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Abstract
We present a bisimulation relation for neighbourhood spaces, a generalisation of topological spaces.
We show that this notion, path preserving bisimulation, preserves formulas of the spatial logic
SLCS. We then use this preservation result to show that SLCS cannot express standard topological
properties such as separation and connectedness. Furthermore, we compare the bisimulation relation
with standard modal bisimulation and modal bisimulation with converse on graphs and prove it
coincides with the latter.
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1 Introduction

The functionality of modern computer systems is increasingly affected by their spatial
properties. For example, correctness and efficiency of distributed algorithms depend on the
underlying network topology, e.g., whether nodes are reachable, or if there are disconnected
components. Furthermore, for cyber-physical systems like autonomous vehicles, spatial
aspects are crucial for safe behaviour. To reason about spatial properties, there exist a variety
of spatial logics [1] with different kinds of semantics: geometric, directional, topological, or
based on structural properties of concurrent processes [8]. However, the analysis of such
spatial logics is much less evolved than the analysis of temporal logics like linear temporal
logic [20] or computation tree logic [13].

In this paper, we focus on a kind of spatial logics defined on neighbourhood spaces also
called Čech closure spaces [23] or pretopological spaces: a generalisation of topological spaces,
where the closure operator is not required to be idempotent. In particular, we analyse the
Spatial Logic on Closure Spaces (SLCS) introduced by Ciancia et al. [10]. So far, there
exists a model-checking algorithm for SLCS, and it has been used for analysis in various
application domains such as congestion in bike-sharing applications [12] and bus schedules [9].
An extension of SLCS with distance measuring operators has been used to analyse medical
images [3, 6]. However, to the best of our knowledge, no further study of the overall properties
of SLCS has been conducted. For example, it is still an open question what its limits of
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expressivity are. To relate the structural properties of models to a logical language, we
follow the standard approach of defining various notions of bisimulations [7] and studying
the invariance of SLCS modalities. To that end, we follow ideas of Kurtonina and de Rijke
by extending the bisimulations to cover paths [15]. We also employ these bisimulations to
study SLCS on two important subclasses of neighbourhood spaces. The first class consists of
topological spaces, while the latter is the class of quasi-discrete spaces, which can be thought
of as (possibly infinite) graphs. These classes are non-disjoint, and neither is a subclass of
the other. Furthermore, all finite spaces are quasi-discrete.

The investigation of this paper was inspired by recent work of Baryshnikov and Ghrist [5]
on a topological approach to the target counting problem in sensor networks, the computational
task of determining the total number of targets in a region by aggregating the individual
counts of each sensor without recording any target identities nor any positional information.
Its mathematical formulation depends on having sensor readings over a continuum field of
sensors. However, any implementation must occur over a discrete collection of sensors in a
given network. This introduces some limitations as several studies have highlighted [19, 16],
in particular it is almost impossible to predict the accuracy of the results a given discretisation
yields. This shows the need for general notions to rigorously study how properties of interests
are preserved across different kind of spaces and provides motivation for this work.

Our contributions in this paper are as follows.
Definition of bisimulations between neighbourhood models;
proof that bisimilar points satisfy the same SLCS formulas;
use of the defined bisimulations to study expressivity of SLCS; and
comparison of the introduced notions with bisimulations on graphs treated as neighbour-
hood spaces.

Our article is organised as follows. We begin in Sect. 2 by presenting some preliminary
background on neighbourhood spaces. Sect. 3 introduces the main bisimulation relation:
path preserving bisimulation. In Sect. 4, we study the properties of this bisimulation on
quasi-discrete spaces. Related work is presented in Sect. 5 and we conclude our work in
Sect. 6. The full proofs have been moved to the appendix.

2 Neighbourhood Spaces

In this section we recall the notions of neighbourhood spaces and some related results from
general topology we will use in this paper. Our main reference is [23]. For additional general
results on these topics and for the proofs of the results reported here, we refer the reader to
this source.

I Definition 1 (Filter). Given a set X, a filter F on X is a subset of P(X), such that F is
closed under non-empty intersections, whenever Y ∈ F and Y ⊆ Z, then also Z ∈ F , and
finally ∅ 6∈ F . For a set A ⊆ X, the filter generated by A is written as 〈A〉.

I Definition 2 (Neighbourhood Space). Let X be a set together with η ⊆ P(P(X)) given by
η = {η(x) | x ∈ X}, where every η(x) is a filter on X and x ∈

⋂
N∈η(x) N . We call η a

neighbourhood system on X, and X = (X, η) a neighbourhood space. For every set A ⊆ X,
we have the (unique) interior and closure operators defined as follows.

Iη(A) = {x ∈ A | A ∈ η(x)} Cη(A) = {x ∈ X | ∀N ∈ η(x) : A ∩N 6= ∅}

An element x ∈ X has a minimal neighbourhood if there exists N ∈ η(x) such that N ⊆ N ′
for any neighbourhood N ′ ∈ η(x). We use Nmin(x) to refer to the minimal neighbourhood
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of x. If each element x ∈ X has a minimal neighbourhood, then we call X quasi-discrete.
Finally, if for every element x ∈ X and any neighbourhood N ∈ η(x), there is a neighbourhood
M ∈ η(x), such that for every y ∈M , we have also that N ∈ η(y), then X is topological.

I Proposition 3 (Closure Operator ([23] 14 A.1, 14 B.11, 15 A.1, 15 A.2, 26 A.1, 26 A.9)).
For any neighbourhood space X = (X, η), the closure operator C as induced by η satisfies the
following properties:
1. C(∅) = ∅
2. A ⊆ C(A)
3. C(A ∪B) = C(A) ∪ C(B)
4. If X is quasi-discrete then, for any set A ⊆ X, C(A) =

⋃
a∈A C({a}).

5. If X is topological, then for any set A ⊆ X, C(A) = C(C(A)).

In the work of Čech [23], the properties of Proposition 3 are used to define closure
operators, and the equivalences with the corresponding properties of the neighbourhood
systems are shown in several theorems. However, since we will use neighbourhoods as the
primary entities in the spaces, we choose to demote the closure operators to be derived.

I Definition 4 (Connectedness ([23] 20 B.1)). Let X = (X, η) be a neighbourhood space. Two
subsets U and V of X are semi-separated, if C(U) ∩ V = U ∩ C(V ) = ∅. A subset U of X
is connected, if it is not the union of two non-empty, semi-separated sets. The space X is
connected, if X is connected.

We also introduce a special kind of neighbourhood space, employed with a linear order.

