
Dynamic Probabilistic Model Checking
for Sensor Validation in Industry 4.0 Applications

Xin Xin∗†, Sye Loong Keoh∗, Michele Sevegnani∗, Martin Saerbeck†
∗School of Computing Science, University of Glasgow, Glasgow, United Kingdom

Email: {SyeLoong.Keoh, Michele.Sevegnani}@glasgow.ac.uk
†Digital Service, Centre of Excellence, TÜV SÜD Asia Pacific, Singapore

Email: {Xin.Xin, Martin.Saerbeck}@tuv-sud.sg

Abstract—Industry 4.0 adopts Internet of Things (IoT) and
service-oriented architectures to integrate Cyber-Physical Sys-
tems and Enterprise Planning into manufacturing operations.
This kind of integration consists of a combination of connected
sensors and run-time control algorithms. Consequential con-
trol decisions are driven by sensor-generated data. Hence, the
trustworthiness of the sensor network readings is increasingly
crucial to guarantee the performance and the quality of a
manufacturing task. However, existing methodologies to test
such systems often do not scale to the complexity and dynamic
nature of today’s sensor networks. This paper proposes a novel
run-time verification framework combining sensor-level fault
detection and system-level probabilistic model checking. This
framework can rigorously quantify the trustworthiness of sensor
readings, hence enabling formal reasoning for system failure
prediction. We evaluated our approach on an industrial turn-
mill machine equipped with a sensor network to monitor its
main components continuously. The results indicate that the
proposed verification framework involving the quantified sensor’s
trustworthiness enhances the accuracy of the system failure
prediction.

Index Terms—Probabilistic Model Checking, Sensor Confi-
dence, Sensor Trustworthiness, IIoT, Industry 4.0

I. INTRODUCTION

Recent advancements in embedded sensor systems and Arti-
ficial Intelligence [1]–[3] have achieved a significant improve-
ment of modern smart manufacturing systems in terms of in-
telligent controls, predictive analytics and system automation.
The ability to collect shop-floor data at run-time has enabled
monitoring of each individual machines and deriving insights
that can subsequently be translated into self-control functions,
hence automating the operations of the manufacturing plant.
The data collected from the machines at run-time (including
machine status and work piece properties) are then used to
continuously update machine configuration parameters. Thus,
such production systems are forming a closed feedback-control
loop with sensor data becoming the key driver to maintain
smooth operation of the manufacturing plant.

There are two general challenges that need to be addressed
in order to ensure smooth machine operation in a smart
manufacturing plant. Firstly, there must be an efficient ap-
proach to accurately model and compare machine status with

M. Sevegnani is supported by EPSRC grant S4: Science of Sensor Systems
Software (EP/N007565/1) and PETRAS SRF grant MAGIC (EP/S035362/1).

X. Xin is partially funded by Singapore Economic Development Board
(EDB) through the Industrial Postgraduate Programme (IPP) Grant.

its expected behaviour over time. Timely identification of
deviations is an essential prerequisite to significantly reduce
machine down time and to manage the resources for repairing
faulty components in a cost-effective manner. Secondly, the
accurate prediction of a machine behaviour depends on an
accurate data acquisition from the sensors instrumenting the
machine. This implies that the trustworthiness of the sensor
readings is crucial. All maintenance and control decisions
are only as good as the sensor data that they are based on.
However, current predictive maintenance algorithms tend to
assume that sensor readings are accurate and reliable, which
is often not the case.

In real-world deployments, it is inevitable that inaccurate
readings might occur, for example due to calibration issues,
sensor wear and tear, or even malicious tampering, leading
to deviation from the actual values. The use of these in-
accurate and untrustworthy readings in production lines can
significantly degrade product quality as well as affect the per-
formance of the manufacturing system as a whole. Currently
deployed methods to monitor machines in automation tend to
ignore the dynamic nature of the sensor networks as well as
the possibility of sensor failures.

