
Seminar notes on developments in bigraphs
Robin Milner, October 2009
Universities of Cambridge and Edinburgh

These notes support seminars on theoretical advances in thebigraph model. They are
conjectural; they aim to stimulate research rather than to report completed work. They
also evolve, as new challenges arise both from experimentalapplication and from the
theory itself.

The notes assume some knowledge of my recent book,The Space and Motion of Com-
municating Agents(Cambridge University Press). Links to the book can be found on
my website,www.cl.cam.ac.uk/ ˜ rm135 . Some of the seminars develop ideas
suggested in Chapter 11 of the book.

On the website can also be found the slides of a course of six lectures, and explanatory
notes linking the lectures to the book.

page last amended

A Embedding calculation 1
B Localisation and binding 9 27 November 2009
C Dags as place graphs 19
D Linked data structures 25
E Measuring space and time 33
F Categories and motion 39

Seminar Note A: Embedding calculation
Robin Milner, 2009

The first section of this note reviews Section 11.2 in my book,which explains how
non-parametric recursion can be modelled by a special classof reaction rules called
atomic germination rules.

The second section generalises this to parametric germination rules, showing how they
model calculation over data types. The resulting BRS may be called a data calculus.
The third section then shows how a data calculus can be embedded in a general BRS.
In particular, it allows ordinary reaction rules to maintain data values and to use them
as preconditions for the enaction of a rule.

It can be compared with the ITU’s Platographical BRSs, which combine BRSs that
share (some) controls; but the emphasis here is on calculation.

1 Growth, or atomic unfolding

An atomicgermination ruleis a specialised reaction rule of the form

K~x →֒ gK

whereK is an atomic control called aseedand the names~x are distinct. We also callK~x a seed.
We find it useful to require the unfolded seedgK : 〈1, {~x}〉 to have no idle root (it only has a single
root) and no idle names. It may contain occurrences ofK and other seeds. Thus the unfolding of
seeds can represent recursion; for example, it models a CCS user-defined recursion

A(~x)
def
= PA .

This constrained form of reaction rule allows us to derive very strong behavioural properties, in-
cluding a harmony between unfolding and the standard reaction relation ⊲ .

Given a set∆ of germination rules with distinct seed controls, let→֒∆ stand for the union
of their germination relations extended to bigraphs (not just ground bigraphs) by closure under
contexts and under support equivalence≏. We omit∆ when it is understood. Note that, unlike the
reaction relation ⊲ , we close֒→ underall contexts, not merely active ones.

We then define theunfolding order≤ as the transitive reflexive closure of→֒. We denote the
symmetric closure of≤ by≡; we call itstructural congruence. An important property of unfolding
is that it is preserved by every context – i.e. it iscongruential. Second, it isdecomposable; this
means that the parts of a composition or product grow independently, i.e. ifE ◦F ≤ G, then
G = Ê ◦ F̂ for someÊ, F̂ such that(E,F) ≤ (Ê, F̂). Crucially,≤ enjoys two further properties:

• ≤ is confluent.

• If no seed occurs in the redex of any standard reaction rule, then≤ respects reaction; in the
following sense. Let ⊲ be the reaction relation generated by the standard rules; then, if
f ⊲ f ′ andf ≤ g, there existsg such thatg ⊲ g′ andf ′ ≤ g′.

1

Recall that≤ involves any number of unfoldings by→֒, while f ⊲ f ′ represents a single reaction
within f . The last property is proved by induction on the number of unfolding steps inf ≤ g. The
proof requires decomposability, and also the fact that unfolding cannot occur within the parametric
redexR of a reaction, sinceR contains no seed. Note that unfoldingcanoccur in the parameter
d of a reaction; but then, if the reaction precedes the unfolding, a single unfolding ind can be
matched by zero of more unfoldings of the parameter instanced′ = η(d), since any factor ofdmay
be replicated or discarded by the reaction.1

In the next section we generalise unfolding rules to admit parameters; in the final section we
show that it retains respect for reaction.

2 Parametric unfolding

We now proceed to generalise germination, allowing a seed togerminate differently for different
parameter patterns. A seed controlK is no longer atomic; instead it may have any rankk ≥ 0, i.e.
K~x is an ion withk sites. The book (on page 64) describes how to derive such higher-rank controls
with the help of a sorting.

In this section we are concerned with a BRS in which each redex consists of seeds with patterns;
that is, we are concerned only with unfolding, not general reaction. In the next section we consider
how to embed such an unfolding BRS into a general one.

We wish to use each seed to specify a set ofpatternsfor the germination byK.2 Each pattern
for K will be determined by a place graphP with outer widthk, containing no seed controls.
(Later, we see thatP may be built from data constructors.) The patterns for a given seedK must
be pairwise inconsistent, i.e. for any pairP,Q of patterns forK we must have

P .d 6= Q.e .
for all parametersd, e. Thus agroundseed, i.e. a seed supplied with parameters, takes the form of
a moleculeK~x.P .d; recall that the so-callednestingoperator ‘.’ is a derived form of composition
in which the names of the second component are exported. Thena germination rule for a seed
controlK and patternP takes the form

K~x.P →֒ G

whereP andG have inner widthsm andm′, together with (as for general reaction rules) an
instantiation mapη : m′ →m determining how a parameter~d for the seed is instantiated. In fact,
for d = d0 ⊗ · · · ⊗ dm−1 we define

d′
def
= dη(0) ‖ · · · ‖ dη(m′−1) .

1In the book it is said that the proof requires the reaction rule to beaffine, i.e. to do no replication. This constraint
appears unnecessary for the present proof (this should be checked), but may be needed for later properties. However,
since unfolding may occur in the parameterd of the reactionf ⊲ f ′, we are relaxing the book’s constraint that
the parameter of a redex should be discrete, merely requiring it to have no idle roots or names. This relaxation does
not affect the book’s theory of standard transitions, but may affect the theory of engaged transitions (this should be
checked).

2Recall the notion of parameter pattern from programming languages, e.g. Standard ML.

2

Then the unfolding relation for this rule is generated from

K~x.P .d →֒ G.d′

by closure under all contexts.
For simplicity let us constrain a patternP to be a place graph (i.e. to have no links). It may

be possible to relax this constraint, but it is easier to preserve it for the present. There are plenty
of examples, in particular for recursive functions on data types, where the constructors of the data
type are place controls, i.e. they have arity 0.

Consider list processing; the list constructors areCons with rank 2 andNil with rank 0. An
arbitrary finite list whose members{di : i ∈ n} have disjoint name-sets is represented by

Cons.(d0 ⊗ Cons.(· · ·Cons.(dn−1 ⊗ Nil) · · ·)) .

Notation In keeping with familiar mathematical notation, we shall often write a comma for the
tensor product⊗, We shall write a context such asCons occurring in a parametric seedK~x.P as
Cons(�i,�j), where the indicesi andj indicate the ordinal positions of these two sites in the inner
width of P .

Note that the first site of aCons must have the sort of the list’s items while the second site has
the sort of a list of such items. Note also that the list itemsdi may have names, which of course
can be shared or closed by imposing a suitable context.

Constructors are not seeds, but a recursive function over lists will be represented as a seed.
Consider the binary functionCat for concatenating two lists; it is a seed with rank 2, and its
patterns are

PCons = Cons.(�0 ,�1),�2 and PNil = Nil,� .

The evaluation ofCat is represented by two unfolding rules:

Cat.(Cons.(�0 ,�1),�2) →֒ Cons.(�0 ,Cat.(�1 ,�2))
Cat.(Nil,�) →֒ � .

Of course, other data types, such as the booleans with constants (i.e. nullary constructors)true

and false, and the natural numbers with unary constructorSucc (successor) and constantZero,
can be similarly treated. With one exception (to do with copying, see below), we have shown
how calculationalsystems can at least be specified as BRSs, though we would expectthem to be
implemented more efficiently.

What about the properties asserted in Proposition 11.6 of thebook for the unfolding relation
≤

def
= →֒∗? They are all retained. It iscongruential(preserved by composition and tensor product);

it is confluent3; and it isdecomposable, provided that we constrain contexts so that every data
constructor (e.g.Cons) is equipped with a ground parameter.

The exception is to do with copying data. Hitherto, we have declared that the redex of a
parametric germination is prime, and is moreover a moleculeof the formK~x.P . This does not

3It should be checked that this follows as in theλ-calculus by means of the parallel moves lemma.

3

permit fetching copies of data, possibly even from a remote region. Thus, for example, the unfold-
ing relation forCat replaces the moleculeCat(d0, d1) by the concatenation of the listsd0 andd1,
overwriting these two lists. To avoid this overwriting we want to add a polymorphic non-prime
germination rule of the form

Fetchx ‖Valx.�0 →֒ �0 ‖Valx.�0

which replaces theFetch-node with a copy of the contents of theVal-node without changing the
latter. This is an instance of what we shall call acontextualrule; see Seminar Note D, Section 2.
We strongly conjecture that with such a rule (which is indeedused in Seminar Note B for encoding
theλ-calculus) the unfolding relation remains confluent, but a rigorous proof is needed.

Let us call a BRS acalculus if its controls are either data constructors or seeds (including
Fetch andVal), with an appropriate place sorting, whose only reaction rules are unfolding rules as
described above. How then do we equip an arbitrary BRS with a data calculus?

Digression Before we can answer this question properly, let us define whatit means to be a
sub-BRSof a given BRSA = BG(Σ,R). First, consider the s-categoryA = BG(Σ),4 where
Σ = (K,D), a signatureK paired with asorting disciplineD. In my book the latter was called
a formation rule; it determines a sub-s-category of the s-category of bigraphs overK. To form a
sub-s-categoryA′ = BG(Σ′), whereΣ′ = (K′,D′), we take a subsetK′ ⊆ K and further refine the
disciplineD toD′.

Now, to form a sub-BRS ofA, including its reaction rulesR, we must modify the latter. We
pick a subsetR′ ⊆ R, in which the redex and reactum of each rule are both admittedby D′.
Finally, sinceA′ = BG(Σ′,R′) must be a BRS in its own right, the parameters of each ground
reaction must themselves be admitted byD′. This completes the definition ofsub-BRS.

3 Embedding a calculus in a BRS

We now wish to consider that the reaction rules governing thebehaviour in a BRSA depend upon
calculation with data that is present. For example, an agentmay be allowed entry to a room only
if her name is in a certain list, and if the room is not already full to capacity. Already, this involves
lists, numbers and truth values, so we expect these to be in a calculusC that we shall embed inA.

In general, let us declare a BRSA to becalculational if it has a sub-BRSC = BG(ΣC,RC)
that is a calculus, provided that certain further conditions are satisfied. We need these conditions
to ensure that calculationassistsother reactions, and neverpreemptsthem. Let us call a control
real if it belongs toK \ KC, and a reaction rulereal if it belongs toR \ RC. We wish to be sure
that a real reaction is never preempted by a calculational one, i.e. an unfolding.

To see the need for further conditions to ensure this, supposeR is a real redex. IfR contains
a C-node, i.e. a seed or a constructor, then an occurrence ofR may be destroyed if this node can
take part in an unfolding.

4We still call it A although we have dropped its reaction rules.