I Definition 5 (Index Space). If (I, η) is a connected neighbourhood space and ≤ ⊆ I × I a
linear order on I with the bottom element 0 ∈ I, then we call I = (I, η,≤, 0) an index space.

In the following sections, we will often use the concept of continuous function. Generally,
we will use the notation f [A] for the image of a set A ⊆ X under a function f : X → Y .
Similarly, f−1[B] denotes the preimage of a set B ⊆ Y .

I Definition 6 (Continuous Function ([23] 16 A.4)). Let Xi = (Xi, ηi) for i ∈ {1, 2} be two
neighbourhood spaces. A function f : X1 → X2 is continuous, if for every x1 ∈ X1 and
every N2 ∈ η2(f(x1)), there is a N1 ∈ η1(x1) such that f [N1] ⊆ N2. Equivalently, since
the neighbourhood system of x1 is upward closed, for every neighbourhood N2 ∈ η2(f(x1)),
f−1[N2] ∈ η1(x1). We will also write f : X1 → X2.

Observe that this coincides with the well-known definition of continuous functions on
topological spaces. An important connection between connected sets and continuous functions
is that the image of a connected set is connected.

I Lemma 7 (Connectedness and Continuity ([23] 20 B.13)). Let f : X1 → X2 be continuous.
If a subset X of X1 is connected, then f [X] is connected.

Following Ciancia et al. [10], we extend the typical notion of a topological path to
neighbourhood spaces.

I Definition 8 (Path). For an index space I and a neighbourhood space X , a continuous
function p : I → X is a path on X . If p(0) = x, we will also write p : x  ∞ to denote a
path starting in x.
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This definition includes both quasi-discrete paths and topological paths as given by
Ciancia et al. [10]. For example, two typical index spaces are I = (R, ηR,≤, 0) with the
standard topology based on open intervals, and I = (N, ηN,≤, 0), where ηN is given by the
quasi-discrete neighbourhood system induced by the successor relation. That is, the minimal
neighbourhood of each point n is given by {n, n + 1}. Furthermore, observe that by the
definition of index spaces and Lemma 7, the image of a path is connected.

We now present spatial models based on neighbourhood spaces and, based on that, the
syntax and semantics of SLCS. For the rest of the paper, we let AP be a fixed denumerable
set of propositional atoms.

I Definition 9 (Neighbourhood Model). Let X = (X, η) be a neighbourhood space, I an
index space, and let ν : X → P(AP) be a valuation. ThenM = (X , I, ν) is a neighbourhood
model. We will also writeM = (X, η, ν) to denote neighbourhood models, if the index space
is clear from the context.

We lift all suitable previous definitions to neighbourhood models in the obvious ways.
For example, we will speak of continuous functions between the underlying spaces of two
models as continuous functions between the models.

I Definition 10 (Syntax of SLCS).

ϕ : : = p | > | ¬ϕ | ϕ ∧ ϕ | N ϕ | ϕRϕ | ϕP ϕ

N is read as near, R is read as reachable from, and P is read as propagates to.

The intuition behind the modalities is as follows. A point satisfies N ϕ, if it is contained in
the closure of the set of points satisfying ϕ. Hence, even if it does not satisfy ϕ itself, it is
close to a point that does. A point x is satisfying ϕRψ if there is a point y satisfying ψ such
that x is reachable from y via a path where every point on this path between x and y satisfies
ϕ. Propagation is in a sense the converse modality, i.e., if there is a point y satisfying ψ such
that there is a path starting in x and reaching y at some index, and all points in between
satisfy ϕ, then x satisfies ϕP ψ. This intuition is formalised in the following semantics.

I Definition 11 (Path Semantics of SLCS). LetM = (X , I, ν) be a neighbourhood model and
x ∈ X . The semantics of SLCS with respect toM is defined inductively as follows.1

M, x |= > for allM and x
M, x |= p iff p ∈ ν(x)
M, x |= ¬ϕ iff notM, x |= ϕ

M, x |= ϕ ∧ ψ iff M, x |= ϕ andM, x |= ψ

M, x |= N ϕ iff x ∈ C({y | M, y |= ϕ})
M, x |= ϕRψ iff there are y, n and p : y  ∞ such that p(n) = x andM, y |= ψ

and for all 0 < i ≤ n : M, p(i) |= ϕ

M, x |= ϕP ψ iff there are p : x ∞ and n such thatM, p(n) |= ψ

and for all i : 0 ≤ i < n : M, p(i) |= ϕ

1 The original definition of the path semantics by Ciancia et al. [10] differs from our presentation. This is
due to a change in their definition of the closure operator. In particular, they define the closure on quasi-
discrete spaces, i.e., with respect to a given relation R as CR(A) = A ∪ {x ∈ X | ∃a ∈ A : (a, x) ∈ R}.
Our definition yields CR(A) = A ∪ {x ∈ X | ∃a ∈ A : (x, a) ∈ R} (see the discussion at the end of this
section), which is more in line with other literature [23, 14]. However, this only changes whether N can
be considered the one-step counterpart of R or of P.
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Ciancia et al. base SLCS on a slightly different set of operators [10]. In particular, they
employ a modality S, where ϕS ψ expresses that the current point is within a set satisfying
ϕ that is surrounded by a set of points satisfying ψ. However, we chose to have a more
symmetric set of operators, and thus use R instead. This is not problematic, since S can be
expressed by the following equivalence: (ϕS ψ)↔ (ϕ ∧ ¬(ϕR¬(ϕ ∨ ψ))).

LetM = (X , I, ν) be a model, and p a path p : x ∞ inM. For n,m ∈ I and n < m,
we use (n,m) as notation for the set {i | n < i < m}, similar to the usual notation of open
intervals on the indexspace I. For such an interval (n,m) and an SLCS formula ϕ, we use
the following abbreviation to denote the satisfaction of ϕ within (n,m):

M, p, (n,m) |= ϕ iff for all i with n < i < m we haveM, p(i) |= ϕ .

With this notation, the semantics of R and P read as follows.

M, x |= ϕRψ iff ∃p : y  ∞ and n s.t. p(n) = x,M, y |= ψ,M, x |= ϕ,

andM, p, (0, n) |= ϕ

M, x |= ϕP ψ iff ∃p : x ∞ and n s.t. M, p(n) |= ψ,M, x |= ϕ, andM, p, (0, n) |= ϕ

While we are able to define SLCS for the setting of general neighbourhood models, we
will often restrict our attention to one of the following two special cases: quasi-discrete and
topological models. They are defined as follows.