While monitoring of machines is facilitated by sensors,
a different approach is required to automate the monitoring
sensor networks themselves. After all, manufacturers are not
going to stick sensors on sensors for economic and operational
reasons. Traditionally, manufacturers have employed a time
based, often manual maintenance regime to regularly test and
calibrate sensors with special tools. In the absence of such
tools and considering the number of sensors driving Industry
4.0 applications, a new sensor network monitoring and testing
framework is needed.

This paper proposes a novel run-time verification framework
to provide quantified trustworthiness for sensor-network-based
systems, by combining data-driven [4] and model-driven [5]
techniques. Model-driven techniques are typically used to
provide an abstraction of a complex system, thus enabling the
users to visualise, predict, optimise, regulate and control the
system effectively [6]. All models are simplifications derived
from a deep understanding of the system or a scientifically
established relation between its components and the environ-
ment. The output of such models is only as good as the
assumptions and data that they operate on. As the data and



assumptions change over time, the models should also be up-
dated and reviewed accordingly to reflect the actual behaviour
of the system. By integrating data-driven approaches with
model-driven approaches, as well as an established software
testing and cybersecurity principles that ensure authenticity
and trustworthiness of datasets (both historical and run-time),
it is now feasible to refine and accurately improve the models
over time. In this paper, a CNC (Computer Numerical Control)
turn-mill machine is used as a test-bed to evaluate this new
approach.

The contributions of this paper are summarised as follows:
• We propose a novel run-time verification framework is

designed and implemented to provide quantified trustwor-
thiness for sensor-network-based systems.

• This framework combines both sensor-level data-driven
models and a system-level probabilistic model. Sensor-
level models are used to quantify the trustworthiness of
each sensor for the computation of transition probability.
The probabilistic model is a system abstraction to reflect
the working machine status in run-time and predict sys-
tem failure in a certain period.

• This verification framework is validated using a real-life
CNC turn-mill machine, involving forty-three sensors and
five machine states.

This paper is organised as follows: Section II provides
an overview of background and related work. Section III
presents a dynamic probabilistic model to continuously verify
a sensor network-based system. Section IV introduces an
implementation to predict the failure probability of a sensor
network enabled CNC turn-mill machine. The experiment and
results are presented in Section V. Finally, we conclude the
paper with future work in Section VI.

II. RELATED WORK

A. Types of Sensor Data Fault

Sensor faults are very common in sensor network-based
systems, thus producing unreliable data that does not reflect
the true state of the machine or environment. Ni et al. [7]
defined a systematically characterized taxonomy of sensor
data faults into three categories, namely environment features,
system features or specifications, and data features. Such
classification helps to identify and develop fault detection
methods.
• Environment Features capture context and operational

conditions of a sensor, including where the sensor is
placed, temperature and humidity of the environment.
It also includes measured modality of the sensor and
its boundary conditions. These features are crucial in
determining the expected behaviour which can then be
used to determine sensor or system faults.

• System Features or Specifications include hardware com-
ponents and calibration features. Hardware components
describe the abilities of a sensor. Calibration describes
the uncertainty of the mapping from input to output.
For example, clipping may be a hardware or software

limitation exhibited by a sensor when it maxes out due
to operating conditions exceeding the limits or calibration
conditions.

• Data Features are usually statistical in nature and calcu-
lated in either the spatial or temporal domain. For exam-
ple, sensors are expected to retain similar characteristics
as other co-located sensors, and operate reliably for a
period of time.

The data features is of particular interest as it includes
two groups of typical sensor failures. One is observable
from a data-centric point of view, where outliers, spikes
and “stuck-at” faults can be identified statistically. The other
group of sensor faults requires taking a system-centric view,
this includes, among others, calibration faults, connection
or hardware failures, low battery, out of range failures and
clipping.

B. Detection of Sensor Faults

Sharma et al. [4] summarised four methods of sensor faults
detection, which are rule-based, time series analysis-based,
learning-based and estimation methods.

• The Rule-based approach is a common method that
uses domain knowledge of sensor behaviour to develop
heuristic rules to ensure that the sensor readings are in
accordance with the modelled expectation.