4

We now claim that if the sorting discipline ofA implies three simple conditions, then such
preemption cannot occur. The conditions are that:

• EveryC-node contains onlyC-nodes

• No C-seed occurs in a real redexR

• Any C-constructor in a real redexR lies within a real node ofR.

Notice that the last two conditions apply only to aparametricreal redex; thus,C-nodes may occur
in theparameterfor a real reaction.

These conditions imply5 that the unfolding relation in a calculational BRS respects its real
reaction relation, i.e.

if f ⊲ f ′ andf ≤ g, there existsg such thatg ⊲ g′ andf ′ ≤ g′.

This is the key property we require of unfolding. Unfoldingfacilitatesreaction, e.g. by unfolding
seeds until a parametric redex is matched, but does not prevent or duplicate reactions that are
already possible.

If A is calculational, with calculusC, we may write it asA = (Σ,R,C). Let us look at a
simple example. TakeC to be a calculus for the natural numbers with the constructorSucc and
constantZero; for now, give it just one atomic seed, infinity:

∞ →֒ Succ.∞ .

TakeA to be a refinement the built environment of Chapter 1 in the book. In Σ we include agents
(Agent) and rooms (Room), with arities 2 and 0. Recall the rules B3 and B6 in the book, allowing
an agent to enter and leave a room:

R

AA

R
B3

R
A

B6

A
R

And in algebraic form:

B3 : Agentxy |Room.� ⊲ Room.(Agentxy |�)
B6 : Room.(Agentxy |�) ⊲ /y Agentxy |Room.� .

This allows the room to contain an unbounded number of agents. In our refinement we wish to
keep count of the agents in a room, and impose a limit on it. So let us add toΣ a non-atomic
controlVacs that holds the number of vacancies in the room, decrementingit for each agent who
enters and incrementing it for each agent who leaves. So entry is permitted only when theVacs

5The formal argument has yet to be written down

5

node for the room (the sorting must ensure only one per room) contains a non-zero number – i.e.
one that is a successor. . The rules become:

B3′ : Agentxy |Room.(Vacs.Succ.�0 |�1) ⊲ Room.(Agentxy |Vacs.�0 |�1)
B6′ : Room.(Agentxy |Vacs.�0 |�1) ⊲ /y Agentxy |Room(Vacs.Succ.�0 |�1) .

Notation We can write the children of a control in arbitrary order. Forexample, we may write
the contextRoom(Vacs.Succ.�0 |�1) also asRoom.(�1 |Vacs.Succ.�0)). This is because we are
indexing the sites.

It is easy to see that the original reaction rule, which allows any number of agents in a room, is
equivalent to having assigned∞ to its Vacs node, because∞ ≡ Succ.∞.6 In the refinement, let
us suppose that the vacancy count was originally set with no agents already in the room, and that
it is altered only by the two rules we have given. Then these rules will ensure that the occupancy
will never exceed the original vacancy count.

Let us refine the example further. Suppose we add a rule (whichwe shall not trouble to define)
allowing an administrator to change the limit, by altering the vacancy count of a room. Suppose
he gives theVacs node a new value – say 5 – at a time when there may be arbitrarilymany agents
in the room. This will not immediately limit the occupancy to5, because it may already exceed 5.
In fact the effect will be rules merely to limit the occupancyto 5 more than the current occupancy.
Consider two solutions to this problem:

1. The administrator first to assigns 0 to theVacs node. This prevents any further entry, but at
some point (depending upon the stochastic rates) all current occupants will have left. This
situation can be detected by a rule whose parametric redex isonly matched by a room empty
of agents. (This can be done by a sorting in which a site may be assigned a sort ‘noagents’,
forbidding any agents to occupy that site.) Using this new rule, the administrator can then
assign assign 5 to theVacs node, achieving the desired effect.

2. We change the existing rules so that instead ofVacs the room contains two nodes,Occs and
MaxOccs, respectively the current number of occupants and the allowed maximum. There
are then three rules that can change these values; the entry and exit rules changeOccs, and the
administrator can changeMaxOccs. On each of these events the relevant rule can computer
afresh the value of a truth-valued nodeIsVac, which is then used by the entry rule to decide
whether or not to admit an agent.

Of course, the second solution requires the embedded calculusC to calculate predicates, using the
data type of truth values. For our case, it must provide (as a seed) the binary predicateExceeds

over numbers. This suggests a general strategy: every rule (in our case the entry rule and the
administrator’s rule) that may affect the possible use of future rules should compute a predicate
over the data it holds, and store the result in a truth-valuednode. Then the entry rule can test this
value, as a pre-condition for firing.

This does a lot, but not everything. In our scenario, it will not handle the situation in which
entry to a room depends not only on data stored in the room, butalso on the identity of the agent

6Recall that the equivalence≡ is the reflexive closure of≤.

6

wishing to enter. This cannot be known until she attempts to enter! Of course, the room may
contain a list of the identities of admissible agents, and the agent wishing to enter must provide
identity (e.g. with a swipe card). Our general strategy willthen work, provides that entry involves
two events, i.e. the use of two rules; the first rule is for reading the swipe card and recording
admissibility of entry, and the second uses this predicate value, ifTrue, to admit the agent.

But what can ensure that the admitted agent is the one who swiped the card? One solution
to this involves extending the notion of reaction rule to include what may be calledconditional
reaction rules, having the form

(P,R,R′, η)

where the conditionP is a boolean predicate expressed in the calculus, which mustbe satisfied
(i.e. must unfold toTrue) when applied to the rule’s parameter. (In our case, the parameter would
include the identity of the agent wishing to enter.) Thus a conditional rule is asinglerule with two
inseparable parts: one to evaluate the condition and one to perform the action.

So our simple example has led us into subtleties of modellingthat we might not have expected.
That was the point of the example; any model must make it possible to ask and answer subtle
questions of this kind.

We leave details of conditional rules for further study. But we can note two things. First,
such rules seem quite compatible with the present behavioural theory; for example, they allow
labelled transitions to be derived and they still admit the theorem that bisimilarity is a congruence.
Second, this kind of conditional rule – imposing a calculable predicate on theparameter– is
distinct from one in which a condition is imposed uponcontextin which the redex is matched;
moreover, such conditions may be expressed either (as here)in a data calculus or in a logic, such
as BiLog, associated with bigraphs.

Let us make two points, putting this work in a general context:

• This handling of data structures is just one example of combining bigraphs. Clearly the idea
of bigraphical modules is important, and needs careful definition. For example, is there just
one such notion, or are calculational BRSs distinct from otherkinds of module?

• This treatment is surely not suitable for the end-user of bigraphs, who will need something
more user-friendly akin to a programming language. But the treatment is very close to how
data structures appear in the semantic definition of a programming language such as Standard
ML. Similarly we should aim at a bigraphical programming-cum-specification language with
an analogous semantic definition.

Research at the ITU Copenhagen has pioneered work under both these headings.

7

8

Seminar Note B: Localisation and binding
Robin Milner, 2009 last amended 27 November 2009

This note explains and illustrates the binding of links in bigraphs. It is based upon
Section 11.3 of the book, but its formulation and expositorysequence differ slightly.

Section 1 explains localisation of links, and how it constrains dynamics. Section 2
uses localisation to model the binding of names, as a sortingfor any already existing
BRS. Section 3 uses binding to encode the lambda calculus.

Citations [nn] in square brackets refer to the bibliography in my book.

1 Local bigraphs

In pure bigraphs, placing and linking are completely orthogonal. This can be seen by considering
someF : 〈m,X〉→〈n, Y 〉, decomposed as follows:

F = Fk ◦ · · · ◦F1 with Fi : Ii−1 → Ii (0 < i ∈ k)
whereI0 = 〈m,X〉 andIk = 〈n, Y 〉 .

Suppose that some namex ∈ X is open inF , so thatF (x) = y ∈ Y ; in fact x = x0 with
Fi(xi−1) = xi andxk = y. Then any node inF can be linked to the outer namey; in fact, for each
i (0 < i ∈ k) any node inFi can be linked toxi.

It is useful, for some purposes, to constrain a bigraph by limiting the nodes and sites accessible
from certain outer names. We shall call these outer nameslocal. Each local name in an interface
may be local to one or more of its sites; to represent this, we enrich an interfaceI = 〈m,X〉
to I = 〈m, locI , X〉, where the binary relationlocI ⊆ m × X is called thelocality of I. If
(i, x) ∈ locI then we sayx is local to i. If x is not local to any site we callx global. Bigraphs with
such interfaces are calledlocal, provided they satisfy a constraint defined below.

Example Let us first illustrate the constraint with an example. The diagram showsF : I→ J
whereI = 〈3, locI , X〉 andJ = 〈2, locJ , Y 〉, with x ∈ X andy, y′ ∈ Y . The only local name in
Y is y; that is,locJ = {(0, y)}.

B
1

A

F

2

B

y′y

A

0

0 1

x
x

The fact thaty is local to region 0 ofF is represented by the little circle.F qualifies as a local
bigraph, first because all the nodes linked toy are within region0, to whichy is local. Sincey′ is
global, it may be linked (as here) to nodes in any region. But ify′ were also local it would have to

9

be local to both regions ofF . (So there would be two more little circles, placed where they′-link
enters each region.)

The second reason thatF qualifies as a local bigraph is that the inner namex linked to y is
local to two of the sites lying in region0, and this linkage is represented explicitly by placingx in
those sites. We shall write a site as an indexed box, annotated with its local names:

F = (y/x ◦ (�0 x |Ax.B.�1 |Ax.�2 x) ‖B.1 .

Scoping discipline for local bigraphs We now proceed to express formally our constraint on
local bigraphs. Recall that the portsports(v) of a nodev take the formp = (v, i), for i ∈ ar(v).
For any local bigraphF : I→ J with nodesVF we define the localities of its points and links as
follows:

locportF
def
= {(prnt(v), p) : v ∈ VF , p ∈ ports(v)}

locpointF
def
= locI ⊎ locportF

loclinkF
def
= locJ .

(The relationloclinkF will be extended when binding is introduced later.) Letw, q andℓ respec-
tively range over places, points and links. LetinF be the transitive reflexive closure of the parent
map ofF , and letlinkF be its link graph. Then a local bigraphF must obey the following:7

SCOPE DISCIPLINE

Whenever a linkℓ is local then all its points are local, and (see diagram)
each location of any point ofℓ lies within a location ofℓ.

locpointF
qw

linkF

w′ ℓ (local)
loclinkF

inF

We can now see why the locality of an interface is important; by transmitting locality from the outer
to the inner face of a bigraph, it ensures that the scope discipline is preserved by composition. It is
also easily found to be preserved by tensor product.

What is the effect of allowing a name to be local to some, but notall, of the sites in an interface?
One important effect is to exert a useful constraint upon dynamics. Consider a ground reaction rule
with redexr having two regions, one of which contains a single node; the rule moves this node to
the other region. What can happen if we compose the bigraphF illustrated above with a ground
bigraphg : I, whereg contains an occurrence ofr? Suppose the nodev to be moved is linked tox,
and lies in region0 of g. Then the rule can movev to region2 of g, sincex is local in that region,
but cannot move it to region1.

