and the related

work. In particular, we described the service oriented computing paradigm

and the most important concepts related to the web service technology such

as choreography and orchestration. Moreover, we surveyed various compu-

tational models for concurrency, especially the ones historically used in the

literature for the formalisation of communicating systems and more recently

orchestration. Wemainly focused our attention on stochastic process calculi. In

the course of their presentation, the concepts of stochastic rate, synchronisation

and race condition were introduced. Finally, an operational semantics and a

stochastic extension of COWS were reported.

In Chapter 3 a formal description of the COWS2Prism system was in-

troduced. We analysed all the sub-components (e.g. fresh names generator,

environment, type system, . . .) in great detail and we showed how they are

jointly used in the whole system. Several examples were provided in order to

highlight the crucial choices in our design. A considerable part of the chapter

is devoted to the explanation of the differences between High-Lan COWS and

COWS.

In Chapter 4 we described the implementation of the COWS2Prism system

65

Chapter 6. Conclusion and Future Work 66

in the functional language OCaml. Details regarding the data structures and

the algorithms we adopted in the various compilation units were reported.

Moreover, we mentioned the fact that ocamllex and ocamlyacc were used for

the generation of the lexer and parser, respectively.

In Chapter 5 we showed the steps performed by the COWS2Prism system

for the generation of the CTMC corresponding to a High-Lan COWS model.

The example we chose formalises a simplified video on-demand scenario. Ad-

ditionally, a Prism program generating the same CTMC is given.

In the course of the preparation we tried to develop a fully compositional

encoding from COWS into other formalisms to try to overcome the state explo-

sion problem. One candidate was PEPA since a complete set of analysis tools is

provided with it. However, such a translation was impossible to find preserv-

ing the most interesting features of COWS e.g. killer activity and protection. A

possible improvement of the COWS2Prism system could be to support other

output formats, for other tool. As a matter of fact, the translation engine needs

only few modifications to handle this. Another feature is the possibility to

add simulation instead of exploring the entire state space. A more challenging

development is to implement a preporocessor from a synchronous version of

COWS into the standard asynchronous COWS considered in this thesis. As

a matter of fact, we realised that during the modelling a lot of effort is em-

ployed for the specifications of actions that conceptually are atomic. We have

to investigate the feasibility of this.

67

Appendix A. High-Lan COWS Grammar 68

Appendix A

High-Lan COWS Grammar

program F rates list opt de f list in service

rates list F de f ault | lambda list de f ault

de f ault F baserate : FLOAT ;

lambda list F rate | rate lambda list

rate F rate EID : FLOAT ;

opt de f list F ε | de f list in

de f list F de f | de f ; de f list

de f F let SID (opt names list) = service

service F base service | complex service

base service F EID ! EID | { | service | } | kill (EID)

| base guard | SID (opt names list)

| [eid list] base service

| [eid list] (complex service)

complex service F parallel list | complex guard

base guard F 0 | EID ? EID . base service

| EID ? . (complex service)

complex guard F sum list

parallel list F parallel | parallel | parallel list

| parallel | base service | parallel | (complex guard)

parallel F base service | base service

| (complex guard) | (complex guard)

| (complex guard) | base service

| base service | (complex guard)

sum list F sum | sum + sum list | sum + base guard

sum F base guard + base guard

opt names list F ε | names list

eid list F EID | EID , eid list

names list F EID | EID , names list

Appendix A. High-Lan COWS Grammar 69

A.1 Regular Expressions

SID = [′A′−′Z′] [′a′−′ z′ ′A′−′Z′ ′0′−′ 9′ ′ ′]∗

EID = [′a′−′ z′] [′a′−′ z′ ′A′−′Z′ ′0′−′ 9′ ′ ′]∗

FLOAT =

(
[′0′−′ 9′]+ |

(
[′0′−′ 9′]+ ′.′ [′0′−′ 9′]+

))
(
[′E′ ′e′] [′+′ ′−′]? [′0′−′ 9′]+

)
?

| ”inf”

A.2 Notes

Although production rules for nonterminal symbols eid list and names list are

identical, different semantic actions are associated with them. In the first case,

each EID in the list is converted into an OCaml value of type entity in the

form Ent1(EntV(Var())) (i.e. it is considered a variable). On the other hand,

the second rule produces a name list.

Appendix B

Video on-demand example source

files

B.1 High-Lan COWS source file

rate p: 1;

rate x_ch1: 0.3;

rate x_ch2: 0.6;

rate o: 0.9;

baserate: 1;

let U(p,t) = p!t | [z,r]t?z.p!r;

let V(p,v,r) = [ch,x,k](p!ch | r!v | r?x.

(kill(k) | {|V(p,v,r)|}));

let P(p,p1,p2) =

[e,o,x_v,x_t,x_ch1,x_r] p?x_t.[k1]p1?x_ch1.(ch_s1?x_v.