• The Time series analysis-based approach uses temporal
correlation in measurements to build a normal behaviour
sensor model. Subsequently, data collected from the
sensors in operation is compared against this normal
behaviour model, often using time series forecasting to
determine whether they are faulty.

• The Learning-based approach builds a sensor module to
analyse the normal and faulty behaviours from historical
data using statistical modelling or machine learning tech-
niques. It often attempts to perform a root cause analysis.
Based on the resulting inference models, sensor faults
can be detected and the reason of fault can be inferred
as well.

• The Estimation approach exploits spatial and temporal
correlations in measurements from different sensors to
generate the normal sensor behaviour.

Although this can help providing a guideline to detect sensor
faults, it is still a challenge to quantify the impact of faulty
sensors on the system as a whole.

Ramanathan et al. introduced an application, which applied
sensor-level faults detection methods in an environmental
monitoring sensor networks [8]. After forty-eight sensors were
deployed in the field, they found that a significant amount
of sensor readings was uninterpretable due to the prevalence
of anomalous patterns. In order to identify the faults, a fault
detection system was developed, which applied pre-configured
rules to detect invalid data and identify faulty sensors. While
it helps to verify the data integrity at sensor-level, it does not
reflect the impact of the sensor faults at system level.



C. Probabilistic Model Checking

Kwiatkowska et al. [5] used the probabilistic model checker
PRISM [9] to abstract an Internet-of-Things (IoT) system
with a probabilistic model. The resulting model is used to
evaluate the performance and reliability of a sensor-network-
based system with the injection of one or more sensor failures.

Calder et al. [6] proposed a methodology for failure pre-
diction of a critical communication system using a probability
model. It defines three status categories for each component
within the system, working, reduced-redundancy and no-
service. The model predicts not only the probability of system
failure based on each component’s status, it also predicts future
service availability. This methodology helps the operators to
allocate resources optimally in the presence of component
failures.

Sevegnani et al. [10] demonstrated a modelling and verifica-
tion framework of a large-scaled sensor network system. This
framework is able to capture not only the spatial, operational-
aspects but also the temporal evolution, which is the dynamic
behaviour of the sensor network. This approach is capable
of handling online verification of large-scale sensor network-
based systems.

We are extending these works by integrating run-time de-
tection of sensor faults so that the probabilistic model can be
updated dynamically, providing an accurate representation of
the physical system’s behaviour.

III. DYNAMIC PROBABILISTIC MODEL CHECKING

We propose a novel approach to dynamically model a sensor
network-based system using Discrete-Time Markov Chains
(DTMCs) and the probabilistic model checker PRISM [11],
with the ability to detect sensor faults at run-time.

A base-model is first defined by a domain expert to provide
a system level abstraction and verification of the system be-
haviour. This means manually specifying the initial transition
probability matrix of the DTMC. The model then evolves
over time as the system continuously learns about the sensors
behaviour through profiling and analysis of past sensor data. In
order to ensure the trustworthiness of the data collected from
the sensors, the sensor data is compared against its normal
behaviour using time series analysis and estimation methods,
so that any deviation from the norm can be detected in run-
time. Once a sensor fault is detected, the transition matrix
of the base-model is updated with a lower confidence in the
trustworthiness of the sensor data. Essentially, this means that
the model is updated continuously, taking into account run-
time sensor data to derive the appropriate probability of state
transitions. Hence, the methodology tracks both, the sensor
readings and the expectation for comparison and verification.
It enables the verification of the system reliability at run-time
and at the same time predicts potential system failures.

Fig. 1 shows an architectural overview of the proposed
dynamic probabilistic model checker, integrating both the
model-driven and data-driven approaches. It is represented by
two modules, namely System Model Verification (SMV) and
Sensor Fault Detection (SFD). The System Under Test (SUT)

Fig. 1. Architecture of the dynamic probabilistic model checker.

is the physical sensor network-based system, streaming run-
time sensor readings to SMV and SFD. In addition, the sensor
data and the system states are saved into a historical data store
to facilitate the learning of normal sensor behaviour.