7This condition was wrongly stated in the book. By a procedural mistake I gave there a condition that works only
in the case that a name is local to at most one region. The correct version, as here, is given in the Corrigenda to the
book, which can be found on my website. It’s worth noting thatthe two conditions are equivalent if a name can be
local to at most one region!

10

To summarise: the locality of names in an interfaceI can be used to confine mobility in a
bigraph whose outer face isI.

Notation Our notation〈m, loc , X〉 for local interfaces is good for setting up their theory, butcan
be a little tedious in practice. One alternative is to write instead〈(X0, . . . , Xm−1), Y 〉, whereXi

are the names local to sitei ∈ m, andY are the global names. Then for example

〈({x, x′}, {x, x′′}), {y, y′}〉, or just〈(xx′, xx′′), yy′〉

has width 2 and name set{x, x′, x′′, y, y′}, with {x, x′} local to site 0,{x, x′′} local to site 1, and
{y, y′} global. With this notation, we can also omit the global namesor all the local names, if
empty; so〈2, yy′〉 has only global names and〈(xx′, xx′′)〉,or just(xx′, xx′′), has only local names.
�.

Operators Composition and tensor product (justaposition) are easily defined, and we omit de-
tails. Note only that for two disjoint interfacesI = 〈m, locI , X〉 andJ = 〈n, locJ , Y 〉

I ⊗ J
def
= 〈m+n, locI ⊎ loc′

J , X ⊎ Y 〉

where we define the offset localityloc′

J
def
= {(m+j, y) : (j, y) ∈ locJ}. The parallel productI ‖ J

of two interfaces is similar, with the disjoined unionX ⊎ Y replaced by the unionX ∪ Y .
Nesting requires a little adjustment. In formingG.F we make the global names ofF accessible

as before, but we allowF also to have local outer names, which are local inner names ofG. Thus
let F : I→ J andG : J ′→K where, using our alternative notation for interfaces,J = 〈(~X), X〉,
J ′ = (~X) andK = 〈(~Y), Y 〉. We require the global namesX of J to be disjoint from~Y , the local
names ofK. Then the nestingG.F : I→〈(~Y), X ∪ Y 〉 is given as in pure bigraphs by

G.F def
= (idX ‖G) ◦F .

The proof that nesting is associative is as before.

Globalising and localising To end this section we consider the possibilities of converting local
names into global ones and vice versa. For the former, there is a simple linkingγ : I→ J called
a globaliserby Jensen in his dissertation; it is an identity, except thata name local inI may be
global inJ . It is obvious that this obeys the scope discipline.

In contrast, there is no bigraph that turns a global inner name into a local outer name; it would
violate the discipline. But we can define a partialoperationon bigraphs to do this. First, for anyx
and sitei in the interfaceI, we define(i, x)I to be the result of making thex local toi; by iterating
this, we define(̃ı, x)I to localisex at any subset̃ı of the sites ofI.

Now for any bigraphF :H→ I, letx be a global name inI not linked inF to any global name
of H. How can we makex local in I, while obeying the scope discipline forF? Consider all the
points ofF linked tox; each such point is either a port with a unique location, or a local inner
name with at least one location inH. From the scope discipline we can see that, to makex local

11

in I, we must localise it to at least every region ofI that contains a location of a point linked tox.
Denote this set of regions bỹıx. We have thus defined thelocalisation ofx in F :

(x)F :H→ (̃ıx, x)I .

The scope discipline is still obeyed if we also locatex at regions that contain no location of a point
linked tox. This leads to a stronger form of localisation, replacingı̃x by the width ofI:

((x))F :H→ (n, x)I wheren = width(I) .

It remains to be seen whether we need both these forms.
A special case of localisation inF is when all its inner namesH are local. Thus, by taking

H = ǫ, we see that localisation is always possible for ground bigraphs. This will be useful later in
the treatment of reaction rules.

2 Binding of names

You will have noticed that localising a link, e.g. by(x)F , does not merely close the link as/x ◦F
does. Closingx in F creates a closed link or edgee, and this makesx inaccessible to any environ-
ment into which/x ◦F is inserted by composition.

But this is not enough. The points linked by an edgee have locality, but the edge itself has not.
Indeed, supposeM is non-atomic andF has a global outer namex; then we find thatM.(/x ◦F) =
/x ◦ (M.F) (and this holds whetherx global or local). A diagram makes this clear:

e

y

M

y

M
e

This becomes serious if, for example, a reaction rule copiesthe contents of anM-node. If we
consider the edgee to be within the node, then each copy will have its own copy ofe; if not,
then all copies will be linked together by a link edgee. But the equation is undeniable; hence the
copying is ill-determined.

Binding So, to determine the copying of linked structures, we need a form of closure that has
locality. We want something thatbindsa namex, i.e. both closesx and confines the use ofx to its
own region. So we admit a new kind of control called abinding. If β is a binding, then we might
write the binding ofx by aβ-node asβx; it functions both as a place and as a link.

Formally aβ-node is an atom with arity 1; it has both a place and a link. We shall draw it as a
little circle (thus distinguishing it from other atoms). Wemight attempt to bind a global name by a
little pure bigraphβx : 〈1, x〉→ 1, drawn thus:

12

β

x

βx ?

But this will not work; we quickly see that it can be made to ‘bind’ a port outside its own region:

x

K L g (βx ⊗ id1) ◦ gL

β

Therefore it is necessary to bind only alocal namex. For this purpose, supposeI is an interface
in which the namex is located at the regionsıx. Then define a small bigraph

βx : I→ /xI

where/xI meansI with namex removed;βx is the identityidI except that the link tox is replaced
by a link to aβ-node, and this binding node is located at all the regionsıx. Of course this is too
general for standard bigraphs, in which each node has exactly one location; so, for the present,
when bindingx we require it to be located only at a single region. (The general case, where a
bound link may be shared among several regions, must be considered in the context ofSeminar
C: Dags as place graphs, where children having several parents are investigated.)

Thus we have succeeded in defining a form of link closure, called binding, which has local-
ity. Often we shall wish to combine localisation with binding, i.e. to bind a global name by first
localising it. So the following abbreviation is useful:

β(x)F
def
= βx ◦ (x)F .

It remains to refine the scope discipline of local bigraphs toaccount for bindings. For this purpose,
for F : I→ J we need only extendloclinkF as follows:

locbindF
def
= {(prnt(v), p) : v a binding node with portp}

loclinkF
def
= locbindF ⊎ locJ .

Outward and inward binding We have defined the locality of aβ-binding to be its parent
place; we may thus callβ an outward bindingcontrol. But we may need nodes that bindwithin
themselves. By a simple sorting discipline, as in Section 6 ofthe book, thisinward bindingcan
be achieved by nesting a number of bindings inside an ordinary node. These can be ordered by
using outward binding controls such asβ0, β1, If K has arityk and we equip aK-node withh
binding controls, then we have turned theK-node into an inward binding control with adualarity,
writtenh→ k. The diagram shows the caseh = 2, k = 3:

Bxyz(pq)

x y z x y z

def
=

B B

qp qp

β2
β1

13

The π-calculus Let us now illustrate binding in the encoding of the finiteπ-calculus. The basic
signature differs slightly from the one used in the book to encode CCS, since we must cater for the
passage of names as data. The controls ‘send’ and ‘get’, previously both with arity 1, now have
dual arities writtensend : 0→ 2 andget : 1→ 1. Thus ‘get’ becomes an inward binding control,
yielding an inward-binding ion such asgetx(z).

Recall that the reaction rule in theπ-calculus is written

(xy.P + A) | (x(z).Q+B) −→ P | {y/z}Q .

The diagram below represents this in binding bigraphs:

y
y x

R R′altalt

x

zz
send get

alt. (sendxy.�0 |�1) | alt. (getx(z)
.�2 z | �3) ⊲ x |�0 | y/z ◦�2 z

Note how the meta-syntactic substitution ofπ-calculus is encoded by a substitution which is itself
a bigraph; it substitutes a global namey for the local namez in site �2. The nesting operation
in binding bigraphs is adjusted quite simply, to ensure thatlocal names remain local to the ‘nest’,
while global names are still exported from it.

Reaction rules As we see in the above rule for theπ-calculus, the notion of a parametric reaction
rule (R,R′, η) is slightly affected by localities and binding. We considerfive questions:

• Must the parameterd of a rule be discrete, as in pure bigraphs?
We have to refine the notion of discrete, as in [48]. IfX is a set of names, we defined to be
discrete for X if every name inX is linked to exactly one port ind. A parameterd must
not be required to be discrete for a namez bound by a node ofR (as in theπ-calculus rule),
sincez may be arbitrarily linked within such a node.

• Can a rule have local inner names?
As illustrated above for theπ-calculus, we want a rule to be able to bind names. So a redex
R will have inner namesX⊎Z, withZ local andX are global; then we will typically require
a parameterd for the rule to be discrete forX.

• Can a rule have local outer names?
There is some freedom. Here we make the outer names ofR andR′ global, but we close
the generatedgroundrules under localisation. Let(r, r′) be a ground rule with outer faceI
and namesX; then so is(x)(r, r′) for anyx ∈ X. But this localisation must allow thatr
andr′ differ in the locations of points linked tox (because for example the rule may change
the region of a node). So, taking̃ı to be the sites ofI within which a point ofx is located

14

by either r or r′, we define(x)(r, r′)
def
= ((̃ı, x)r, (̃ı, x)r′). Further research must be done to

confirm that this indeed yields all the necessary ground rules.

Rules with local names are needed in Section 3, to model any redex of theλ-calculus whose
free names are bound in its environment.

• How are the parameter’s names exported in the formation of a ground rule?
As in pure bigraphs, we define a ground redex to ber = (R ⊗ idX) ◦d, whered is the
parameter andX are its global names.

• What about a rule that copies (part of) its parameter?
Here it is essential that copying a bound link creates a new bound link, rather than one shared
between the original and the copy. A good example is the replication rule of theπ-calculus.
There it is treated as an axiom of structural congruence, !P ≡ P | !P . But we can also treat
it as a reaction rule, or unfolding rule (as in Seminar Note A):

Master.d →֒ d |Master.d .

For example,dmay be a program script held by theMaster node, from which copies may be
repeatedly spun off for execution. Such a script will contain bound links, so binding within
a parameter is essential. As noted earlier, name closure does not serve this purpose.

Jensen [46] adopted a different approach in his handling of the π-calculus. I believe both ap-
proaches are valid; the one I adopt here stays somewhat closer to that proposed in my book.

Sortings for localisation and binding Some simple enrichments of bigraphs were studied in my
book; in particular,place sortingsin which sorts are assigned to places, andlink sortingsin which
sorts are assigned to links and points, in each case under a discipline. It was noted that in each of
these cases there is a forgetful functor of s-categories from the sorted BRS to pure bigraphs.

Birkedal, Debois and Hildebrand [14] have proposed a more general notion of sorting; they
define a sorting to be a functorF : A →BG(K) of s-categories which is surjective on objects and
injective when restricted to each homset.8 Of course, we shall often wantA to be some enrichment
of bigraphs, and indeed by takingA to be local bigraphs we obtain a sorting in this wider sense.
This also works for binding bigraphs.