I Definition 12 (Quasi-Discrete and Topological Models). Let X be a quasi-discrete neigh-
bourhood space, and IN = (N, ηN,≤, 0) be the index space defined by the natural numbers.
Then a modelM = (X , IN, ν) based on these spaces is a quasi-discrete neighbourhood model.
Similarly, if X is topological, and IR = (R, ηR,≤, 0) is the index space defined by the real
numbers, and the topology based on all open intervals as well as the standard ordering of the
reals, a modelM = (X , IR, ν) is a topological neighbourhood model.

Hence, whenever we refer to a model as quasi-discrete, we fix the index space to the
natural numbers, and similarly, whenever a model is topological, we only allow for topological
paths. Observe that every quasi-discrete space can be described as a (possibly infinite)
graph structure. For a quasi-discrete space (X, η) the induced edge relation R ⊆ X × X
is defined as {(x, y) | y ∈ Nmin(x)}. This results in the closure operator being defined
on points of a quasi-discrete space as C(x) = {y ∈ X | x ∈ Nmin(y)}. Furthermore, as
x ∈ Nmin(x) for any x ∈ X, it follows that R is reflexive (as also shown in [23] 26 A.2).
On the other hand, every graph G = (V,R) (where R ⊆ V × V is not necessarily reflexive)
induces a quasi-discrete space, by setting the minimal neighbourhood of a vertex x ∈ V to
be Nmin(x) = {x} ∪ {y | (x, y) ∈ R}. Whenever we depict quasi-discrete models as graphs,
we will omit the implicit loops on nodes.

Of course, there are neighbourhood spaces that are both quasi-discrete and topological.
This is the case if the edge relation of the graph representation of a quasi-discrete space is
transitive (see [23], Theorem 26 A.2). In particular, fully connected bidirectional graphs are
also topological, if considered as neighbourhood spaces. For such spaces, we have to restrict
ourselves to treat them either as topological or as quasi-discrete.

3 Bisimulations for Neighbourhood Spaces

In this section we define two notions of bisimulation for neighbourhood spaces: neighbourhood
bisimulation and path preserving bisimulation. We will then use them to study the preservation
of SLCS formulas across models and thus the expressivity of SLCS.
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I Definition 13 (Neighbourhood Bisimulation). Let (X1, η1, ν1) and (X2, η2, ν2) be two neigh-
bourhood models over the same index space, and x1 ∈ X1, x2 ∈ X2 two points of the respective
models. A relation Zη ⊆ X1 ×X2 with x1Zηx2 is a neighbourhood bisimulation of x1 and
x2, if we have
(atm) p ∈ ν1(x1) if, and only if, p ∈ ν2(x2) for all p ∈ AP
(frtη) for every neighbourhood N2 ∈ η2(x2), there is a neighbourhood N1 ∈ η1(x1) such that

for all y1 ∈ N1, there is a y2 ∈ N2 with y1Zηy2
(bckη) for every neighbourhood N1 ∈ η1(x1), there is a neighbourhood N2 ∈ η2(x2) such that

for all y2 ∈ N2, there is a y1 ∈ N1 with y1Zηy2
Two modelsM1 andM2 are neighbourhood bisimilar at x1 and x2, if there is a neighbourhood
bisimulation Zη such that x1Zηx2.

We can prove that SLCS formulas using only the “near” modality are invariant under
neighbourhood bisimulation. While we do not present a separate theorem for this fact due
to space reasons, its proof can be extracted from the corresponding induction step of the
proof of Theorem 17.

I Example 14. LetMR = ((R, ηR), IR, νR) be a topological neighbourhood model, where
the underlying space is given by the usual topology on the real numbers, and νR(s) = {a}
for all s ∈ (−1, 1) and νR(s) = ∅ otherwise. Furthermore, letM2 = (({x, y}, η2), IR, ν2) be a
topological model where η2 is the discrete topology on the set {x, y} (i.e., Nmin(x) = {x}
and Nmin(y) = {y}), ν2(x) = {a}, and ν2(y) = ∅. Then the relation Zη , given by sZηx for
all s ∈ (−1, 1), is a neighbourhood bisimulation between any point s ∈ (−1, 1) and x.

Observe that it is not total, and in particular, there cannot be a total neighbourhood
bisimulation between these two spaces: If there was, it would need to relate 1 to y, since
neither satisfies any proposition, and y is the only such point inM2. However, consider the
neighbourhood {y} ∈ η2(y). Every neighbourhood of 1 contains a point s < 1, which is not
in relation with y. Hence, there is no neighbourhood N of 1 such that every element of N is
in relation with an element of {y}.

In the preceeding example, all points that are related by Zη indeed satsify the same
formulas using only N , in this case Boolean combinations of the formulas N a and ¬N ¬a
(or equivalent formulas). However,MR, 0 |= aP ¬a, whileM2, x 6|= aP ¬a. To ensure the
preservation of formulas using the path modalities P and R, we strengthen our notion of
bisimulation following ideas of Kurtonina and de Rijke [15]. Specifically, we not only need
points in the two models to be related, but also intervals over paths. This is achieved by
introducing two relations Z1 and Z2, the former relating path intervals from the first model
to the second, and the latter the other way around. The resulting bisimulation is based on a
triple or relations (Zη , Z1, Z2) and defined as follows.

I Definition 15 (Path Preserving Bisimulation). Let M1 = ((X1, η1), I, ν1) and M2 =
((X2, η2), I, ν2) be two neighbourhood models over the same index space I, and P and Q sets
of all possible paths onM1 andM2, respectively. A path preserving bisimulation between
M1 andM2 is triple (Zη , Z1, Z2), where Zη ⊆ X1 ×X2, Z1 a relation between P × I and
Q× I, and Z2 a relation between Q× I and P × I s.t. Zη 6= ∅ and the following holds for
all x1 ∈ X1, x2 ∈ X2, (p, n) ∈ P × I and (q,m) ∈ Q× I.
1. if x1 Zη x2, then Zη is a neighbourhood bisimulation;
2. if x1 Zη x2, p : x1  ∞ and n 6= 0, then there exists q : x2  ∞ and m s.t. p(n) Zη q(m)

and (p, n) Z1 (q,m);
3. if x1 Zη x2, p : y1  ∞ with p(n) = x1 and n 6= 0, then there exists q : y2  ∞ and m

with q(m) = x2 s.t. p(0) Zη q(0) and (p, n) Z1 (q,m);
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4. if (p, n) Z1 (q,m) and there exists kq ∈ I with 0 < kq < m, then there exists kp ∈ I with
0 < kp < n s.t. p(kp) Zη q(kq);

5. if x1 Zη x2, q : x2  ∞ and m 6= 0, then there exists p : x1  ∞ and n s.t. p(n) Zη q(m)
and (q,m) Z2 (p, n);

6. if x1 Zη x2, q : y2  ∞ with q(m) = x2 and m 6= 0, then there exists p : y1  ∞ and n
with p(n) = x1 s.t. p(0) Zη q(0) and (q,m) Z2 (p, n); and

7. if (q,m) Z2 (p, n) and there exists kp ∈ I with 0 < kp < n, then there exists kq ∈ I with
0 < kq < m s.t. p(kp) Zη q(kq).

