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Abstract.
Designing and reasoning about complex systems such as wireless sensor networks (WSN) is hard due

to highly dynamic environments: sensors are heterogeneous, battery-powered, and mobile. While formal
modelling can provide rigorous mechanisms for design/reasoning, they are often viewed as difficult to
use. Graph rewrite-based modelling techniques increase usability by providing an intuitive, flexible, and
diagrammatic form of modelling in which graph-like structures express relationships between entities while
rewriting mechanisms allow model evolution.

Two major graph-based formalisms are Graph Transformation Systems (GTS) and Bigraphical Reactive
Systems (BRS). While both use similar underlying structures, how they are employed in modelling is quite
different. To gain a deeper understanding of GTS and BRS, and to guide future modelling, theory, and tool
development, in this experience report we compare the practical modelling abilities and style of GTS and
BRS when applied to topology control in WSNs. To show the value of the models, we describe how analysis
may be performed in both formalisms.

A comparison of the approaches shows that although the two formalisms are different, from both a
theoretical and practical modelling standpoint, they are each successful in modelling topology control in
WSNs. We found that GTS, while featuring a small set of entities and transformation rules, relied on entity
attributes, rule application based on attribute/variable side-conditions, and imperative control flow units.
BRS on the other hand, required a larger number of entities in order to both encode attributes directly in
the model (via nesting) and provide tagging functionality that, when coupled with rule priorities, implements
control flow. There remains promising research mapping techniques between the formalisms to further enable
flexible and expressive modelling.
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1. Introduction

Reasoning about the design of large-scale and complex systems, such as wireless sensor networks (WSNs), is
hard because they involve highly dynamic environments: devices are heterogeneous, requirements change,
devices fail, there is lots of self-adaptation etc. Constructing suitable models of such systems allows rig-
orous design and analysis to take place, providing increased confidence in the correctness of a proposed
solution [CCC+18]. Such analysis is essential in, for example, safety critical systems, and more generally as
systems continue to pervade our everyday lives. In the case of WSNs, a model needs to specify not only the
relationships between entities but also how these relationships evolve over time.

Graph-like structures are well suited to provide the foundational structure for these models. There is a
natural correspondence: graph nodes represent domain entities and graph edges represent relations between
them. This correspondence is further strengthened if the domain we are modelling has itself an inherent graph
structure e.g. network topologies. Temporal evolution is typically modelled through some form of rewrite
system over the graph structure. The diagrammatic nature of graph models provide an intuitive approach to
modelling that requires only limited knowledge of mathematical modelling making them accessible to a wide
range of practitioners.

In this paper we compare two graph based formalisms when applied to the same problem: communication
and routing in wireless sensor networks. The two formalisms are (1) Graph Transformation Systems [EEPT06]
(GTS), introduced by Ehrig and others, and (2) Bigraphical Reactive Systems [Mil09] (BRS), as proposed
by Milner. Both formalisms are underpinned by a well-defined mathematical framework, and have been
thoroughly investigated in their practical use. Historically, the development of GTS has been driven by
research in software engineering and systems design, while development of BRS has followed the process
calculi tradition of focusing on concurrency, e.g. through behavioural equivalence theory.

While our comparison focuses on GTS and BRS due to previous practical and theoretical experience
with these graphical modelling formalisms, e.g. [KSS+14, KLS18, SKCM18, SC16, ASH+20], we acknowledge
there are many equally valid tools for modelling different aspects of WSNs including process algebra [LS10,
FvGH+12], (coloured) Petri-nets [DRM14], and probabilistic reactive modules [WBD+18].

Research into both GTS and BRS formalisms has led to a range of variants. Specifically, we compare
the typed attributed graph transformations with control units/strategies found in Henshin [SBG+17] with
Bigraphs with Sharing featured in BigraphER [SC16].