The advantage of the wider canvas is that one can study the properties of sortings in an abstract
way. For example, under what condition does a sortingF to create RPOs? That is, for an arbitrary
relative bound inA, when can one construct an RPO whose image is an RPO in BG(K)? This was
shown possible by Jensen and Milner [48] for binding bigraphs, when names have unique locality,
and is easily generalised for multiple locality. By working in the proposed wider setting one can
find general conditions on a sorting functor under which RPOs can be created.

8The second condition is calledfaithfulnessin category theory.

15

3 Encodingλ-calculus

Theπ-calculus employs binding, and we have seen that the encoding of its reaction rule in binding
bigraphs is a rather simple reaction rule. Reaction in theλ-calculus is more complex in two ways.
First, it substitutes an arbitrary term for a bound variable, while theπ-calculus simply replaces a
bound name by a name. Second, reaction in theλ-calculus may occur at an arbtrarily deep level
of binding, whereas in theπ-calculus it can only occur at top level; this is achieved in bigraphs by
making theget control passive.

The standard syntax for theλ-calculus is

M ::= x | λxM | MN

and its reduction rule is(λxM)N ⊲ {N/x}M . This, in a single step, replaces the termN for all
occurrences ofx within M . The right-hand side of this rule is not a term, but denotes the term that
results from performing the substitution.

Explicit substitutions We follow the Calculus of Explicit Substitutions of Abadiet al9 which I
shall call ABCL. It adopts a fourth term construction

M ::= · · · · · · | M [x:=N]

which involves theexplicit substitution[x:=N]. They also add reduction rules allowing this sub-
stitution to propagate itself throughoutM , finding each occurrence ofx and replacing it byN .

We shall adopt ABCL’s syntax, and its strategy of performing the substitution separately for
each occurrence ofx in M . But, instead of propagating the substitution, we shall perform it by
‘action at a distance’, reflecting the fact that each occurrence ofx may be arbitrarily deep inM .
This strategy yields a calculus calledΛsub, whose reduction rules are as follows:

(λxM)N ⊲ M [x:=N]
({x/y}M) [x:=N] ⊲ ({N/y}M) [x:=N] whereM has a unique

free occurrence ofy
M [x:=N] ⊲ M whereM has no free occurrence ofx .

In the second rule,{x/y}M distinguishes a particular occurrence ofx to be replaced byN . (This
occurrence may even lie within another explicit substitution!) The rules together achieve the result
of the standard reduction rule. To demonstrate this requires careful analysis, which has indeed
been carried out.10 The calculus provides a natural challenge for modelling in bigraphs, where
‘wide’ reaction rules can be defined that do indeed represent‘action at a distance’.

Bigraphs for the λ-calculus We now define a bigraphical signature forΛsub. Its ions are shown
in Figure 1. The node-shapes are merely to aid the eye. The signature is

9Abadi, M., Cardelli, L., Curien, P-L. and Levy, J-J. (1991),Explicit Substitutions. Journal of Functional Program-
ming 1(4), pp375–416.

10Milner, R., Local bigraphs and confluence: two conjectures (extended abstract), ENTCS eo175-3, Article 4, 2007.

16

xx
lam(x)

lam

app

app

sub(x)

sub

def

defxvarx

var

x x

Figure 1: Bigraphical ions forλ-calculus

Kλ = {lam : 1→ 0, sub : 1→ 0, app : 0, var : 1, def : 1}

wherevar is atomic and the others are all active. The controlslam and sub are inward binding
(hence their dual arities), andapp is a two-place control.

We shall now translateΛsub terms into bigraphs overKλ. Considerλxxy; First we form
app.(varx ‖ vary), then we localisex and nest the result inlam; this yieldslam(x).(x)(app.(varx ‖ vary)).
Thus a global name must be localised before a lambda abstraction is performed. This suggests that
we translate every term ofΛsub with free variablesX into the homsetǫ→〈1, X〉. In fact we trans-
late into each such homset allΛsub terms whose free names are amongX. we define inductively
the translation functions[[M]]X , for each finite setX of names, as follows:

[[x]]X⊎x
def
= varx |X

[[λxM]]X
def
= lam(x).(x)[[M]]X⊎x

[[MN]]X
def
= app.([[M]]X ‖ [[N]]X)

[[M [x:=N]]]X
def
= sub(x).(x)([[M]]X⊎x | defx.[[N]]X) .

In the first clause, note thatX is used to mean the ground bigraph no nodes and outer face〈0, X〉.
In the second and fourth clauses, note that we must localise the namex before embedding a global
bigraph into an ion that bindsx. Of course, a notational convention can be defined to avoid repeat-
ing (x) in such terms.

Note that each term ofΛsub with free namesX has a translation-image in every homsetǫ→〈1, X ′〉
such thatX ⊆ X ′. This multiplicity is harmless. Also, it’s likely thatKλ can be submitted to sim-
ple sorting disciplineΣλ, yield a bigraphical category BG(Σλ) that excludes all ‘junk’ from such
homsets, i.e. the translation is surjective on each such homset. We leave this conjecture open; you
may find it interesting to explore. One property of the translation is worth noting (the proof is
routine): alpha-convertibleΛsub-terms have equal images.

17

xx

sub
def

A

sub

1

def

D

def

0

var def

C

0
1

lam

app

10

0
0

0
0

x

x

Figure 2: Parametric reaction rulesRλ for BGλ

Bigraphical reaction rules for λ-calculus We now add three parametric reaction rulesRλ to
BG(Σλ), forming a BRS BGλ. These rules model those ofΛsub, and are shown in Figure 2. The
rules are namedA, C andD for apply, copyanddestroy. Note that the index of each site in the
reactum indicates the parameter factor that should occupy it. Here are the rules in algebraic form:

A : app.(lam(x).�0 x ‖ �1) ⊲ sub(x).(�0 x | defx.�1)
C : varx ‖ defx.�0 ⊲ �0 ‖ defx.�0
D : sub(x).(�0 | defx.�1) ⊲ �0

RuleA can create an explicit substitution whenever (inΛsubterms) the operatorM of an application
MN is aλ-abstraction. RuleC is ‘action at a distance’; note that it will always be appliedwithin
a sub node, withx bound, so it is essential that ground reaction rules are closed under localisation.
Rule D handles the case when there is no further occurrence of the variable to be substituted;
indeed, the scope discipline directly requires that, for asub-molecule to be aD redex, the occupant
of its first site may contain no occurrence of the variable to be substituted.

Certainλ-calculus reduction strategies can be easily modelled. Forcall-by-value, one simply
creates two rules fromA, in which site 1 is replaced respectively by alam-ion or avar-node. For
the lazyλ-calculus, one merely makes the controllam passive.

We leave it for further research to check that BGλ faithfully modelsΛsub. It is also possible
that BGλ is a special instance of a BRS whose reaction relation is confluent. Some work in this
direction has already been done (op. cit.) but for a different embedding of theλ-calculus in which
all names were taken to be local. That treatment needed to introduce new operations on bigraphs.
Here, in addition to the notions of localisation and bindings, we have only needed to introduce the
localisation operations(̃ı, x).

18

Seminar Note C: Dags as place graphs
Robin Milner, 2009

The first aim of this note is to settle on the algebraic laws fordag place graphs, and
also to settle on a working algebraic syntax which users can be comfortable with. I’ve
discussed it with Michele Sevegnani, Søren Debois and Marcelo Fiore.

Section 1 presents the algebra for dag place graphs as an extension of what we now
have for forest place graphs. Section 2 proposes conventions for notation and dia-
grams, advocatingstratifieddiagrams in favour of the familiarnestingdiagrams. Sec-
tion 3 presents an application being studied by Michele Sevegnani. Finally, Section 4
discusses issues raised by dag place graphs, especially forreaction rules.

1 Algebraic laws

We now propose equational laws for dag place graphs.11 First we assume the usual laws for the
symmetriesγI,J as in my paperAxioms for bigraphical structure.12 In particularγ1,1, also denoted
by swap, just interchanges two sites (or roots). The other laws in that paper are the monoid laws
for 1 : 0→ 1 andmerge : 2→ 1, as follows:

monoid :

merge ◦ (1 ⊗ id1) = id1 (unit)
merge ◦ (merge ⊗ id1) = merge ◦ (id1 ⊗ merge) (associative)

merge ◦γ1,1 = merge (commutative)

We generalisemerge to mergem : m→ 1 by induction onm:

merge0
def
= 1

mergem+1
def
= merge ◦ (id1 ⊗ mergem)

It is readily seen from this definition thatmerge2 = merge.
Now split : 1→ 2 is the dual ofmerge, and is the only extra operation we need for dags. We

add the co-monoid laws for0 : 1→ 0 andsplit :

co-monoid :

(0 ⊗ id1) ◦ split = id1 (unit)
(split ⊗ id1) ◦ split = (id1 ⊗ split) ◦ split (associative)

γ1,1 ◦ split = split (commutative)

and we definesplitm : 1→m by induction onm:

split0
def
= 0

splitm+1
def
= (id1 ⊗ splitm) ◦ split

11I am grateful to Marcelo Fiore for pointing out what we need inaddition to those for forests. The proof of their
completeness needs to be confirmed, but we expect no difficulty in that.

12MSCS 15, 2005, pp1005–1032. By an oversight the paper omitted one law in Table 1; the law isγI⊗J,K =
(γI,K ⊗ idJ) ◦ (idI ⊗ γJ,K) .

19

where of course (dually) we find thatsplit2 = split .
The question then is: how do we relatemerge andsplit? Marcelo drew our attention to two

further axioms formerge andsplit , usingswap for γ1,1:

degeneracy: merge ◦ split = id1

bialgebra : split ◦merge = (merge⊗merge) ◦ (id1⊗swap⊗id1) ◦ (split⊗split) .

There are also three axioms involving 0 and 1:

0 ◦1 = id0 0 ◦merge = 0 ⊗ 0 split ◦1 = 1 ⊗ 1 .

Fiore points out that the free symmetric monoidal category generated by these together with the
monoidal and co-monoidal laws is known to be the category of relations between finite ordinals.

We call a node-free place graph aplacing. For current pure bigraphs, a placingφ : m→n is
just afunctionfrom m = {0, 1, . . . ,m−1} to n = {0, 1, . . . , n−1}; this is the free interpretation
of the laws for the symmetries andmerge. What is the analogous free interpretation of the extra
laws we have added? Fiore points out that it is known to consist of binaryrelationsφ ⊆ m× n.

What happens when nodes are added? More precisely, we add to our algebra a generator in
the form of a single nodev : 1→ 1. So what then is the free interpretation of the axioms? We
strongly conjecture13 that a place graphP : m→n with nodesV consists of a binaryrelation
P ⊆ (m ⊎ V) × (V ⊎ n) that is acyclic, i.e. ifv ∈ V and (v, v) ∈ φk then k = 0. This
perfectly matches the definition of forest place graphs, except that the relations are functions in
that case. The composition of dag place graphs is in obvious analogy with composition on forest
place graphs.