It is straightforward to show that for three modelsM1,M2, andM3 over the same index
space I, whenever there is a path preserving bisimulation between x1 ∈M1 and x2 ∈M2,
and there is a path preserving bisimulation between x2 and x3 ∈ M3, then there is also a
path preserving bisimulation between x1 and x3.

Before we show that the truth of all SLCS formulas is preserved under path preserving
bisimulation, we first present the following technical lemma.

I Lemma 16. Let (Zη , Z1, Z2) be a path preserving bisimulation betweenM1 andM2, and
ϕ be an SLCS formula that is invariant under neighbourhood bisimulation, i.e., for any
x1 ∈M1 and x2 ∈M2 with x1Zηx2, we haveM1, x1 |= ϕ if, and only if,M2, x2 |= ϕ. For
two paths p and q with (p, n) Z1 (q,m), we haveM1, p, (0, n) |= ϕ impliesM2, q, (0,m) |= ϕ.
Additionally, if (q,m)Z2(p, n) thenM2, q, (0,m) |= ϕ impliesM1, p, (0, n) |= ϕ.

I Theorem 17. If (Zη , Z1, Z2) is a path preserving bisimulation betweenM1 andM2 with
x1Zηx2, thenM1, x1 |= ϕ if, and only if,M2, x2 |= ϕ for every formula ϕ of SLCS.

Proof. We proceed by induction on the length of formulas. The induction base and the cases
for the Boolean operators are as usual. For the near modality, the induction step consists
basically of a straightforward application of the definitions. We provide a sketch for the
preservation of propagate. The case for reachable is analogous.

So let M1, x1 |= ϕP ψ. That is, there is a path p starting in x1 and visiting a point
satisfying ψ at the index n, where all points in between satisfy ϕ. By the bisimulation
property (Def. 15 (2)), there is a path q starting in x2 that visits, at m, a point that is
bisimilar to p(n), and for all indices between 0 and m, there are bisimilar points on p as well.
Hence, by the induction hypothesis and Lemma 16, q is a witness thatM2, x2 |= ϕP ψ. The
other direction is similar, using the second case of Lemma 16. J

Note that we do not show that logical equivalence of two points implies that they are
bisimilar (cf. Sect. 6). Now that we have a suitable notion of bisimilarity, we can use it
to analyse whether SLCS is able to capture spatial properties. As an example, we show
that SLCS is neither capable of expressing standard topological separation axioms nor the
connectedness of a model.

I Definition 18 (Separation Properties). Let X be a neighbourhood space. If for every
two points x, y ∈ X we have that y ∈ C({x}) and x ∈ C({y}) implies x = y, then X is T0-
separated. If {x}∩C(y) = C(x)∩{y} = ∅ for all distinct x and y, then X is T1-separated.2 We
call a neighbourhood model Ti-separated, if its underlying space is Ti-separated for i ∈ {0, 1}.

I Proposition 19. There is no formula of SLCS expressing T0 separation.

2 Čech calls such spaces feebly semi-separated and semi-separated, respectively, [23], but the name T0 and
T1 for these properties are standard in topology.
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Figure 1 M1 is T0-separated, but M2 is not.

Proof. Consider the quasi-discrete modelsM1 andM2 in Fig. 1, and the relation Zη given
by xiZηyi and x0Zηy

′
0, where Z1 is defined by (p, n)Z1(q, n) iff p(0)Zηq(0) and

p(i) = x0 ⇔ q(i) ∈ {y0, y
′
0} ,

p(i) = x1 ⇔ q(i) = y1 ,

p(i) = x2 ⇔ q(i) = y2 .

The relation Z2 is then given by Z2 = Z−1
1 . Then the triple of these three relations is a path

preserving bisimulation betweenM1 andM2. For example, consider the minimal neighbour-
hood Nmin(x1) = {x1, x2} of x1. Then choose Nmin(y1) = {y1, y2} as a neighbourhood of y1.
For every element of Nmin(y1), there is an element in Nmin(x1), such that the elements are
bisimilar. The other neighbourhoods can be checked similarly. So, all points inM1 andM2
satisfy the same set formulas of SLCS by Theorem 17. But it is also easy to check thatM1
is T0-separated, whileM2 is not. Hence no formula of SLCS expresses T0-separation. J

I Proposition 20. There is no formula of SLCS expressing T1 separation.

Proof. Let X be an uncountable set. Let Y be the set of all subsets of X, such that for
every Y ∈ Y, either Y = ∅, or the complement of Y is countable. Then, for every x ∈ X,
let η1(x) = {N | ∃Y ∈ Y : Y ⊆ N ∧ x ∈ Y }. Then X = (X, η1) is called the countable
complement topology. For any valuation ν1 over X,M1 = (X1, IR, ν1) is a topological model.
Also, let X ′ be constructed from X by “doubling” all points, i.e., X ′ = {x′ | x ∈ X} ∪X,
where each x′ is a new, distinct, element to the x it is constructed from. Then, let Y ′ be
the doubling of every set in Y in a similar way, and η2 be defined similar to η1, but over Y ′.
Then, X2 = (X ′, η2) is the double pointed countable complement topology. Also, let ν2 be the
valuation that assigns the value of ν1(x) to each x and x′. Then,M2 = (X2, IR, ν2) is also a
topological model.

The relation given by xZηy iff y = x ∨ y = x′ is obviously a neighbourhood bisimulation.
Furthermore, we define (p, n)Z1(q,m) iff p(0)Zηq(0) and p(i) = z iff q(i) ∈ {z, z′}, as well
as Z2 = Z−1

1 . This triple then represents a path preserving bisimulation between the two
models. However,M1 is both T0 and T1 separated, whileM2 is neither [21]. J

I Proposition 21. There is no formula of SLCS that is expressing connectedness.