A. Sensor Fault Detection (SFD)

SFD is based on a set of quality evaluation metrics that
is built from historical sensor data. In combination with a
rule engine, SFD is able to quantify the trustworthiness of the
sensor data at run-time. As shown in Fig. 2, the SFD consists
of two major modules, namely Sensor Behaviour Analyser
(SBA), and the Rules Engine.

SBA learns about the sensor behaviour from the historical
data periodically i.e., on a daily basis. In addition, SBA
analyses run-time data obtained from the sensor reading
pipeline in order to determine data patterns. With this, a sensor
profile termed as sensor normal behaviour can be derived.
Each sensor normal behaviour comprises the following three
elements:
• Statistical characteristics — calculated over a window of

samples. Windowing is done over the temporal domain
on an individual sensor basis. The mean and standard
deviation are the basic statistical measures, often used
to measure the reliability of a sensor. When the standard
deviation is high (relative to expectation), it adds evidence
to be classified as faulty data [12].

• Estimation model — uses data mining techniques, e.g.,
machine learning methods, to forecast data range and
reading patterns. This process does not require knowledge
from domain experts.

• Drift trend — is the direction at which the sensor reading
is moving, usually away from its normal behaviour. Drift
is typically a result of sensor wear and tear and calibration
errors [7]. As the sensor’s readings are in time series
format, an ARIMA [13] model is used to calculate the
trend component in order to determine whether there are
consistent deviations (in increasing or decreasing order)
in the sensor readings over time.

The second module, the Rules Engine determines a sensor’s
confidence score based on the run-time sensor readings ob-
tained from the pipeline by evaluating the degree of deviation
from the sensor normal behaviour. As the ground truth is not



TABLE I
SENSOR FAULTS AND DETECTION METHODS.

Fault Type Description Detection Method
Outlier Outliers in data are one of the most common sensor faults. The sensor readings are out

of range relative to expectation.
Rule-based

Spike The readings are changing more than expected over a short period of time. It may or
may not return to normal afterwards.

Rule-based

Stuck-at/Constant The readings are kept the same or almost the same for a longer period of time than
expected.

Rule-based

Intermittent Deviations from normal readings appear and disappear several times, the frequency of
this signature is generally random.

Rule-based

High Noise/Variance Noise is common and expected in sensor data. When unusually high noise is caused by
hardware failure or low batteries, the data may differ from expectations.

Rule-based

Bias A constant offset from the ground truth. The governing equation shall be Yreading =
X + b+ variance, where X is the ground truth and b is the constant offset.

Correlation-based

Drift A time-varying offset from the ground truth of sensor’s signal. The equation should be
Yreading = X+f(t)+variance, where X is the ground truth and f(t) is time-varying
offset.

Time series analysis-based

Scale A time-varying offset from the ground truth of sensor’s signal. The equation should be
Yreading = X×f(t)+variance, where X is the ground truth and f(t) is time-varying
offset.

Time series analysis-based

Fig. 2. Modules of the dynamic probabilistic model checker.

known, this deviation is usually termed as fault. Table I shows
a list of fault types that are defined and can be detected by
SFD. In order to detect faults, a set of rules are defined based
on the domain expert knowledge, so that all incoming run-time
readings are evaluated against these pre-configured rules and
the sensor normal behaviour to derive the confidence score.
A sensor’s confidence score is thus calculated as follows:

Confsensor =

n∑
i=0

factori × weighti (1)

where n is number of the rules defined, factori is the output
of each rule i and weighti is the weight of the rules.

Note that the sensor normal behaviour comprises the three
elements that are used to compute the sensor’s confidence
score, which is a representation of the trustworthiness of the
sensor readings. This confidence score is subsequently fed
into the SMV (c.f. Section III-B) to dynamically update the
transition matrix of the model.