For a place graphP : m→n with nodesV , letw ∈ m⊎ V andw′ ∈ V ⊎ n. We definew to be
child of w′ if (w,w′) ∈ P . Childhood is not (necessarily) transitive; ifw′′ in turn is a child ofw′

it may or may not be a child ofw. Define thedescendantrelationP ∗ to be the transitive reflexive
closure ofP . A sorting may impose discipline on both childhood and descendancy, e.g. that two
distinct regions of a certain sort may not share a child, or may not share a descendant. For example,
two rooms in a building may not share a descendant, but the range of a mobile sensor may share
a child with a room or with the range of another sensor. As usual, we require that reaction rules
preserve the sorting discipline.

2 Diagrams and notation

The general case in which several sites of a bigraphG may ‘share’ a component ofF is when we
haveF : I→ J ′ andG : J→K, with J ′ = 〈n′, X〉 andJ = 〈n,X〉. Forn′ 6= n we can’t form
G ◦F , but we can formG ◦φ ◦F allowing parts ofF to be shared byG.

In generalJ ′ will be non-prime, and we may have the different regions ofF split among
different numbers of the sites ofG. In that case, we must specify the placing to be used. As
an example, consider the caseJ ′ = 〈3, x〉 andJ = 〈4, x〉; for specific bigraphsF andG we
can representG ◦ 〈φ, idx〉 ◦F by astratifieddiagram that makes the placingφ : 3→ 4 explicit, as
follows:

13We believe the proof is routine

20

B CA

q rp

x
G

φ

F

A

We can conveniently writeφ as a vector of three subsets of4 = {0, 1, 2, 3}:

φ : 3→ 4 = {{0, 1, 2}, ∅, {3}} .

The region0 of F is shared by the sites0, 1 and2 of G, while the region2 of F is inserted only at
site3 of G. The region1 of F is ‘closed’, and hasnoplace! But its nodes could to be linked viax,
and some of its inner nodes could even be shared by the other regions ofF . In general, we might
writeG ◦ 〈φ, idX〉 ◦F in programming style as

shareF by φ in G .

If course, we may choose not to makeφ explicit, and be content with a nesting diagram which
represents sharing by overlapping of nodes (or of sites or regions). This recalls Venn diagrams,
and for the above example it is not bad:

B

A

p

A

G ◦ 〈φ, idx〉 ◦F x

C

r

q

But there are disadvantages. First, note that certain ‘regions’ in the diagram, e.g. the region shared
by theB- andC-nodes but not by anA-node, are empty. Such a fictitious region means nothing. It
would mean something if it contains a site; then, via composition, it may come to contain nodes.
But in a stratified diagram such ‘empty’ regions do not arise naturally. Second, a nesting diagram
does not naturally represent how a node may share a child withone of its descendants.

21

place closure The closure of places – as for the middle region ofF above – may seem strange to
those familiar with bigraphs. But it resembles the closure oflinks in link graphs; just as the latter
makes a name inaccessible to the outside, so the former makesa root or region inaccessible to the
outside. Far from causing problems, I believe place closurewill add useful expressive power.

placings that both merge and split Given the sameF andG and in the previous example, we
could form a shared composition via a different placing

ψ : 3→ 4 = { {1, 2}, {2, 0}, {0, 1} } .

Since these subsets are not disjoint,ψ involved merging as well as splitting. Here is a stratified
diagram analogous to the first diagram for the preceding example:

B CA A

rp

x
G

F

ψ

q

Again, as an alternative, there is a tolerable nesting diagram:

A

r

q

C

B

A

p

xG ◦ 〈ψ, x〉 ◦F

3 Application

As an experiment in the use of dags as place graphs, Michele Sevegnani has modelled the 802.11
CSMA/CA protocol. We do not report the whole model here,14 but confine ourselves to reproduc-
ing (with his permission) the diagrams for the reaction rulethat represents the last of the five phases

14Michele Sevegnani can be contacted at michele@dcs.gla.ac.uk .

22

of the protocol. The relevant controls areM for a wireless station andS for the range of a station’s
signal. The latter changes its state toSL when a station’s signal is locked onto another station. The
five phases are (1) a sender senses a channel free and becomes ready to transmit an RTS (request
to receive) packet; (2) it transmits this packet, in the absence of collisions; (3) the receiver replies
with a CTS (clear to send) packet; (4) the data packet is sent; (5) the receiver acknowledges with
anACK packet.

In the fifth and last phase the sender and receiver stop transmitting and the locks on the channel
are dropped. The following nesting diagram depicts this phase. the sender nameda is the upper
station (M), the receiver namedd is the lower, and the data packet is the triangular node. The
sender discards the data packet, while the receiver has further transmitted the received copy to
where it will be processed. The dropping of locks is represented both by the loss of a link between
the two stations (M) and by the change of state of the signal range from locked (SL) to unlocked
(S).

M

M

d

q

x

SL

a

M

M

d

q

x

S

a

SL S

The stratified version of the diagram is somewhat simpler:

a d

S S

q x

M

G′

φ

a d

SL SL

q x

M

G

φ

MMF F ′

This may be written as

share F by φ in G ⊲ share F ′ by φ in G′ .

In modelling the protocol Sevegnani gives stochastic rates(see Note E) to the five rules. This
opens the way to running simulations of the protocol. The rigorous algebraic presentation also

23

opens the way to formal analysis of the protocol, either by model-checking or by other mathemat-
ical means. To be tractable these methods must be mediated bysoftware tools. Projects to design
and implement such tools are under way.

4 Discussion

link graphs with aliases We have left link graphs unchanged. But having made place graphs
self-dual we may wish to do the same for link graphs. This onlymeans introducingaliases; that is,
a link can have any number of outer names. (Already, closure allows it to havenoouter names.)

theoretical strategy We have already conjectured what the axioms of dag bigraphs should be,
and this should be not too hard to confirm. When I considered dagplace graphs – many years ago
– there were four reasons for not then adopting them:

1. I was concerned that diagramming them was not so straightforward.

2. They appeared unnecessary for encoding process calculi.

3. Relative pushouts (RPOs) do not always exist in the presenceof dag place graphs, and they
seem essential to handling behavioural equivalence in bigraphs.

4. To discover that something is necessary, see how far you can go without it!

The third reason is not strong: RPOs do exist for any pair~A of place-sharing bigraphs in which no
two roots share a descendant and no root is idle. Thus we may find that behavioural equivalence is
tractable for some place-sharing BRSs.

The fourth reason was strategic. As a result, we are now confident that some applications
demanddag place graphs, and therefore we are right to include them provided that they do not
create serious difficulty.

binding bigraphs We still have to analyse the impact of dag place graphs on the theory ofbind-
ing bigraphs, where some links (those that represent name-binding) are confined to points that lie
in a certain region.

reaction rules Recall that a parametric reaction rule with redexR, generates a ground reaction
rule r = (R⊗ idX) ◦d for each parameterd. A reaction rule may discard or replicate factors ofd;
we have to be clear how this affects factors that share nodes.

conclusion As can be seen from above, analysis is still needed for aspects of place-sharing in bi-
graphs. For this, experimental applications are valuable;they may influence the general definition
of dynamics.

24

Seminar Note D: Linked data structures
Robin Milner, 2009

In this note we represent data bylinking, rather than bynestingas in Note A. We
begin by usingbindingas in Note B. We then show how data structures that share, e.g.
two lists sharing a terminal sublist, can be simply encoded if bigraphs are enriched
with aliasesfor outer names. As an application, we consider the indexingof arrays
(of arbitrary data) by natural numbers; in can be done simplyand efficiently with the
numbers as linked structures.

1 Disjoint data structures

In Note A, a data constructor was a control with arity zero, and zero or more sites. For example,
for list structures we hadNil : 0→ 1 andCons : 2→ 1 Here instead we define a data constructor to
be an atom with arity≥ 1; it has a principal port, the name of the constructed datum, and zero or
more subsidiary ports for linking to components.

In this section we stay close to Note A in one sense: differentdata structures aredisjoint, i.e.
they have no nodes in common.15 Let us illustrate with the case of list structures. First, wedefine
Nil andCons as atomic controls with arities 1 and 3 respectively.

ConsNil

x px x′

Instead of nesting constructors, we shall connect them withbound links. For this purpose we define
an operator to create bound links:16

F x̂y··· G
def
= β(x)β(y) · · · (F |G) .

Thus the spine of a list ofn elements namedp1, . . . , pn will be

Listx~p
def
= Consxp1x1

x̂1 Consx1p2x2
x̂2 · · · x̂n−1 Consxn−1pnxn

x̂n Nilxn
,

which is pictured thus, using a small circle to represent a bound link:

p1 p2 pn

x

Cons Cons Cons Nil

15In Section 2 we shall show how to model data structures that share elements.
16Binding requires thatF andG have no global inner names. The usage here will obey this condition.

25

The closure of namesx1, . . . , xn prevents two lists sharing a terminal sublist. This effect is analo-
gous to the effect of nesting the constructors, as in Note A.17

We are now ready for seeds. In this treatment of data a parametric does not nest its parameters,
but has bound links to them. So the seed for concatenation isCatxyz, with principal portx, where
y andz link to the two arguments. There are three germination rules:

Catxyz
ŷ Consypy′ →֒ Consxpx′

x̂′

Catx′y′z

Catxyz
ŷz (Nily |Conszpz′) →֒ Consxpz′

Catxyz
ŷz (Nily |Nilz) →֒ Nilx .

They are pictured as follows:

x

Cons Cat

pp y′ zx

ConsCat

y′ z

x

Cat Nil
Cons

→֒

x

Cat Nil
→֒

x

Nil

zpx

Cons

zp

Nil

→֒

Just as in the germination rules of Note A for nested data constructors, operations defined in
this way destroy their arguments. We therefore need the ability for a calculation to make copies
of data values, perhaps from remote locations, in order to operate upon them. So we imagine that
these copiable values are stored within an inward-binding control. Recall the controlsFetch and
Val with rank 1 and arity 0, at the end of Section 2 in Note A. Here wegive Fetch rank 0 and
arity 2, and we giveVal rank 1 and arity1→ 1 (see Note B for binding arities); then we define a
germination rule:

Fetchxy ‖Valx(z).�0 z →֒ (y/z ◦�0 z) ‖Valx(z).�0 z .

This is close to the reaction rule in Note A. However, it differs in that theVal-node and its stored
value are still present after the germination. The rule differs from previous germination rules
because its ‘seed’ is non-prime.

Of course, similar but simpler rules work for the natural numbers, with constructorsZero and
Succ with arities 1 and 2. We strongly conjecture that such germination rules generate an unfolding

17In a later section we shall show howaliasingof outer names permits shared substructures.

26

relation with the essential property that it is confluent andrespects reaction. But a rigorous proof
has not been given. Note that in the case of theFetch–Val rule the proof must rest strongly on the
fact that the stored value is preserved by reaction.

2 Contextual rules

In the final germination rule of the previous section, involving Fetch, the redex and reactum share
aVal component. We would like to write it as

Valx(z).�z ‖− Fetchxy →֒ (y/z ◦�z) .

This is a special case of acontextualreaction rule (in this case germination rule), as proposed at
the end of Section 11.1 of my book. It adds no power to rules, since such a rule can also be written
out with the context on both sides. But it distinguishes the part of a redex that changes from the
part which is just a required context for the change. In this particular case we have chosen the
symbol ‘‖−’, since the context is a parallel product; when it is a prime product we shall use ‘|−’.
Contextual germination rules will occur often in the following sections.