Both formalisms have been employed successfully in a diverse range of practical modelling problems. GTS
are common in model driven engineering and software development [GdLW+13, PKLS16], while BRS have
been used to model biological systems [KMT08], security in cyber-physical spaces [TPGN18, APN19] and IoT
systems [SKCM18, ASH+20]. Both have seen use in networking [CKSS14, KSV+18, KVS15, KSS+14, CS14]
due to the close relationship between graph models and graph based networks. While many models have
been developed, no practical comparison between the formalisms has been undertaken.

The aim of this paper is to gain a deeper understanding of the practical modelling abilities of GTS and BRS
to (1) guide application modelling i.e. by providing a tutorial-like construction of the two models, (2) to aid
in choosing between the two modelling formalisms, i.e. we summarise (Table 3) the core capabilities/features
of each approach, and (3) to guide future theory and tool development by detailing areas of promising
development e.g. automated tools for inductive reasoning (Section 6.2), and highlighting where the approaches
might learn from each other e.g. the benefits of adding application conditions to BRS or allowing hyperedges
in GTS.

While there are tutorial-like papers describing GTS [KNPR18, Hec06], no similar works exist for BRS
with the main reference [Mil09] focusing on theoretical aspects rather than practical application development.
We address this here: providing practical examples of BRS construction, tips for overcoming common issues,
e.g. fixed arity constraints, and also cover the bigraph with sharing case.

GTS and BRS share a number of basic principles and formal design characteristics: Models are instances
of graph-based mathematical structures over a previously specified (and application-specific) meta-model
that details domain entities and their relationships. To express model evolution, both GTS and BRS rely on
declarative rule-based rewriting. Rules specify transformations of one (sub)-graph to another. An instantiation
of a rule in a given input model results in a transformed output model. From this we can analyse the model
by, for example, deriving transition systems or performing simulations.

The theoretical correspondence between GTS and BRS was elaborated early on [Ehr02, SS04], with a
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particular focus on combining the reactive semantics of both approaches through cospan categories1. More
recently, Gassara et al. [GRJD19] show a practical correspondence by converting BRS to GTS for execution.

We chose to compare GTS and BRS as, although they share basic principles and have a theoretical
correspondence, the respective communities remain largely disjoint. Given the similarities we believe there is
still much the GTS and BRS can learn from each other. For example: bringing modelling features from one
to the other, e.g. adding inheritance support to BRS; improved tooling design, e.g. co-design of automated
inductive reasoning tools; and new theory e.g. researching how application conditions from GTS might
increase the expressiveness of BRS. To enable cross-fertilisation of ideas, we identity similarities/differences
(from a practical modelling perspective) as a key first step.

To allow the similarities/differences to be identified, we summarise and generalise the practical experience
of modelling and verification using both GTS and BRS. We use an appropriately simplified, yet realistic case
study from the domain of wireless sensor networks that allows a demonstration and comparison of relevant
aspects of the practical use of these formalisms. While we focus on WSNs, the approaches are applicable to
a much wider range of systems, e.g. other networking scenarios [LYW+19]. Following [KSS+14] we model
two notions of network topology (1) the underlay network that describes whether sensor nodes are within
physical range of each other should communicate, and (2) the overlay network describes virtual links between
sensors nodes indicating a communication path between two sensors is required by some application. Both
layers cooperate to ensure a valid routing path between virtually linked sensors (if one exists). We model
both layers and show how they evolve over time in response to environmental changes e.g. dropping of links.
Although the focus is on modelling, we show how the models allow analysis/verification of properties such as
ensuring the design removes redundant links whenever possible.

We do not intend to establish a correspondence between GTS and BRS models by forcing the exact same
implementation details into different frameworks. Instead, we focus on the domain-specific requirements of
the WSN scenario and highlight the inherent differences in modelling style by deliberately diverging in details
where appropriate. Likewise we do not claim this is the only way to express these models, and acknowledge
that model writing is often a creative endeavour in its own right.

To the best of our knowledge, this is the first comparison study of GTS and BRS in terms of practical
modelling ability. We hope this encourages further cross-fertilisation between GTS and BRS communities
and we make the following research contributions:

• We model the underlay and overlay networks, in particular topology control aspects, of a wireless sensor
system using both Graph Transformation Systems (GTS) and Bigraphical Reactive Systems (BRS).
Complete reference models are provided2

• We provide a detailed comparison of the modelling capabilities and approaches of both GTS and BRS,
highlighting their key differences and providing insight for model, theory and tool development.