B. System Model Verification (SMV)

SMV is a probabilistic model-based system abstraction to
verify the working behaviour of SUT and to predict system
failure in real time. It is a DTMC model defined as follows:

Msystem = (S, sinit, P, L) (2)

where Msystem is the probabilistic model of SUT, S is a finite
set of machine states of SUT, sinit ∈ S is the initial state,
P : S × S → [ 0, 1] is the transition probability matrix where∑

s′∈S P (s, s
′) = 1 for all s ∈ S and L : S → 2AP are

function-labelling states with atomic propositions.
With this definition, the states and transitions of the model

are fixed and do not change during run-time, only the proba-
bility of state transition in the model is dynamically updated
according to the run-time sensor readings and its working
conditions [7]. The initial probability of state transitions in the
model must be defined based on the domain expert knowledge.
Subsequently, the transition probability matrix P evolves over
time according to the sensor’s confidence score obtained from



Fig. 3. The location of sensors in a CNC turn-mill machine.

SFD. This effectively models the behaviour of the overall
system more accurately whenever faults are detected in the
sensor readings, and thus leading to better prediction of system
failure.

We will describe how the sensor confidence score is com-
puted and how it updates the transition probability matrix in
the next section.

IV. IMPLEMENTATION

We modelled a CNC (Computer Numerical Control)
turn-mill machine using the proposed dynamic probabilis-
tic model checker. Fig. 3 shows a CNC turn-mill machine
NTX1000 [14], that is equipped with a sensor network to
monitor its main spindle and cutting tool. The sensor network
consists of three types of sensors, namely current sensors,
vibration sensors and temperature sensors. These sensors are
connected to a data acquisition system, the extracted sensor
features are streamed to the server via OPC-UA [15] protocol.

We implemented the proposed dynamic probabilistic model
checker for CNC turn-mill machine based on the data flow
and the software modules presented in Fig. 2. In this section,
we presents the system assumptions and the implementation
details of SMV and SFD.

A. Sensor Fault Detection (SFD) Module

SFD was implemented using Python and the interfaces
were developed following RESTful [16] architecture patterns.
Historical data and configurations are provided through a web-
based interface. SFD inspects historical readings to extract
sensor normal behaviour on a daily basis. During run-time,
the sensor readings are generated by SUT and published to
run-time readings pipeline. With this, all processing modules
can subscribe to the readings pipeline to obtain the data. SFD
receives the run-time readings to compute a confidence score

Fig. 4. The state transition model of CNC turn-mill machine.

for each sensor against its normal behaviour. Afterwards, this
confidence score is fed to SMV to update the transition matrix.

B. System Model Verification (SMV) Module

The SMV was implemented using PRISM 4.5 with a Java
wrapper. In order to interact with the SFD, a web server was
set up as a container to run the SMV module and to exchange
parameters.

A system-level probabilistic model was developed by do-
main experts based on the domain knowledge and operating
experiences. We describe an illustrative case to evaluate the
proposed approach. Fig. 4 shows the system model, which
includes five states:

AP = {idle,mount, cut, unmount, error} (3)

and the initial transition matrix is defined as:

Pinit =


0 0.999 0 0 0.001
0 0 0.999 0 0.001
0 0 0.6995 0.2995 0.001
1 0 0 0 0
0 0 0 0 0

 (4)

where the probability of each state transition in the matrix
is defined based on expert knowledge and historical data.
The initial probability of transition matrix, Pinit assumes that
the sensors are new and behave normally. The probability
of system failure is expressed by the following PCTL [17]
formula:

Psystemerror =? [ F ≤60×60×24×7 (S4)] (5)

where Psystemerror
is the probability of system error in seven

days. The error state S4 is defined in the machine state in
Fig. 4.

Ideally, the model should accurately reflect the system state.
In practice, however, the sensor network-based system might
be different. This is a crucial step that existing methods tend to
ignore. As discussed, the deviation may be explained, among
others, by wear and tear of the sensors or sensor readings
drift. In order to make the system model dynamic (updating
evaluation and expectation in unison), the probability of each



transition can be updated according to the run-time sensor
confidence score of each sensor from the SFD. Since each
machine state is monitored by multiple sensors, the probability
of transition to an error state should be included in the overall
sensors’ confidence score. The failure rate of each state will
be updated according to the following:

Rfailure =

n∑
i=0

(1− confi)× wi × λi (6)

where the transition to error state depends on the trustwor-
thiness of n sensors, confi is confidence score of sensor i
obtained from SFD, wi is the weight assigned to sensor i in
the current state and λi is Mean-Time-To-Failure (MTTF) of
sensor i.