Proof. Consider an arbitrary neighbourhood modelM and a modelM′ consisting of two
unconnected copies ofM. Then we can define a path preserving neighbourhood bisimulation
by relating every point ofM with both of its copies inM′, and every path ofM with both
corresponding paths inM′. J

Similarly, we can ask whether quasi-discrete models, where the underlying space is also
topological, are only bisimilar to other models, where the space is topological. As the
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x0 p0

x1 p1

Mtop

y0
p0

y1
p1

y2
p0

y3
p1

Msq

Figure 2 Two bisimilar quasi-discrete models, where Mtop is topological and Msq is not.

next lemma shows, the answer to this question is negative. Hence, SLCS cannot express
transitivity of the underlying edge relation.

I Lemma 22. There are quasi-discrete modelsM1 andM2 that are bisimilar to each other,
and where the underlying space ofM1 is topological, while the space ofM2 is not.

Proof. Consider the graphs in Fig. 2. If we set xiZηyj iff j mod 2 = i, and relate paths in
the obvious way, then we have a path preserving bisimulation. However,Mtop is topological,
whileMsq is not. J

The next example shows that a topological model can be in bisimulation with non-
topological models in a non-trivial way. To that end, we exploit the transitivity of models
being path preserving bisimilar, by first showing that a specific topological model is path
preserving bisimilar to a topological model with an underlying quasi-discrete space, and then
show that this second model is path preserving bisimilar to a model over topological paths,
but where the underlying space is quasi-discrete, but not topological.

I Example 23. LetM = (X2, IR, ν2) be the topological model based on the double pointed
countable complement topology (cf. the proof of Proposition 20), where ν2(x) = {p0} and
ν2(x′) = {p1} for any point x of the underlying set. Furthermore, consider the models
depicted in Fig. 2, but considered over the index space IR. We will first proceed to define a
path preserving bisimulation betweenM andMtop.

Let xZηx0 and x′Zηx1 for all x of the underlying set of M. Then clearly Zη is a
neighbourhood bisimulation, since any neighbourhood inM contains both points x and x′
and similarly, any neighbourhood inMtop contains both x0 and x1.

Now let p be any path onM. Then q defined by q(i) = x0 if p(i) ∈ X and q(i) = x1 if
p(i) ∈ X ′, is a path as well, since any function intoMtop is continuous (as it possesses the
indiscrete topology, that is, for both x0 and x1, {x0, x1} is their only neighbourhood). So,
we set (p,m)Z1(q,m) for any path, m ∈ R and q defined as above. Hence, whenever there is
a 0 < kq < m, then p(kq)Zηq(kq).

Finally, consider a path q onMtop. Choose an arbitrary point x ∈ X, and define p by
p(i) = x if q(i) = x0 and p(i) = x′ if q(i) = x1. Then set (q,m)Z2(p,m) for every m ∈ R.
Again, the bisimulation condition is satisfied.

All in all, we have defined a path preserving bisimulation betweenM andMtop, where
every point ofM is bisimilar to either x0 or x1.

Now we define a path preserving bisimulation betweenMtop andMsq. As can be easily
checked, the relation Zη = {(x0, y0), (x0, y2), (x1, y1), (x1, y3)} constitutes a neighbourhood
bisimulation. The relation Z2 can be defined as follows: for any path q onMsq and i ∈ R,
set p(i) = x0 if q(i) ∈ {y0, y2} and p(i) = x1 otherwise. Then p is continuous, since any
function intoMtop is continuous, and also for any index i, we have p(i)Zηq(i). Hence, we
set (q,m)Z2(p,m) for any m ∈ R. For Z1, let p be a path starting in x0 and m ∈ R. Then
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we define q as

q(i) =


y0 , if i < 1
y3 , if 1 ≤ i < 2
y2 , if 2 ≤ i < 3
y1 , if 3 ≤ i

Now, we distinguish several cases:
1. if p(m) = x0 and for all i < m, p(m) = x0, then (p,m)Z1(q, 0.5),
2. if p(m) = x1 and for all i < m, p(m) = x0, then (p,m)Z1(q, 1),
3. if p(m) = x0 and for all i < m, p(m) = x1, then (p,m)Z1(q, 2),
4. if p(m) = x1 and for all i < m, p(m) = x1, then (p,m)Z1(q, 1.5),
5. if p(m) = x0, for some i < m, p(m) = x0 and for some i < m, p(m) = x1, then

(p,m)Z1(q, 2.5), and
6. if p(m) = x1, for some i < m, p(m) = x0 and for some i < m, p(m) = x1, then

(p,m)Z1(q, 3.5).
For any path with p(0) = x1, we can define a path q in a similar way. It is easy to check
that this relation also satisfies the conditions for a path preserving bisimulation.

4 Bisimulations on Quasi-Discrete Spaces

In this section we show how the notions of bisimulation presented in Sect. 3 relate to common
notions of bisimulation for modal logic when the models taken into considerations are quasi-
discrete neighbourhood models. While being inspired by the bisimulation of Kurtonina
and and de Rijke [15], we obtain a different result when comparing the path preservering
bisimulation and a bisimulation for modal logic with converse modalities.

Our notions of bisimulation for quasi-discrete neighbourhood models are based on the
induced edge relation Ri as described in Sect. 2, and we will refrain in mentioning the
underlying index space to ease the notation. As our first notion of bisimulation coincides
with the standard notion of bisimulation for modal logic (e.g.,[7]), we refer to it as modal
bisimulation.

I Definition 24 (Modal Bisimulation). LetM1 = (X1, η1, ν1) andM2 = (X2, η2, ν2) be two
quasi-discrete neighbourhood models. A relation ρ ⊆ X1 ×X2 is a modal bisimulation, if for
every pair x1 ρ x2 the following three conditions hold.
(atm) p ∈ ν1(x1) if, and only if, p ∈ ν2(x2) for all p ∈ AP
(frtf ) if (x1, y1) ∈ R1, then there exists y2 ∈ X2 with (x2, y2) ∈ R2 and y1 ρ y2
(bckf ) if (x2, y2) ∈ R2, then there exists a y1 ∈ X1 with (x1, y1) ∈ R1 and y1 ρ y2

Lemma 25 shows the relationship between modal bisimulation and neighbourhood bisim-
ulation on quasi-discrete neighbourhood models.

I Lemma 25. On quasi-discrete neighbourhood models, neighbourhood bisimulation and
modal bisimulation coincide.

In contrast with its behaviour on general neighbourhood spaces, neighbourhood bisimula-
tion on quasi-discrete neighbourhood models preserves the “propagate to” operator.