It is important theoretically to make a rule’s context explicit, because the proof that unfolding is
confluent and respects reaction will depend crucially on thefact that a context persists unchanged
through a reaction.

3 Shared structures

McCarthy’s LISP was a ground-breaking advance in non-numerical programming. Those who
have used LISP will not be satisfied with the non-shared lists of the previous section. We proposed
non-shared structures partly because they are closely analogous to the nested ones of Note A, and
partly because sharing – at least in an elegant form – seems todemandaliasingof names, which
allows a link to have any finite number of outer names.

By the way, aliasing in link graphs is the analogue of dags as place graphs; see Note C. Just as
a link with outer namex may also have outer namex′ as analias, so a node in a placew may also
have another placew′ as analibi.

We shall not develop the theory of aliases here,18 but will state their obvious properties and
constructions as we need them. To begin with, the quintessential alias is writtenx=y, and all other
aliasing – such as anA-node with two outer names, can be derived by parallel or prime products,
e.g.Ax |x=y:

18Some of it was done in an early tech report on bigraphs. Later,aliases were excluded because they were were
not needed for encoding many process calculi, and they falsified the theorem that RPOs (whichwereneeded) always
exist in bigraphs. But from a more modern perspective they may turn out to be valuable. In any case, bigraphs without
alibis and/or without aliases can be represented by a special sorting, and in general we expect the theories of sorted
BRSs to refine, or strengthen, the unsorted theory.

27

x y

A

x y

Ax |x=yx=y

Now let us reconsider linked lists. We take the same constructorsNil andCons, but we connect
them differently. The reason is that, even if twoCons-nodes are connected by a link that is not
open, the link may later be opened in order that a user can gainaccess to it and thereby share a
terminal sublist. It is therefore pointless for the link to be bound; instead, we shall justcloseit.
Indeed, with aliasing it is accurate to think of a closure/x not as closing a link, but as removing
the namex from it; if x has aliases then the link is still open, but with one name fewer.

To represent a structure (e.g. a list) with closed but not bound links, we define an operator
analogous toF x̂y··· G:

F xy··· G
def
= /x/y · · · (F |G) .

Thus the spine of a list ofn elements namedp1, . . . , pn now becomes

Listy~p
def
= Consyp1y1

y1 Consy1p2y2
y2 · · · yn−1 Consyn−1pnyn

yn Nilyn
.

y
p1 p2 pn

Cons Cons NilCons

Note that there is no little circle on the closed links. When a list is first created, probably all its
links except the first will be closed, as here. But sharing can arise as the result of operations.

We now give germination rules for concatenation, in which the first list is copied but the second
is shared by the result. We give the rules first in non-contextual form.

Catxyz |Consypy′ →֒ Consypy′ |Consxpx′
x′

Catx′y′z

Catxyz |Nily →֒ z=x |Nily .

Cat

Cons
→֒

Cons

x y p zy′

Cat Nil

x y z

→֒

p y′ z

ConsCat

yx

x y z

Nil

28

This definition raises many interesting points:

• In both redexes, the linky from Cat to an element of the first list is an open link, allowing
for the possibility that the list – or its terminal sublists –may be shared.

• The first rule copies the first list, element by element, and the new copy has closed links
(which may become shared after further use). On the other hand, the second rule merely
creates a link from the end of the first list to the start of the second. The aliasingz=x is
useful for this purpose, though it can be avoided by copying the second list, as we did for
lists with bound links.

• So far, we have not excluded multiple links from aCons element to different ensuing sublists.
But this would make the concatenation non-deterministic. Toensure that these links are
unique, we impose a simple sorting to ensure that each such link contains at most one target
port, where atarget is the left-hand port of aCons or Nil.

• From the point of view of LISP all we have done is to capture what goes on inpure L ISP,
where there are norplaca andrplacd operations for assigning a new head or tail to a list
cell. But for examplerplaca is simple; it is only necessary to re-connect a cell’sp-link.

It is revealing to see the text and diagrams for the above rules in contextual form:

Consypy′ |− Catxyz →֒ Consxpx′
x′

Catx′y′z

Nily |− Catxyz →֒ z=x .

→֒|−

p y′

Cons

y

Cat

x y z

CatCons

x p y′ z

x

Cat

zy

→֒|−

x z

Nil

y

Finally, there are alternative contextual rules using ‘‖−’ instead of ‘|−’. Such ‘wide’ rules can
yield list structures that are straddled across many regions, but that seems to create no difficulty.

4 Indexing

A simple shareable linked structure is the natural numbers.We wish to consider a calculational
BRS in which there is auniquesuch structure, and in which natural numbers, especially those used

29

for indexing, can be represented simply by links into this unique structure. We leave aside the
question of whether such a BRS can be defined as a sorting; but we shall deal with unfolding rules
that preserve this unicity as an invariant.

So, analogous to the definition ofZero andSucc from Note A, let us redefine them as construc-
tors with arities 1 and 2, and∞ as a seed with arity 1. Then define

∞x →֒ Succxy
y ∞y , Natx

def
= Zerox |∞x .

Natx looks like this, with all its links closed except one:

Zero Succ Succ

x

Our unfolding rules will work with a unique such structure. Moreover, the rules will preserve as an
invariant that the only instances ofZero andSucc are within this unique structure. However, they
will allow aliases to be created for closed links, thus opening them. For example, this can be done
by the seed (not constructor)Nextxy, with the germination rule

Succyz ‖− Nextxy →֒ x=z .

which may be pictured thus:

Next

x y

→֒‖−
Succ

y z x z

This does what would be written in a programming language as the assignment “x := x+ 1”.
It is convenient to introduce a special infinite class of names, thenumerals0,1,2,. . . . We then

insist that we work with a unique structureNat0 for the natural numbers, whose links have been
opened by unfoldingNext1,0 ‖ Succ0,z, thenNext2,1 ‖ Succ1,z and so on, as far as needed. The
numerals must be subject to a special discipline, to ensure that their links into the structureNat0
remain fixed. We omit details of this discipline; it will be assisted by a sorting (as already proposed
for linked lists) but it remains to be seen whether the entirediscipline can be expressed as a sorting.

The reader may enjoy defining simple functions of natural numbers as seeds. For example
Plusx,2,3, linked intoNat0 by the numerals 2 and 3, should create the aliasx=5. The germination
rules for such functions are quite simple, especially for those who know primitive recursive arith-
metic, but care is needed to treat the case in which two names are linked to the sameSucc-node.

We now turn to arrays. The cells of an array will be indexed by the numerals. We introduce
atomic controlsArr : 3 andCell : 3. An array of sizen, with namea and elements of arbitrary
sort s, will be represented byArrany, wherea is its name,n its size andy is linked ton cells

30

Celly1p1 , . . . ,Cellynpn
, where eachpi has sorts and names an array element. Thus the array structure

is
Arrany

y (Celly1p1 | · · · | (Cellynpn
)

which can be pictured thus:

a

Arr

n 1 2 p2 n pnp1

Cell

Cell
Cell

What reaction rules are needed for arrays? First, one must be able to assign a new element to
any cell. This is a state-changing operation, and thereforeit cannot be treated as an unfolding. It
is easy enough to define a reaction rule for a controlAssign : 3, so that the atomAssignamq assigns
the nameq of a new datum to themth cell of an array nameda. We shall ignore this rule, and
focus on germination rules that do not change the state of data, and are therefore likely to yield an
unfolding relation that is confluent and respects reaction.

The first such rule is for fetching an array element. For this purpose we introduce the atomic
seedFetch : 3, with germination rule

Arrany |Cellymp ‖− Fetchamq →֒ q=p ;

thusFetchamq makes the nameq an alias for themth element in the array nameda.
More ambitiously, suppose that we wish to iterate a binary operator over the elements of an

array. We represent it as a seedOp : 3, such thatOprpq applies the operator to values (named)p
andq and names the resultr.19 We suppose that the array elements – of whatever sort – are built
by constructors, and that there are germination rules forOp over these constructors. We need not
detail these rules; we shall merely define how to iterateOp over the array structure, unfolding it
into a structure ofOp-nodes, which will cause further unfolding when the array structure is linked
to its elements.

We introduce two seedsIterop : 3 andAppop : 4 that respectively iterateOp over an array and
apply it to each individual element:20

• Given an array nameda, the seedIteroparq initiates the iteration with a starting valueq and
delivers the final result atr.

• Given an array of sizen linked aty to its elements, the seedAppopnyrq appliesOp to each
elementp and accumulated valueq, delivering the result atr. It usesn to terminate.

Here are the germination rules:

Arrany ‖− Iteroparq →֒ Appopyrq0

Arrany ‖− Appopyrqn →֒ r=q

(Arrany |Cellymp) ‖ Succmm′ ‖− Appopyrqm →֒ Appopyrq′m′
q′ Opq′pq .

19We assume the operator to be associative and commutative, allowing the order of iteration to be freely chosen.
20Using binding, one can define generic seedsIter andApp that are parametric inOp; we ignore the details.

31

It is worth drawing a picture of third rule, which does all thework:

Appop Appop
Op

→֒‖−

m pa n y m′

Arr Cell

y r q m ry p q m′

Succ

Note two things especially. First, the unfolding ofAppop is unambiguous, since the its two rules
cannot both apply to a given occurrence; for ifm = n then there can be no cell of the given array
that is linked tom. Second, the rules work properly even when the data named byp, q, . . . are
themselves natural numbers, i.e.p, q, . . . are links intoNat0. In this case,Op could bePlus for
example, and we are summing an array of natural numbers.

5 Conclusion

This seminar, representing data by linking, is more conjectural than Note A – especially in Sec-
tion 4 where the data structures can be shared. This is partlybecause aliasing of outer names is
used, though this was indeed studied in an early technical report by me, and omitted in later work
because RPOs do not always exist in the presence of aliasing.21

Another reason is that it is unclear whether the discipline for shared data structures can be
fully expressed as a sorting; it should be not hard to settle this question. Finally, work is needed
to establish that the unfolding relation induced by the moreadventurous germination rules of this
seminar is indeed confluent and respects reaction. I strongly recommend this as a challenging
project, perhaps for PhD study; it will greatly clarify the concept of a calculational BRS.

21Bigraphical reactive systems: basic theory, Technical Report 523, University of Cambridge Computer Laboratory,
2001. There are sufficient conditions for RPOs to exist, and these are satisfied by the encodings of process calculi, so
there is no strong reason to preclude aliases; only that the theory is a little harder in their presence.

32

Seminar Note E: Measuring space and time
Robin Milner, 2009

In this note we look first, in Section 1, at how superpose cartesian space on our regions,
which are hitherto only structured by containment and contiguity.

Next, in Section 2 we introduce stochastic behaviour, in which a non-deterministic
BRS is refined into one whose reactions have exponential rates,thus admitting proba-
bilistic analysis and simulation.

Finally, in Section 3 we look at time and clocks. We also suggest how to approximate
differential equations, whose independent variable is time, by difference equations that
step time by a (small) non-zero amount, and how such equations can control reaction.