Consequently, by knowing Rfailure, the system’s initial
probability model, Pinit can be dynamically updated whenever
sensor faults are detected. We define Pdynamic as a continu-
ously updated probability transition matrix of the system as
follows:

Pdynamic =


0 1−Rfailure 0 0 Rfailure

0 0 1−Rfailure 0 Rfailure

0 0 0.7× (1−Rfailure) 0.3× (1−Rfailure) Rfailure

1 0 0 0 0
0 0 0 0 0


where the coefficients 0.7 and 0.3 are defined based on domain
expert’s experience for this specific turn-mill machine. Hence,
domain expertise is not only used for the initial model, but also
guides the update of expectations. With the run-time sensor
confidence score, the system failure probability of the whole
system should reflect the real system states more accurately.

C. Assumptions

The proposed dynamic probabilistic model for the turn-mill
machine was implemented based on the assumptions defined
below:

1) The initial transition probability matrix, Pinit is first de-
fined by experienced operators. After the system started
its operation, the probability of transition, Pdynamic is
updated dynamically based on the sensor confidence
score.

2) The system model of this implementation is based on
two modules only, which are the main spindle and
cutting tool.

3) Each module is monitored by three types of sensors:
current, vibration and temperature sensor.

4) An experienced operator sets the weights of the three
sensor contributions of the module as

a) Current sensor: 0.3
b) Vibration sensor: 0.5
c) Temperature sensor: 0.2

5) Initial sensor confidence score was set as 0.99 for all
sensors.

6) To simplify the complexity of model, all sensors’ MTTF
are assumed to be 100,000 hours.

V. EXPERIMENTAL RESULTS

We observed three machine states, MOUNT, CUT and
UNMOUNT to evaluate our implementation.

It is clear that the sensors exhibited different patterns at
different machine states. Fig. 5 shows the readings of current
sensor, temperature sensor and vibration sensor from the main
spindle. During the transition from MOUNT to CUT, and then
to UNMOUNT state, we observed that the sensors showed
three different patterns. At the MOUNT stage, the temperature
and vibration readings were relatively stable, while the current
was almost zero. Subsequently, When the machine started
the cut operation, we observed that the temperature reading
increased consistently and the vibration amplitude was much
greater. Once the cutting job had been completed, the machine
moved to the UNMOUNT state, and it is observed that
the vibration re-stabilised. The temperature reading remained
elevated while the current returned to zero.

A. Sensor Fault Detection (SFD)

In this implementation, we segregated the sensor readings
according to the machine states in order to determine the
sensor normal behaviour. For each sensor’s normal behaviour
model in each machine state, the same algorithm was used
to analyse the readings. Tables II show the snapshots of two
machine states: MOUNT and CUT, where all three sensors’
readings were analysed.

In SFD, there is a Rules Engine that is responsible for
detecting sensor faults. Having defined the sensor’s normal
behaviour in Table II, we further configured the following
rules in line with the domain of the case-study to evaluate the
concept. The exact parameter values are of less importance
and hence are chosen conservatively. It is expected that the
performance can be improved by fine-tuning the values. To
illustrate the methodology, the following example rules suffice:

1) If there is zero variation (standard deviation) in the
sensor readings for more than 30 seconds, the sensor
is deemed as having Stuck At fault.

2) According to the experiences, if more than 50% of the
readings are missing, the sensor is deemed as having
an Intermittent fault. Otherwise, the percentage ratio
of received readings and the total number of expected
sensor readings is returned.

3) Compute the distance between the sensor reading and
the mid point of the estimated range in the sensor’s
normal behaviour model.