I Theorem 26. If ρ is a modal bisimulation between two quasi-discrete neighbourhood models
M1 andM2 with x1 ρ x2, thenM1, x1 |= ϕ if, and only if,M2, x2 |= ϕ for every formula ϕ
of SLCS without R.
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To see that modal bisimulation does not preserve “reachable from”, it is enough to
consider a very simple example where M1 is a model composed of a single point x with
valuation ν1(x) = {p}, andM2 is composed of two points {y1, y2} where Nmin(y1) = {y1, y2},
Nmin(y2) = {y2}, ν2(y1) = {q} and ν2(y2) = {p}. It is easy to note that x and y2 are modal
bisimilar, but “reachable from” is not preserved. The preservation of such an operator would
require a backward preservation of paths. This, from a modal logic perspective, corresponds
to a notion of bisimulation able to preserve a modal language with converse modalities.

I Definition 27 (Modal Bisimulation with Converse). Let M1 = (X1, η1, ν1) and M2 =
(X2, η2, ν2) be two quasi-discrete neighbourhood models. A relation ρ ⊆ X1 ×X2 is a modal
bisimulation with converse, if it is a modal bisimulation and for every pair x1 ρ x2 the
following additional conditions hold.
(frtc) if (y1, x1) ∈ R1, then there exists y2 ∈ X2 with (y2, x2) ∈ R2 and y1 ρ y2
(bckc) if (y2, x2) ∈ R2, then there exists a y1 ∈ X1 with (y1, x1) ∈ R1 and y1 ρ y2

I Lemma 28. On quasi-discrete neighbourhood models, path preserving bisimulation and
modal bisimulation with converse coincide.

Lemma 28 differs from results of Kurtonina and de Rijke [15], since their notion of
bisimulation is not equivalent to a bisimulation for temporal languages preserving simple
past and future operators. The reason being, their semantics for the temporal operator
“since” and “until” has a universal flavour which is not present in our semantic definition of
“reachable from” and “propagate to”.

The following theorem is a direct consequence of Lemma 28 and Theorem 17.

I Theorem 29. If ρ is a modal bisimulation with converse between two quasi-discrete
neighbourhood modelsM1 andM2 with x1 ρ x2, thenM1, x1 |= ϕ if, and only if,M2, x2 |= ϕ

for every formula ϕ of SLCS.

5 Related Work

While using logic as a description language for topological properties has a long tradition,
for example in the work of Tarski [22], only in recent years there has been a resurgence of
spatial interpretations of modal logics. We refer the reader to the survey by Aiello and van
Benthem [2], and the different chapters in the Handbook of Spatial Logics [1] for examples of
topological, geometric, and other interpretations. While the topologic interpretations allow
for a topological bisimulation, the neighbourhood bisimulation we present in this work is
more general, since it is defined for a larger class of spaces. However, it is straightforward to
show that on topological models (cf. Def. 12), topological bisimulation and neighbourhood
bisimulation coincide. A different line of work that is more related to the study of bisimulations
is the spatial logic for concurrency [8], which allows for the structural analysis of pi-calculus
processes [17].

Our work directly builds on the definitions of SLCS by Ciancia et al. [10]. Besides a
model checking algorithm for SLCS, they also propose two extensions to the logic. In the first
one, SLCS is extended to incorporate a temporal dimension, which is treated with different
operators than the spatial ones, i.e., the temporal operators from computation tree logic. Here,
we have instead concentrated solely on the spatial aspects of the language, and leave temporal
extensions of our bisimulations as future work. In the second extension, SLCS is equipped
with set based modalities, e.g., a modality Gϕ that states the existence of a path-connected
set B, such that all elements of B satisfy ϕ. We intend to examine this type of modality
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in the future. Recently, Ciancia et al. investigated SLCS with coalgebraic methods [11].
They provide several definitions of bisimulations, both with and without a coalgebraic
flavour, on quasi-discrete models, show that they coincide, and present an algorithm and an
implementation to minimise a given model with respect to these bisimulations. Furthermore,
they prove that on the class of quasi-discrete models, where every node has only finitely
many pre- and successors, logical equivalence is a bisimulation. On general models, however,
their analysis only considers SLCS without path modalities, i.e., the only spatial modality
allowed is near. They define a bisimulation, which is similar to definition of neighbourhood
bisimulation, and prove that it coincides with logical equivalence induced by an infinitary
modal logic.

The logic STREL of Bartocci et al. [4] is another extension to SLCS, where the modalities
are defined to be metric with respect to different distance functions. That is, for example, they
can express that conditions only hold for paths “up to three steps”, and similar properties.
Therefore, extending our bisimulations to metric bisimulations in this way is not trivial. In
particular, we strongly suspect this would imply using a kind of metric space as the index
space. However, in typical settings, it is not desirable for the “metric” to be symmetric. For
example, in directed graphs, the distance from x to y may be different from the other way
around. Such a situation calls for quasi-metrics, which only satisfy the triangle inequality,
and that points of distance zero are identical [24].

Neighbourhood semantics of modal logics have been studied quite extensively by now [18].
However, there are subtle differences to the situation of our neighourhood models. For one, the
logic we study has different modalities than standard modal logic. In particular, while the near
modality is equivalent to the diamond-modality of modal logics with neighbourhood semantics,
the path-based modalities are more expressive. Furthermore, the spatial interpretation of
neighbourhood semantics is only concerned with topological spaces, while we are considering
the more general notion of arbitrary neighbourhood spaces.

6 Conclusion

We have presented path preserving bisimulation, a bisimulation on spatial models based
on neighbourhood spaces, a generalisation of topological spaces. We have then proven that
the truth of formulas of the spatial logic SLCS is preserved between bisimilar points on
the models. Using these results, we have shown that SLCS is not strong enough to express
certain topological properties, such as separation properties or connectedness. Furthermore,
we have compared this bisimulation with more standard approaches on the subset of purely
quasi-discrete models proving that it coincides with modal bisimulation with converse.

There are several natural ways to extend this line of work. Up to now, we have only shown
that bisimilarity implies the invariance of formulas. However, it is important to investigate
whether our bisimulations are matching invariance of formulas exactly, i.e., whether two
points that satisfy the same set of formulas are also bisimilar. Here, results of Kurtonina
and de Rijke with respect to temporal models might be promising [15], but an adaptation is
not straightforward. In particular, they show that the ultrapower construction of first-order
models yields models that are suitably saturated to contain witnesses of all necessary types.
However, this approach is reliant on the standard translation of modal logic into first-order
logic, a result we do not have at our disposal. This is due to the second-order nature of the
path modalities, which cannot be reduced to first-order in a similar way as in temporal logic.