1 Measured regions

Consider situations in which we need to measure physical locality. Even when a bigraphical region
models a part of physical space, it may be concrete or abstract. It is concrete if it is a room, or a
biological cell. It is abstract if it is an imaginary division of a physical space; for example, it may
be the work space or the attention space of an individual working in a room, or it may be the range
of a wireless station (as in Note C), or it may be a terrestrial region defined only by the nature of
the terrain – e.g. forest, mountains, desert or pasture.22 In either case some behaviour may depend
on details of cartesian space, other behaviour only on containment or contiguity, and some on both
together.

So let us see how to superpose cartesian space on a bigraph, ormore exactly on a given region –
aLocale. LetPoint : 3 be a binary constructor of numerals, so thatPointaxy gives the namea to the
point(x, y) in discrete 2-D cartesian space. We suppose thatx andy point into the shared structure
Nat0 of natural numbers from Note D. Supposing that theLocale contains a set of neighbouring
points, we draw it like this:

a x y

Locale

Point

where we have detailed just one point. The points are arranged as a grid, to suggest that they are
indeed neighbours in cartesian space. So this is just an ordinary bigraph.

22The latter idea comes from the paper by Steve Benfordet al, sl Life on the Edge: Supporting Collaboration in
Location-based Experiences, CHI 2005, Portland, USA, pp721–730.

33

As an example, suppose we want a reaction rule for an event that requires two agents to be not
only in the same locale, but close enough to each other. I modelled Benford’s Savannah game (see
the cited paper), in which children pretend to be lions. Lions roam the savannah, considered to be
divided into locales. The lions are hunting for prey. A lion may sight a deer that is not only in the
same locale but also near enough together, say within a distance of 50 metres.

So we need a reaction rule that is subject to a calculable condition on its redex. This seems to
demand a refined form of reaction rule. Let us formulate what is needed in this special case, to get
a better idea of what kind of refinement is needed in general.

Begin with a crude reaction rule that allows a lion to sight anydeer in the same locale:

Liona |Deera′ ⊲ Lionalertab
b Deerseena′b .

a a′ a a′

Lion
Deer

Lionalert
Deerseen

The new closed link represents the sighting. But we want to refine this so that it can only happen
if the pointsa anda′ are near. We therefore define a contextual germination rule

Pointaxy |Pointa′x′y′ ‖− Nearaa′ →֒ Lessz,50
z Distzxyx′y′ .

together with germination rules forDist andLess. we omit them, but they are easily defined; one
calculates the distance between two points, and the other compares two arbitrary numbers. Then
we refine the crude reaction rule into a conditional reactionrule, as defined at the end of Note A,
by adding as the conditionP the predicate expression

Pointaxy |Pointa′x′y′ |Nearaa′

which must unfold toTrue to enable the reaction.
We could have defined two separate reaction rules, one to evaluate the predicate and the other

to enact the sighting. But then there would be no guarantee that other reactions – perhaps the deer
moving out of range – would not intervene between the enaction of these two rules.

Let us briefly consider abstract notions such as the attention space of a person, or the range of a
radio transmitter or sensor. Such a region can naturally be modelled as a set of cartesian points, or
as a node that contains such a set. Then if we adopt shared regions – i.e. dags as place graphs – as
in Note C, we can expect to model the overlapping attention spaces of two people (allowing them
to interact), or the overlapping ranges of sensors by the side of a motorway. We can also attempt to
model the movement of a person’s attention space as she movesthrough a crowd of people, or the
movement of a car from one sensor range to another as it travels on the motorway. It is challenging
to model this kind of mobility in a BRS equipped with a calculational sub-BRS.

34

2 Stochastic behaviour

Jane Hillston23 pioneered the attribution of stochastic rates to the transitions of a process calculus;
this led to the PEPA toolkit for performance analysis and simulation. Later Corrado Priami24

extended this work to theπ-calculus. Inspired by these advances, and by the challengeto apply
bigraphs to biological behaviour, Jean Krivine, Angelo Troina and I have developed a generic
stochastic treatment for bigraphs.25

Our approach differs in one sense. Behaviour in CCS andπ-calculus is expressed directly in
the form of labelled transitions, while basic behaviour of bigraphs consists of reaction rules, which
are essentiallyunlabelledtransitions. We thereforedefinestochastic rates only for reaction rules;
then the rates of labelled transitions can byderived, as we shall see.

We begin by assigning to every reaction ruleR = (R,R′, η) a rateρ > 0, yielding the rule

R = (R,R′, η, ρ)

where the significance ofρ is that, if applicable, the rule will be delayed by at least time t with
probabilitye−ρt; a Poisson distribution. Thus rules with high rate are more likely to occur earlier.
The infinite rateρ = ∞ means immediate occurrence, but if two applicable rules have infinite rate
then it is undetermined which will occur first (thus possiblyprecluding the other).

The Poisson distribution of delay is that it is ‘memoryless’; that is, if a rule with rateρ is
delayed by any time, but remains applicable, then its delay thereafter will also have a Poisson
distribution with rateρ. This leads to tractable simulation and analysis using Gillespie’s method.26

Given the rateρR for a ruleR, we derive a rate

rateR[g, g′]
def
= ρR · countR[g, g′]

for the reactiong ⊲ g′, wherecountR[g, g′] is the number of distinct occurrences of the redexR
in g that give rise to the reactiong ⊲ g′ via the ruleR. This is not entirely trivial. To get the right
count we first fix a concretion ofg, i.e. an assignment of support elements to its nodes and edges;
then we count only the occurrences ofR in g whose supports are different, limiting our count to
those that indeed deliver the resultg′. Then, given a setR of rules, the rate ofg ⊲ g′ is defined as

rateR[g, g′]
def
= ΣR∈RrateR[g, g′]

and, denoting this rate byρ, we writeg ⊲ρ g
′.

We now turn to labelled transitions. In bigraphs these take the forma L
⊲ a′, where there is

an underlying reaction ruleR = (R,R′, η, ρR) which generates a ground reaction ruler ⊲ r′

satisfying the commuting diagram

23A Compositional Approach to Performance Modelling, Cambridge University Press, 1996.
24The stochasticπ-calculus, the Computer Journal 38(6), 1995, pp578–589.
25Stochastic bigraphs, Electronic Notes in Computer Science, 2008, pp73–96.
26We need assume no familiarity with this method.

35

L

r r′

a′

a D

where some concretion of the square is an idem-pushout (IPO). Then we derive a rate

rateR[a, L, a′]
def
= ρR · countR[a, L, a′]

where, as for a reactiong ⊲ g′, we fix a concretion ofL ◦a and we count its distinct occurrences
of the parametric redexR, limiting the count to those that indeed deliver the resulta′ = D ◦ r′.
Then, given a setR of rules, the rate ofa ⊲ a′ is defined as

rateR[a, L, a′]
def
= ΣR∈RrateR[a, L, a′]

and then, denoting this rate byρ, we writea L
⊲ρ a

′.
This treatment of rates is reported in the paper (cited above) with Krivine and Troina. In

particular the paper shows, by a simple sanity check, how therates derived for labelled transitions
are consistent with those assigned to reaction rules. Another simple check is that a transition
a id

⊲ a′ with identity label, which corresponds to the reactiona ⊲ a′, does indeed receive the
same rate as the reaction.

There appears to be a disparity with Hillston’s original work in which the rates of transitions
labelled (say)x may be freely varied by the user from instance to instance. For example, in CCS
one can assign a rateρ to anx-transition by writing the alternation

(x, ρ).P + · · · ,

and in another alternation anx-labelled transition can be assigned a different rateρ′. Here, by
contrast, it may appear that the rate is fully determined by the underlying reaction rule.

However, variation is possible. Recall that one factor in therate of a reaction or transition is the
number of distinct redex occurrences that yield it. So, to increase the rate of the abovex transition
by a factor of 100, one need only include 100 copies of it in thealternation; and to save writing a
long expression one can write

(x, 100).P + · · · ,

where 100 is no longer a rate, but a multiplier for the rate of the underlying reaction rule. One
may object that this multiplier can only be a natural number.But it is relative rates that matter, not
absolute rates, so a process description using rational numbers as rating multipliers can be exactly
mimicked by using natural numbers instead.

Are there interesting stochastic variants of the behavioural congruences, such as bisimilarity?
First, without considering stochastics, one can limit the behaviour of a bigraphical agenta to the
transitions based upon any subsetR of the reaction rules. In this generalisation, a process is
essentially a pair which we may writea↾R. There is an obvious definition of bisimilarity between

36

such constrained processes, and it is easily shown to be a congruence – in the sense thata↾R ∼ b↾S
implies(C ◦a)↾R ∼ (C ◦ b)↾S for any contextC.

It is then an easy step to refine this congruence by stochastics. For example, the rulesS may
have on the whole higher rates than those inR, and this may then yield a precongruence≺, where
a↾R ≺ b↾S means that everyR-based transition ofa is matched by a fasterS-based transition of
b, and every transition in the latter class is matched by a slower one in the former. So stochastics
may lead to a richer generic theory of bigraphical behaviour.

3 Measured time

Many applications will need either a global clock, or clockslocal to particular regions, or both.
Here, we briefly explore how stochastic rates yield a possible way to handle global time.

Let us adopt the shareable natural numbers of Section 3 of Note D. (This assumed aliasing, for
convenience, but there are alternative treatments that avoid aliasing). Assume the discipline that
there is a distinguished global namet for time, pointing into the unique structureNat0. Introduce
the contextual reaction rule

Succxy ‖− t=x ⊲ t=y

which we can callticking. It may be drawn as follows:

t x

‖−
Succ

x y

⊲

t y

This looks like the germination rule forNext in Section 3. But it isnot a germination rule; indeed,
it has no seed! It is a change of state – an advance of the clock.

We need some way to relate the use of other rules to the clock. For example, we would like
ticking to trigger certain rules, ensuring that they are applied immediately, before the next clock
advance. A simple way to achieve this is to use stochastic rates. Let us give ticking a finite non-
zero rate, say 1. Rules that should be triggered by ticking must be given infinite rate; so they will
be applied on every tick provided that they can be matched.

In this way, we can approximate ODEs (ordinary differentialequations) whose independent
variable is the timet. One way is to represent the dependent variables, and each oftheir derivatives
occurring in the equations, by a family of controls indexed by the real numbers. The rules that
model the ODEs will step each such control by a small increment, where it is assumed that each
tick means that time is stepped by such an incrementǫ. By giving these ODE rules infinite rates,
we ensure that each variable and derivative is stepped on every tick.

Certain values of the variables and their derivatives can then be used to trigger events, repre-
sented by rules whose rates may or may not be infinite. For example if such a value is a boundary
condition, then it may cause a new set of ODEs to replace the old ones.

We will take this no further here. Clearly it is an important research project to evolve a standard
way to represent ODEs in bigraphs, and thereby ease the representation hybrid systems. In doing
this we must exploit the wide research literature that exists for hybrid systems.

37

38

Seminar Note F: Categories and motion
Robin Milner, 2009

In this seminar we begin by outlining how bigraphical theoryis organised by a vari-
ety of categories, and especially by means of the functors between them. My book
explains this organisation in detail, but it is helpful to summarise it here.