4) If drift trend is greater than 0.5, the sensor is deemed
as having a Drift fault.

Table III shows a snapshot of a sensor confidence score
during the CUT stage. Based on the confidence score, it is
rather easy to identify the working condition of each sensor.
However, it is quite difficult to determine how a sensor affects
the machine’s overall working status. With the proposed dy-
namic probabilistic model checking, the resulting confidence
scores are used to update the transition matrix of the model.



Fig. 5. The sensor readings of the main spindle.

TABLE II
NORMAL BEHAVIOUR (SENSOR PROFILE ) OF CURRENT, TEMPERATURE AND VIBRATION SENSOR

Sensor Stage Statistical Characteristics Estimated Reading Range Drift Trend
Mean Std Dev. Upper Lower

Current MOUNT 0.0781 0.1561 0.2296 -0.1894 0.0000
CUT -0.1910 8.3310 15.3485 -15.6400 0.0000

Temperature MOUNT 24.8901 0.0158 24.9203 24.8618 0.0019
CUT 24.9440 0.0440 24.9303 24.8694 0.3184

Vibration(x) MOUNT 0.0033 0.0077 0.0202 0.0103 0.8095
CUT 0.0064 0.0452 0.0771 -0.0821 0.0000

Vibration(y) MOUNT 0.0034 0.0071 0.0167 0.0068 0.5780
CUT -0.0051 0.0466 0.0645 -0.0715 0.01953

Vibration(z) MOUNT 0.0064 0.0099 0.0222 0.0090 0.8263
CUT -0.0065 0.0568 0.0971 -0.1010 0.0008

B. Dynamic Model Checker

In this section, we demonstrate that a dynamic probabilistic
model checker is perceived as a better reflection of the turn-
mill machine’s behaviour, as compared to a static model. As
shown in Fig. 6, a static model was assumed to have a constant
confidence score of 0.9 for all sensors. This translated to
a seven-day machine failure probability of 1.94E-4, which
was constant at all time. With a dynamic model, based on
the dataset we collected, there were sensor faults detected in
the system which resulted in the degradation of the sensor

confidence score. As shown in Fig. 6, this had an effect on the
overall system’s failure probability, in that the depending on
the weight, and the corresponding sensor’s confidence score,
the failure probability of the machine changed dynamically.
We also observed that this has effectively established a strong
correlation between the system’s failure probability and the
sensor’s confidence score.



TABLE III
SENSOR CONFIDENCE SCORE OF CUT STAGE

Time Current Temperature Vibration
2020-02-21 10:20:43 0.9543 0.7306 0.7113
2020-02-21 10:21:13 0.9474 0.7424 0.8530
2020-02-21 10:21:43 0.9154 0.6834 0.8540
2020-02-21 10:22:13 0.9547 0.7387 0.8483
2020-02-21 10:22:43 0.9464 0.7180 0.8677
2020-02-21 10:23:13 0.9217 0.6077 0.8747
2020-02-21 10:23:43 0.9381 0.5849 0.7699

Fig. 6. Comparison of system failure probability.

VI. CONCLUSION

In this paper, we have proposed a new approach integrating
a data-driven sensor model and a system-level probabilistic
model to form a dynamic probabilistic model. The proposed
methodology explicitly models sensor uncertainty and updates
expectations on sensor readings with the system under test.
The integration in a unified dynamic model provides more
accurate prediction results of impending system failures, even
while the system is running. However, further research is still
needed in the following three areas:

1) The current definition of sensor confidence score is a
linear function with each rule having equal weight. This
should be generalised so that the proposed approach can
be applied to a wider range of systems.

2) The method of consuming sensor confidence scores in
the system-level model needs further consideration so
that it should represent the real-world systems accu-
rately.

3) A multi-level probabilistic model is needed to represent
more sophisticated sensor network-based systems, for
example multiple hierarchical modules.

The evaluation results highlight the importance of explic-
itly modelling sensor trustworthiness, especially because all
consequential decisions in the domain of Industry 4.0 will be
driven by automatically collected data. Moreover, it helps the
system operator to allocate and provision resources timely and
efficiently.