It is immediate that for quasi-discrete models, image-finiteness of the edge relation means
that the minimal neighbourhood of every point is finite. In this case, the equivalence of
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points satisfying the same SLCS formulas not using the reachability modality can easily be
proven to be a “forward path” preserving bisimulation. But to treat the full logic SLCS, we
need an even stronger notion to obtain a class of models where equivalence of formulas is a
bisimulation. Even restricting the models such that every point only possesses finitely many
successors and predecessors is not sufficient. This is due to the fact that reachable quantifies
over paths that meet the current point, i.e., in a way we can refer to “backwards” paths, but
it is not possible to refer to the immediate predecessor of a point. To alleviate this, we could
introduce a converse modality to near, to distinguish points appropriately. Ciancia et al. [11]
achieved such a distinction by employing “strong” variants of the reachability modalities,
which allows them to define such a converse modality as an abbreviation.

Regarding the existing extensions of SLCS with set-based modalities, we are interested
in studying how far our notion of bisimulations imply the preservation of such modalities,
and whether and how we would need to strengthen the definitions. A potentially larger
addition would be the investigation of metric variants of SLCS [4], and what kind of metrics
or generalised metrics are appropriate in this case.
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A Proofs of Section 3

I Lemma 16 (restated). Let (Zη , Z1, Z2) be a path preserving bisimulation between M1
and M2, and ϕ be an SLCS formula that is invariant under neighbourhood bisimulation,
i.e., for any x1 ∈ M1 and x2 ∈ M2 with x1Zηx2, we have M1, x1 |= ϕ if, and only if,
M2, x2 |= ϕ. For two paths p and q with (p, n) Z1 (q,m), we have M1, p, (0, n) |= ϕ

implies M2, q, (0,m) |= ϕ. Additionally, if (q,m)Z2(p, n) then M2, q, (0,m) |= ϕ implies
M1, p, (0, n) |= ϕ.

Proof. AssumeM1, p, (0, n) |= ϕ and (p, n) Z1 (q,m), and let kq be an arbitrary index such
that 0 < kq < m. We need to show that M2, q(kq) |= ϕ. By the bisimulation property
(Def. 15 (4)), we know that there is a kp such that 0 < kp < n and p(kp)Zηq(kq). By
the semantics of path intervals, we have M1, p(kp) |= ϕ, and since ϕ is invariant under
neighbourhood bisimulation, we get M2, q(kq) |= ϕ. Since kq was arbitrary, we have
M2, q, (0,m) |= ϕ. The other case is similar. J

I Theorem 17 (restated). If (Zη , Z1, Z2) is a path preserving bisimulation betweenM1 and
M2 with x1Zηx2, then M1, x1 |= ϕ if, and only if, M2, x2 |= ϕ for every formula ϕ of
SLCS.

Proof. We proceed by induction on the length of formulas. The induction base and the cases
for the Boolean operators are as usual.

So consider M1, x1 |= N ϕ. That is, x1 ∈ C1({y | M1, y |= ϕ}), which by Def. 2 is
equivalent to x1 ∈ {z | ∀N ∈ η1(z) : N ∩ {y | M1, y |= ϕ} 6= ∅}. Hence ∀N ∈ η1(x1) : ∃y ∈
N : M1, y |= ϕ. Now choose an arbitrary neighbourhood N2 of x2, i.e., N2 ∈ η2(x2).
By condition (frtη) of Def. 13, there is a neighbourhood N1 ∈ η1(x1) such that for all
y1 ∈ N1, there is a y2 ∈ N2 with y1Zηy2. In particular, this is the case for the y1 with
M1, y1 |= ϕ. Hence, by the induction hypothesis,M2, y2 |= ϕ. Since N2 was arbitrary, we
have ∀N2 ∈ η2(x2) : ∃y ∈ N2 : M2, y |= ϕ. That is, x2 ∈ {z | ∀N ∈ η2(z) : N ∩ {y | M2, y |=
ϕ} 6= ∅} = C2({y | M2, y |= ϕ}). Hence,M2, x2 |= N ϕ. The other direction is similar.

Now letM1, x1 |= ϕP ψ. That is, there is a path p with p(0) = x1 and an n such that
M1, p(n) |= ψ, M1, x1 |= ϕ andM1, p, (0, n) |= ϕ. Now, by the induction hypothesis, we
haveM2, x2 |= ϕ. Furthermore, by Def. 15, there is a path q onM2 with q(0) = x2 and
m such that (p, n)Z1(q,m) and p(n)Zηq(m). Hence,M2, q(m) |= ψ, and by Lemma 16, we
haveM2, q, (0,m) |= ϕ. All in all,M2, x2 |= ϕP ψ. The other direction is similar, using Z2
and the other case of Lemma 16.

The case for ϕRψ is similar to the preceeding case, using the additional cases in Def. 15
as indicated in the last item. For illustration, we prove the first subcase. So assume
M1, x1 |= ϕRψ. Hence, there is a path p on M1 and an n such that p(n) = x1 and
M1, p(0) |= ψ, M1, x1 |= ϕ and M1, p, (0, n) |= ϕ. By Def. 15, we then have that there
is a path q on M2 and an m such that (p, n)Z1(q,m) and p(0)Zηq(0). By the induction
hypothesis, we get M2, q(m) |= ϕ, M2, q(0) |= ψ, and then, by Lemma 16, we also have
M2, q, (0,m) |= ϕ. Hence,M2, x2 |= ϕRψ. J

B Proofs of Section 4

Proofs in this section rely on definitions of modal bisimulation based on the notion of minimal
neighbourhood. This is possible due to the strong relationship between the edge relation
and the minimal neighbourhood. In particular, the definition of modal bisimulation can be
rewritten in terms of minimal neighbourhood, as (frtf ) (resp., (bckf )) can be rewritten as for
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every y1 ∈ Nmin(x1) (resp., y2 ∈ Nmin(x2)) there exists y2 ∈ Nmin(x2) (resp., y1 ∈ Nmin(x1))
and y1 ρ y2. Analogously, the definition of modal bisimulation with converse can be rewritten
in terms of minimal neighbourhood, as (frtc) (resp., (bckc)) can be rewritten as for every
y1 ∈ {y ∈ X1 | x1 ∈ Nmin(y)} = C(x1) (resp., y2 ∈ {y ∈ X2 | x2 ∈ Nmin(y)} = C(x2)) there
exists y2 ∈ C(x2) (resp., y1 ∈ C(x1)) and y1 ρ y2.