These categories only organise the static theory: the bigraphs without their reactions.
So we go on to recall how reaction rules are added, to yield bigraphical reactive sys-
tems (BRSs). The book explains this, but stops short of asking how the static functor
between two BRSs may be enriched to relate their dynamics. There is more than
one answer; each answer yields a categoryBRS whose objects are BRSs, and whose
arrows are dynamically-enriched functors between them.

We end by posing a question for research: How do we formulate the modularity of
BRSs, explaining how to assemble a BRS from sub-BRSs whose signatures may be
partly shared? Does the categorical structure help here?

1 S-categories

Let us recall some of the basic categorical notions of bigraphs. These details need not be fully
understood for what follows, but they justify some of the design decisions taken for bigraphs.

First, asymmetric partial monoidal(spm) category is a standard kind of category except for
one thing: it is onlypartially monoidal. This partiality derives from the choice to draw the names
in a bigraph from an infinite alphabetX , rather than to represent them more abstractly by finite
ordinals. The choice is a pragmatic one; it enables a user-friendly treatment of linkage in bigraphs,
including a direct derivation of the parallel composition combinators that are familiar from process
calculi.

In turn, ans-categoryis just an spm category, except for one thing: given arrowsF : I→ J
andG : J→K, the compositionG ◦F : I→K exists only ifF andG have disjointsupport sets;
this disjointness is also required for a monoidal productF ⊗ G to be defined. A support set is a
finite set associated with each arrowF : I→ J . A familiar example of support is in ordinary graph
theory, distinguishing a concrete from an abstract graph; there, a concrete graph has the identities
{v1, . . . , vn} of nodes as its support, and to combine two graphs we typically require their node-sets
to be disjoint. An abstract graph is an equivalence class of bigraphs that differ only by a bijection
of supports.

Similarly a concrete bigraph has support consisting of its nodes and edges, while an abstract bi-
graph is a support-equivalence class of concrete ones. Thusconcrete bigraphs form an s-category,
while abstract ones – being support-equivalence classes ofconcrete ones – form an spm category,
which is a just an s-category whose support sets are empty. Intuitively, support plays for bigraphs
the role thatlabelling plays in theλ-calculus; it is useful for distinguishing or counting theoccur-
rencesof an entity.

39

2 Wide s-categories of bigraphs

Each kind of bigraphs forms an s-category; some kinds have empty support, so are spm categories.
This section is concerned only with how s-categories organise the static structure of bigraphs, not
their dynamics. At the end of the section we see what a ‘wide’ s-category is, and the central role
that it plays.

The kinds can be arranged in a diagram showing the functors between them; we shall explain
the role played by each functor.

signatureK
disciplineD

sortingΣ =

BG

`BG

PG

LG

`BG(K)

BG(K)

BG(K′)

NAT

project
realise

support
forget

sorting
forget

signature
forget

widthproject

WIDE S-CATEGORIES:

BG(K′,D′)

`BG(K,D)

BG(K,D)

Let us begin with BG(K), in the middle of the diagram. This is the spm category of abstract
bigraphs over a signature, which is a set of controls, each with its arity. Each node is assigned a
controlK, whose arity determines the number and order of its ports. There is an obvious forgetful
functor that forgets the signature; its target BG is just bigraphs whose nodes lack controls. Much
theory is done first in BG; it is then less cluttered, and is preserved by retrofitting the controls.

Since a bigraph is a combination of a place graph and a link graph, there are two obvious
functors projecting each bigraph onto these two constituents. This allows some theory of place
graphs and link graphs to be done separately, then combined.Later we shall discuss the width
functor to NAT.

Moving to the left, asorting Σ consists of a signatureK together with adisciplineD that
constrains the bigraphs overK that are admissible. This enriched and constrained category is
denoted by BG(Σ), whereΣ = (K,D). Hitherto, almost every application of bigraphs has involved
a sorting. For example, in the simple case of CCS, the sortingΣccs requires that the nesting of nodes
should interleavesend- andget-nodes withalt-nodes. In a built environment, say a building, one
would naturally require no room to contain another room or a building.

It is not fully settled what the general definition of a sorting Σ = (K,D) should be, beyond
requiring that there be a forgetful functor from BG(Σ) to BG(K) for someK. But Birkedal, Debois
and Hildebrandt27 have proposed that it consist of any functor that is both surjective on objects and
faithful (i.e. injective on each homset). This definition has the merit that it allowsbinding bigraphs

27Sortings for reactive systems, in Proc. CONCUR’06, Lecture Notes in Computer Science 4137, 2006, pp248–262.

40

(see Note B) to be expressed as a sorting. The spirit of the definition is that, while it determines
only the target of this functor to be a bigraphical category,the source category is less determined –
it may be any wide spm category.

Consider now the bottom row of the diagram. Bigraphs may be usedto model a system at
different levels of detail. This recalls homomorphisms of algebras, in which an algebraA is refined
to an algebraA′ by realising each single operator ofA by a compound operation built from the
operators ofA′. Here, then, we would represent eachK-ion of BG(Σ) by a compound bigraph in
BG(Σ′).28

We now come to the top row. Hitherto we have dealt with abstract bigraphs, wehere we choose
not to identify different ‘occurrences’ of the same controlK. However, there are situations in which
we may wish to do so. The first such situation was in deriving labelled transitions for an agent.
This derivation depends critically on identifying nodes ofa redexR that occur in an agenta, so that
the derived labelL of a transitiona L

⊲ a′ may be constructed from the other nodes ofR. Another
need for node identity arises when we wish to ask “howmanyways does a redexR occur in a
given bigraph?”. This has been crucial in defining the stochastic rate of a reaction, as explained in
Note C.

There is one final feature of our diagram to be explained: the role of NAT, the category of finite
ordinals and maps between them. Recall that each finite ordinal m is the set of its predecessors,
i.e. m = {0, 1, . . . ,m−1}; also recall that the objects in PG are finite ordinals. The functor
width : PG →NAT is defined as the identity on objects, while for any place graph P : m→n we
takewidth(P) to be the maproot : m→n, whereroot(i) ∈ n is the unique root (region) ofP that
contains the sitei ∈ m.

Such a functor, then, is possessed by all bigraphical categories in our diagram; this is why we
call themwide s-categories. Indeed an s-category isdefinedto be wide just when it is equipped
with a functor to NAT. This functor is vital to the enrichment of s-categories with reaction rules,
as we see in the next section.

3 Wide reactive systems (WRSs)

We now embark on an overview of the dynamics of bigraphs. It has turned out that much of bi-
graphical theory, static and dynamic, is best done at the more general level of s-categories. Having
outlined how some of the static theory can be organised in this way, we now look at organising the
dynamic theory.

In Definition 7.1 of the book, areactive system(RS) is defined as an s-category equipped with
reaction rules of the form(r, r′), redexand reactum.29 Such a set of rules generates a reaction
relation ⊲ between agents;a ⊲ a′ means that some occurrence of a redexr in a is replaced by
the corresponding reactumr′ to yielda′.

Then in Definition 7.2 awide reactive system (WRS) is defined as an RS equipped with a so-
calledwidth functor to NAT, and a way to use this functor to determinewherewithin an agenta a

28Ions typically have rank 1, i.e. a single site, but a sorting can give them any rank.
29Some detail is suppressed here, especially how these rules are closed under support equivalence.

41

reaction rule is applied to yield a reactiona ⊲ a′. The first importance of this has been to ensure
that, at the general level of WRSs, bisimilarity and other behavioural equivalences are congruential.
The short proof of this theorem30 is one of the deeper results in bigraphical theory.

Here we focus upon a different aspect of dynamics: How may we enrich the static functor
between two WRSs into a morphism that imposes a condition requiring their reaction relations to
be compatible? This would yield a category of WRSs whose arrowsare these morphisms.

Let (A,R) be a WRS having consisting of a wide s-categoryA equipped with reaction rules
R). Let (B,S) be another such, with a functorF : A→B. Each WRS then has a reaction relation

⊲ over its agents. A natural compatibility condition, to enrichF into a morphism of WRSs, is
to require

CONDITION 1 : a ⊲ a′ impliesFa ⊲Fa′ .

This will clearly be satisfied ifS = {(Fr,Fr′) | (r, r′) ∈ R}. Condition 1 is preserved by
composition of functors, so it could be taken as the definition of morphisms in a category of
WRSs. But it is too weak to be of much use. For example we might adopt it for the functors that
forget sorting discipline or signature, or for the two projection functors; but then the converse of
Condition 1 is far from holding, so we are not likely to gain insight into the dynamics of the source
WRS in each case.

We could indeed strengthen our condition to require the converse:

CONDITION 2 :

{
a ⊲ a′ impliesFa ⊲Fa′ ;
Fa ⊲ b′ implies that, for somea′, a ⊲ a′ andb′ = Fa′ .

Interestingly enough, this is satisfied by the forgetful functorU : `BG(Σ)→BG(Σ), provided that
the rulesR′ in the concrete BRS̀BG(Σ,R′) are taken to be all concretions of the rulesR in the
abstract BRS BG(Σ,R). This plays an important role in the proof that bisimilarityis a congruence
for abstract BRSs.

Now consider realisations of one BRS by another. LetA = BG(Σa,R) andB = BG(Σb,S)
be BRSs for which there is a realisation functorF : BG(ΣA)→BG(ΣB). What condition would
we like to impose in the two reaction relations, for the realisation to be useful in practice? We
suppose that it takes many reactions inB to realise a single reaction inA; but for any agenta in
A we also want every reaction ofFa in B to be a step towards realising a reaction ofa in A . We
may therefore adopt

CONDITION 3 :

{
a ⊲ a′ impliesFa ⊲∗Fa′ ;
Fa ⊲ b′ implies that, for somea′, a ⊲ a′ andb′ ⊲∗Fa′ .

It is easy to check (and well-known in other contexts) that this condition is preserved by the com-
position of morphisms.

Since condition 2 is stronger than condition 3, we may now consider the categoryWRS of both
concrete and abstract WRSs, with realising morphisms satisfying condition 3. As a sub-category,
it has a candidate for our proposed categoryBRS

30worked out with Jamey Leifer

42

But is Condition 3 strong enough? Intuitively, it says that anyfirst reaction of the agentFa
in B can be extended to a sequence of reactions that realises some single reactiona ⊲ a′ in A.
But it still allows that subsequent reactions inB, after the first,can divergefrom that sequence,
preventing its completion.

We leave open the problem of strengthening Condition 3. A similar problem may have been
solved in another context, and indeed there appears to be more than one solution. A solution
may already exist in TeReSe, the definitive text on rewriting systems.31 A good solution will be
important for modelling complex systems at different levels of detail, each level realised by the
one below.

4 Modularity of BRSs

Realisations are one way to relate BRSs to each other; assembling BRSs from sub-BRSs is a very
different concern. In Notes A and D we have discussed embedding calculation (itself a BRS) in
another BRS, and research at ITU Denmark has explored other forms of assembly. I do not yet
have more to say on this, but I regard it as an essential research topic if we are going to modularise
large applications – and a large application will be unintelligible unless it is indeed assembled from
modules, in a way that allows analysis of the whole to be builton analysis of the parts.

So it is to be hoped that some forms of assembly can be modelledwithin the categoryBRS
that we have discussed here.

31TeReSe (JW Klopet al.), Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science 55, Cam-
bridge University Press, 2003.

43