({|x_t!x_v | p?x_r.(ch_s1!x_r | P(p,p1,p2))|} | kill(k1))

| o!o | o?o.

[k2,x_ch2](kill(k1) | {| p2?x_ch2.(ch_s2?x_v.

({|x_t!x_v | p?x_r.

(ch_s1!x_r | ch_s2!x_r | P(p,p1,p2))|}

| kill(k2))

| o!o | o?o.(kill(k2) | {|x_t!e | p?x_r.

(ch_s1!x_r | ch_s2!x_r | P(p,p1,p2))|}))|}))

in

U(p,t) | P(p,p1,p2) | V(p1,v_h,ch_s1) | V(p2,v_l,ch_s2)

70

Appendix B. Video on-demand example source files 71

B.2 Prism source file

ctmc

const double mu = 1;

const double mu_1 = 0.3;

const double mu_2 = 0.6;

const double mu_o = 0.9;

module User

u_state:[0..3] init 0;

[request_title] u_state=0 -> mu:(u_state’=1);

[wait_video] u_state=1 -> mu:(u_state’=2);

[video_received] u_state=2 -> mu:(u_state’=3);

endmodule

module Video_H

v_state_h:[0..4] init 0;

[wait_title_v_h] v_state_h=0 -> mu_1:(v_state_h’=1);

[send_v_h] v_state_h=1 -> mu_x:(v_state_h’=2);

[wait_kill_h] v_state_h=2&(v_state_l!=3&v_state_l!=4)

-> s1:(v_state_h’=3);

[wait_kill_h] v_state_h=1&(v_state_l!=3&v_state_l!=4)

-> s1:(v_state_h’=4);

[kill_v_h] v_state_h=3|v_state_h=4 -> k:(v_state_h’=0);

endmodule

module Video_L

v_state_l:[0..4] init 0;

[wait_title_v_l] v_state_l=0 -> mu_2:(v_state_l’=1);

[send_v_l] v_state_l=1 -> mu_x:(v_state_l’=2);

[wait_kill_l] v_state_l=2&(v_state_h!=3&v_state_h!=4)

-> s2:(v_state_l’=3);

[wait_kill_l] v_state_l=1&(v_state_h!=3&v_state_h!=4)

-> s2:(v_state_l’=4);

[kill_v_l] v_state_l=3|v_state_l=4 -> k:(v_state_l’=0);

endmodule

Appendix B. Video on-demand example source files 72

module Provider

p_state:[0..17] init 0;

[request_title] p_state=0 -> 1:(p_state’=1);

[wait_title_v_h] p_state=1 -> 1:(p_state’=2);

[send_v_h] p_state=2 -> 1:(p_state’=3);

[kill_1] p_state=3 -> k_1:(p_state’=4);

[wait_video] p_state=4 -> 1:(p_state’=5);

[video_received] p_state=5 -> 1:(p_state’=6);

[wait_kill_h] p_state=6 -> 1:(p_state’=0);

[kill_o1] p_state=2 -> mu_o:(p_state’=7);

[] p_state=7 -> k_1:(p_state’=8);

[wait_title_v_l] p_state=8 -> 1:(p_state’=9);

[send_v_l] p_state=9 -> 1:(p_state’=10);

[kill_2] p_state=10 -> k_2:(p_state’=11);

[wait_video] p_state=11 -> 1:(p_state’=12);

[video_received] p_state=12 -> 1:(p_state’=13);

[wait_kill_h] p_state=13 -> 1:(p_state’=0);

[wait_kill_l] p_state=13 -> 1:(p_state’=0);

[kill_o2] p_state=9 -> mu_o:(p_state’=14);

[] p_state=14 -> k_2:(p_state’=15);

[wait_video] p_state=15 -> 1:(p_state’=16);

[video_received] p_state=16 -> 1:(p_state’=17);

[wait_kill_h] p_state=17 -> 1:(p_state’=0);

[wait_kill_l] p_state=17 -> 1:(p_state’=0);

[wait_kill_h] p_state=0 -> 1:(p_state’=0);

[wait_kill_l] p_state=0 -> 1:(p_state’=0);

endmodule

Bibliography

Abadi, M. and Gordon, A. (1997). A calculus for cryptographic protocols:

The spi calculus. In Fourth ACM Conference on Computer and Communications

Security, pages 36–47. ACM Press.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Ley-

mann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic,

I., and Weerawarana, S. (2003). BPEL (Business Process Ex-

ecution Language for Web Services) specifications version 1.1.

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

Cardelli, L. and Gordon, A. (1998). Mobile ambients. In Foundations of Software

Science and Computation Structures: First International Conference, FOSSACS

’98. Springer-Verlag, Berlin Germany.