I Lemma 25 (restated). On quasi-discrete neighbourhood models, neighbourhood bisimulation
and modal bisimulation coincide.

Proof. LetM1 = (X1, η1, ν1) andM2 = (X2, η2, ν2) be two quasi-discrete neighbourhood
models, and ρ ⊆ X1 ×X2 a relation between them. We show that ρ is a modal bisimulation
iff it is a neighbourhood bisimulation.

(⇒) Assume x1 ρ x2. Atomic equivalence is trivially true. By (frtf ) for any y1 ∈ Nmin(x1)
there exists y2 ∈ Nmin(x2) with y1 ρ y2. As Nmin(x2) ⊆ N for any N ∈ η2(x2), it is
always possible to chose Nmin(x1) to satisfy the (frtη) condition. Hence, on quasi-discrete
neighbourhood models (frtf ) implies (frtη). The backward direction is analogous.

(⇐) Assume x1 ρ x2. Atomic equivalence is trivially true. By (frtη) for Nmin(x2) there
exists a neighbourhood N1 ∈ η1(x1) such that for every y1 ∈ N1 there exists y2 ∈ Nmin(x2)
with y1 ρ y2. As Nmin(x1) ⊆ N1, it follows that on quasi-discrete neighbourhood models,
(frtη) implies (frtf ). The backward direction is analogous. J

In order to prove Theorem 26, we first show a stronger result on preservation of paths.

I Lemma 30. If ρ is a modal bisimulation between two quasi-discrete neighbourhood models
M1 and M2 with x1 ρ x2, then for every path p : x1  ∞ there exists a path q : x2  ∞
such that for any n ∈ N it holds that p(n) ρ q(n), and the other way around.

Proof. We recursively build the path q as follows. First, set q(0) = x2. Second, if q(k) is
defined and p(k) ρ q(k), then by modal bisimulation there exists some y ∈ Nmin(q(k)) with
p(k + 1) ρ y, and we set q(k + 1) = y. By construction we have that p(n) ρ q(n) for any
n ∈ N. We need to show that q is a continuous function. For quasi-discrete neighbour models
this means to show that for any {n, n+ 1} we have that q[{n, n+ 1}] ⊆ Nmin(q(n)), which
follows by construction. J

I Theorem 26 (restated). If ρ is a modal bisimulation between two quasi-discrete neighbour-
hood models M1 and M2 with x1 ρ x2, then M1, x1 |= ϕ if, and only if, M2, x2 |= ϕ for
every formula ϕ of SLCS without R.

Proof. We proceed by induction on the length of formulas. The induction base and the cases
for the Boolean operators are as usual.

ConsiderM1, x1 |= N ϕ. On quasi-discrete neighbourhood models this means that there
exists x′1 ∈ Nmin(x1) such thatM1, x

′
1 |= ϕ. By (frtf ), there exists x′2 ∈ Nmin(x2) such that

x′1 ρ x
′
2 and, by IH,M2, x

′
2 |= ϕ. Hence,M1, x2 |= N ϕ. The other direction is similar.

ConsiderM1, x1 |= ϕP ψ. That is, there is a path p and an n such that p(0) = x1 and
M1, p(i) |= ϕ for all 0 ≤ i < n, andM1, p(n) |= ψ. By Lemma 30 there exists a path q on
M2 with q(0) = x2, and such that p(i) ρ q(i) for all i ∈ N. Then by IH,M2, q(i) |= ϕ for all
0 ≤ i < n, andM2, q(n) |= ψ. Hence,M2, x2 |= ϕP ψ The other direction is similar. J

In order to prove Lemma 28, we first show a stronger result on preservation of paths.

I Lemma 31. If ρ is a modal bisimulation with converse between two quasi-discrete neigh-
bourhood models M1 and M2 with x1 ρ x2, then for every path p : y1  ∞ with p(n) = x1
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there exists a path q : y2  ∞ with q(n) = x2 such that for any i ∈ N it holds that p(i) ρ q(i),
and the other way around.

Proof. We recursively build the path q as follows. First we set q(n) = x2, and all q(i) values
with i ≥ n are defined as in Lemma 30. Second, if q(k) with 0 < k ≤ n is defined and
p(k) ρ q(k), then by modal bisimulation with converse there exists some y with q(k) ∈ Nmin(y)
and p(k − 1) ρ y, and we set q(k − 1) = y. By construction we have that p(i) ρ q(i) for any
i ∈ N, and continuity of q is as in Lemma 30. J

I Lemma 28 (restated). On quasi-discrete neighbourhood models, path preserving bisimulation
and modal bisimulation with converse coincide.

Proof. LetM1 andM2 be two quasi-discrete neighbourhood models. To prove the lemma,
we show that (1) if (Zη , Z1, Z2) is a path preserving bisimulation betweenM1 andM2, then
Zη is a modal bisimulation with converse; and (2) if ρ is a modal bisimulation with converse,
ρ induces a path preserving bisimulation (ρ, Z1, Z2).

(1). Assume x1 Zη x2. Atomic equivalence is trivially true. By point 2 of Definition 15
for any path p : x1  ∞ and n 6= 0 there exists q : x2  ∞ and m s.t. p(n) Zη q(m).
On quasi-discrete neighbourhood models, if n = 1, then m = 1 and we have that for any
y1 ∈ Nmin(x1) there exists y2 ∈ Nmin(x2) s.t. y1 Zη y2. Hence, Zη satisfies (frtf ). The
direction for (bckf ) is analogous by point 5 of Definition 15, and a similar argument also
holds for (frtc) and (bckc) by points 3 and 6 of Definition 15.

(2). Assume x1 ρ x2 and let p : x1  ∞ be a path starting from x1. By Lemma 30 there
exists a path q : x2  ∞ s.t. p(i) ρ q(i) for all i ∈ N. Let us set (p, n) Zp,n1 (q, n) and Zq,n2
as the inverse of Zp,n1 . Let Z1 =

⋃
p∈P,i>0 Z

p,i
1 and Z2 =

⋃
q∈Q,i>0 Z

q,i
2 with P (resp., Q)

the set of paths overM1 (resp.,M2) starting from bisimilar points. It is immediate that
(ρ, Z1, Z2) satisfies points 2, 4, 5 and 7 of Definition 15. The cases for points 3 and 6 of
Definition 15 is analogous by using paths defined in the proof of Lemma 31. Hence, ρ induces
a path preserving bisimulation (ρ, Z1, Z2). J
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