REFERENCES

[1] F. Biesinger, D. Meike, B. Kraß, and M. Weyrich, “A digital twin
for production planning based on cyber-physical systems: A Case
Study for a Cyber-Physical System-Based Creation of a Digital Twin,”
Procedia CIRP, vol. 79, pp. 355–360, 2019. [Online]. Available:
https://doi.org/10.1016/j.procir.2019.02.087

[2] E. Negri, L. Fumagalli, and M. Macchi, “A Review of the
Roles of Digital Twin in CPS-based Production Systems,” Procedia
Manufacturing, vol. 11, no. June, pp. 939–948, 2017. [Online].
Available: http://dx.doi.org/10.1016/j.promfg.2017.07.198

[3] F. Tao, Q. Qi, L. Wang, and A. Y. Nee, “Digital Twins and
Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0:
Correlation and Comparison,” Engineering, vol. 5, no. 4, pp. 653–661,
2019. [Online]. Available: https://doi.org/10.1016/j.eng.2019.01.014

[4] A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection
methods and prevalence in real-world datasets,” ACM Transactions on
Sensor Networks, vol. 6, no. 3, pp. 1–34, 2010.

[5] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: probabilistic
model checking for performance and reliability analysis,” ACM SIG-
METRICS Performance Evaluation Review, vol. 36, no. 4, p. 40, 2009.

[6] M. Calder and M. Sevegnani, “Stochastic model checking for predicting
component failures and service availability,” IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 1, pp. 174–187, 2019.
[Online]. Available: http://ieeexplore.ieee.org/document/7812626/

[7] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,
S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor
network data fault types,” ACM Transactions on Sensor Networks, vol. 5,
no. 3, pp. 1–29, 2009.

[8] N. Ramanathan, L. K. Balzano, M. Burt, D. Estrin, T. Harmon,
C. Harvey, J. Jay, E. Kohler, S. Rothenberg, and M. Srivastava,
“Rapid deployment with confidence: Calibration and fault detection
in environmental sensor,” pp. 1–14, 2006. [Online]. Available:
http://escholarship.org/uc/item/8v26b5qh.pdf

[9] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6806 LNCS, pp. 585–591, 2011.

[10] M. Sevegnani, M. Kabáč, M. Calder, and J. McCann, “Modelling and
verification of large-scale sensor network infrastructures,” Proceedings
of the IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS, vol. 2018-Decem, pp. 71–81, 2018.

[11] M. Kwiatkowska, G. Norman, and D. Parker, “Advances and challenges
of probabilistic model checking,” 2010 48th Annual Allerton Conference
on Communication, Control, and Computing, Allerton 2010, pp. 1691–
1698, 2010.

[12] A. Sharma, L. Golubchik, and R. Govindan, “On the prevalence
of sensor faults in real-world deployments,” 2007 4th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, SECON, pp. 213–222, 2007.

[13] D. Alberg and M. Last, “Short-term load forecasting in smart meters
with sliding window-based ARIMA algorithms,” Vietnam Journal of
Computer Science, vol. 5, no. 3-4, pp. 241–249, 2018. [Online].
Available: https://doi.org/10.1007/s40595-018-0119-7

[14] I. Turn, “NTX-1000.” [Online]. Available:
https://en.dmgmori.com/products/machines/turning/turn-mill/ntx/ntx-
1000

[15] S.-H. Leitner and W. Mahnke, “OPC UA – Service-oriented Architecture
for Industrial Applications,” Softwaretechnik-Trends, vol. 26, no. 4, pp.
1 – 6, 2006. [Online]. Available: http://www2.cs.uni-paderborn.de/cs/ag-
engels/GI/ORA2006-Papers/leitner-final.pdf

[16] R. Richards and R. Richards, “Representational State
Transfer (REST),” pp. 633–672, 2006. [Online]. Available:
https://en.wikipedia.org/wiki/Representational state transfer

[17] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.