Cerami, E. (2002). Web Services Essentials. O’Reilly & Associates, Inc., Se-

bastopol, CA, USA.

Deng, X. and Papadimitriou, C. (1990). Exploring an unknown graph. Founda-

tions of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages

355–361 vol. 1.

Deng, Y., Palamidessi, C., and Pang, J. (2005). Compositional reasoning for

probabilistic finite-state behaviors. In In Processes, Terms and Cycles: Steps on

the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His

60th Birthday, LNCS 3838, pages 309–337. Springer.

Fournet, C. andGonthier, G. (1996). The reflexive CHAMand the Join-calculus.

In POPL, pages 372–385.

Gay, S. J. (1993). A sort inference algorithm for the polyadicπ-calculus. InPOPL

73

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

Bibliography 74

’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 429–438, New York, NY, USA. ACM.

Hillston, J. and Thomas, N. (1998). A syntactical analysis of reversible PEPA

models.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall.

Kwiatkowska, M., Norman, G., and Parker, D. (2002). Prism: Probabilistic

symbolic model checker. pages 200–204. Springer.

Lapadula, A., Pugliese, R., and Tiezzi, F. (2006). A wsdl-based type system

for ws-bpel. In Proc. of COORDINATION’06, volume 4038 of Lecture Notes in

Computer Science, pages 145–163. Springer.

Lapadula,A., Pugliese, R., andTiezzi, F. (2007a). ACalculus forOrchestrationof

Web Services. InProc. of 16th European Symposium on Programming (ESOP’07),

volume 4421 of Lecture Notes in Computer Science, pages 33–47. Springer.

Lapadula, A., Pugliese, R., and Tiezzi, F. (2007b). C�WS: A timed service-

oriented calculus. In Proc. of 4th International Colloquium on Theoretical Aspects

of Computing (ICTAC’07), volume 4711 of Lecture Notes in Computer Science,

pages 275–290. Springer.

Mazzanti, F. (2007). CMC: an on-the-fly model checker and interpreter for

COWS. http://fmt.isti.cnr.it/cmc/.

Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer.

Milner, R. (1992). Functions as Processes. Mathematical Structures in Computer

Science, 2(2):119–141.

Milner, R. (1999). Communicating andMobile Systems: Theπ-calculus. Cambridge

University Press, Cambridge, UK.

Milner, R., Parrow, J., and Walker., D. (1992). A Calculus of Mobile Processes,

Part I and II. Information and Computation, 100(1):1–77.

Misra, J. and Cook, W. R. (2006). Computation orchestration: A basis for

wide-area computing. Journal of Software and Systems Modeling.

http://fmt.isti.cnr.it/cmc/

Bibliography 75

Parker, D., Norman, G., Kwiatkowska, M., and Kattenbelt,

M. (2008). Prism (Probabilistic Symbolic Model Checker).

http://www.prismmodelchecker.org/.

Parrow, J. and Victor, B. (1998). The fusion calculus: Expressiveness and sym-

metry in mobile processes. In Logic in Computer Science, pages 176–185.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice Hall,

Englewood Cliffs, NJ.

Prandi, D. and Quaglia, P. (2007). Stochastic COWS. In Proc. 5th International

Conference on Service Oriented Computing, ICSOC ’07, volume 4749 of LNCS.

Priami, C. (1995). Stochastic π-calculus. Comput. J., 38(7):578–589.

Reisig, W. (1986). Petrinetze. Springer, 2 edition.

Sangiorgi, D. andWalker, D. (2001). The π-calculus: A Theory of Mobile Processes.

Cambridge University Press.

Schweitzer, P. (1990). Asurvey of aggregation-disaggregation in largeMarkov chains,

chapter 4, pages 63–88. Marcel Dekker.

Thatte, S. (2001). XLANG: Web Services for Business Process Design.

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm.

van der Aalst, W. and Hofstede, A. (2002). YAWL: Yet Another Workflow

Language.

http://www.prismmodelchecker.org/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

	Introduction
	Background
	COWS2Prism system design
	COWS2Prism system implementation

	Background
	Process Calculi
	Stochastic Process Algebras
	COWS
	Syntax
	Operational semantics

	Stochastic COWS
	Stochastic analysis

	The Prism Probabilistic Model Checker
	Related Work

	COWS2Prism System Design
	The source language (High-Lan COWS)
	Compiler
	Environment
	Fresh names generator
	Type System
	Compiler: details

	Translation engine
	Recursion handling: discussion

	COWS2Prism System Implementation
	Lexer
	Parser
	Data types
	Static analyser
	Translation engine
	Output
	Usage

	Results and Evaluation
	Conclusion and Future Work
	High-Lan COWS Grammar
	Regular Expressions
	Notes

	Video on-demand example source files
	High-Lan COWS source file
	Prism source file

	Bibliography