• We show how formal analysis/verification techniques, in particular model checking and inductive reasoning,
apply to both formalisms; this allows network properties to be checked/proved at design time.

Overview

The paper is structured as follows. Section 2 describes the WSN case study: introducing the underlay and
overlay network layers, and analysis goals. Section 3 provides background on GTS and BRS theory. Section 4
and Section 5 present the GTS and BRS models for the underlay and overlay network. Discussion and
comparison of approaches is interspersed throughout these sections. Section 6 shows the state-of-the-art
analysis capabilities for both GTS and BRS. Section 7 brings together our discussions of GTS/BRS, compares
the two formalisms, and highlights areas of future work. We conclude in Section 8.

1These results apply mainly to input linear bigraphs that differ slightly from Milner’s original formalisation in their treatment
of interfaces/sites.

2GTS: https://github.com/timofr/sosywsn/tree/master/modeling/henshin/WSN_Henshin; BRS: http://www.dcs.gla.ac.
uk/~michele/wsn.big

https://github.com/timofr/sosywsn/tree/master/modeling/henshin/WSN_Henshin
http://www.dcs.gla.ac.uk/~michele/wsn.big
http://www.dcs.gla.ac.uk/~michele/wsn.big
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Fig. 1. Case study overview. Underlay network shows (one possible) configuration of link statues (red wave =
inactive, blue straight = active). Overlay network shows virtual links between sensors

2. Modelling Scenario

To show the differences in modelling with GTS and BRS, we focus on a wireless sensor network (WSN)
scenario. WSNs consist of a set of sensor nodes (sensors) that are deployed into a physical space in order to
sense (and perhaps modify through actuators) real world environments. WSNs are employed in a wide range
of contexts such as data collection, smart buildings and cities, biological experiments, military applications,
etc. [LML08].

We chose WSNs as a representative example of the type of system we, and others – with topology control
systems being modelled using GTS previously [KSV+18, KVS15, KSS+14] – wish to model. They are highly
dynamic: sensors may move, e.g. utilising mobile phone sensors, communication links change over time, e.g.
in respond to environmental degradation of the network, and node failure is not uncommon [BTM18]. WSNs
are also ideal for graph based modelling formalisms that can accurately model the (graph based) underlying
network.

We focus specifically on the communication/networking aspects of WSNs. In particular, we model how
topology control algorithms allow WSNs to dynamically organise their communication to optimise the
distribution of collected data even in highly dynamic environments. We model WSN networking at two layers
as shown graphically in Fig. 1. The operation of each layer is as follows:

Underlay Network: The underlay network models physical communication links between sensors. A
communication link can be established when a sensor is in the sending/receiving range of another. To save
power, the network can choose to not use a link even if it is physically possible to do so. That is, links
between specific sensors may be either active, i.e. available for communication [KSV+18], or inactive. For
example, in Fig. 1, A is within range of both C and B. However, the underlay network has determined
that A should communicate only with C directly, and never with B. We assume all communication links
are bidirectional.

Overlay Network: The overlay network defines the links required between sensors for application correctness,
even if they have no physical link. For example, in Fig. 1, a virtual link specifies that nodes D and B
must communicate. As there is no physical link between D and B they must communicate through an
active path, i.e. through C.

Note that the underlay and overlay networks are not fully independent and, for example, the overlay
network may influence the underlay network to form new paths between sensors (if physically possible) such
that application requirements are met.

While we model at the level of the network topology between sensors, different, and potentially more
complex, models are possible e.g. modelling individual packets. There is always a trade-off between getting
the right level of abstraction while ensuring we can still reason about the properties of interest.
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2.1. Underlay Network

Physical communication is performed through wireless channels, i.e. radio links between sensors. To define
the range of a wireless channel we rely on the widely used unit-disk assumption. Here, each sensor node has a
uniform transmission range and there is a potential communication link between two sensors whenever the
two sensors are in range of one-another. As sensor positions are not necessarily fixed, e.g. body sensors, links
between sensors may vary over time.

Rather than broadcast in all directions, we allow the sensors to use directional radio links to reduce
transmission power. Given this, we treat communication as direct bi-directional links between specific sensors
that may be either active, i.e. available for communication [KSV+18], or inactive. Management of links relies
on a marking principle, and, we assign an intermediate edge status unclassified to those links yet to be
assigned a definitive state.

We model three key behaviours of the underlay network:

Sensor behaviour The movement of sensors is modelled through the changes they induce in the topology.
In particular, a Create Link operation occurs when two sensors move close enough to communicate, while a
Delete Link operation occurs when two sensors move out of communication range. Links are created in the
unclassified state.

Link behaviour Independently of sensor movement, environmental events may make it necessary to revise
the status of a link. This is represented by the Unclassify operation, that turns an active or inactive link to
unclassified, allowing topology control to reassign the link status to optimise data movement.

Topology control Topology control performs status revision of unclassified links to reduce the number of
active links required. In particular, the Resolve Unclassified Link operation inactivates an unclassified link if
there is an alternative active 2-hop path between its end nodes, or activates it otherwise.

2.2. Overlay Network

The overlay network maintains a virtual set of links between sensor nodes that are required to communicate
e.g. for a particular application. A virtual link represents the requirement that there is at least one underlay
network path between the end nodes with no inactive link. To avoid confusion, we refer to such a path as an
a-u path (meaning a path consisting of active and unclassified links). We model the following behaviour of
the overlay network:

Requirement Management The Create Virtual Link operation creates a new requirement for two sensors
to communicate by creating a virtual link between them. Likewise, the Delete Virtual Link removes unneeded
virtual links. These two operations model a user, e.g. administrator/supervisor, updating the required
high-level network specification.

2.3. Interaction between Underlay and Overlay Network

Both network layers interact to ensure the virtual link requirements, set by the overlay layer, are met (if
possible) by the underlay layer. This is represented using the following behaviour:

Routing Maintenance Given a set of virtual links, a routing maintenance algorithm maintains/creates a-u
paths in the underlay network to ensure the expected connectivity (if possible). In particular, given a virtual
link, the Search Active Path operation determines if there is a a-only path between the end nodes. If there is
no such path but there is an a-u path, the Activate a-u Path operation should iteratively activate all the
unclassified links in order to achieve an a-path. If there was neither an a-path nor an a-u path available, then
the Mark Inactive Path operation should unclassify inactive links in one of the appropriate path candidates
to allow the underlay network topology control algorithm to activate them if possible.
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2.4. Analysis Goals

A benefit of constructing formal models of systems is the ability to verify rigorously properties of the modelled
behaviour. We verify properties of the model through state space analysis where, given an initial model
instance (the start state), we induce the full state space/transition system by executing transformation/rewrite
rules in all possible orders. We can then formulate and check predicates about the states reachable from a
given start state via Reachability analysis.

These properties are commonly found in topology control scenarios [San05]. Ideally the system provides:
1. connectivity between nodes, 2. eventual consistency of the routing (e.g. eventually discovering all nodes),
3. optimisations to reduce the number of paths. These properties are not exhaustive, and other properties
could be explored. A key advantage of a formal model is the ability to explore additional properties quickly
without requiring expensive implementation and testing.

2.4.1. Underlay Properties

We say that a topology is connected if there is at least one a-u path between each pair of sensors, i.e. no sensor
is unreachable. An active-triangle occurs where there are three active links between three nodes. Deactivating
any one of the links still allows all three nodes to communicate through multi-hop communication. Given
these definitions, we consider the following underlay properties:

Connectedness: Given a connected start state, on any execution trace in the full transition system, where
no link gets deleted, all reachable states are connected.

Redundancy Reduction: In a state with no unclassified links, there are no active triangles, i.e. topology
control successfully reduces the number of active links required.

Liveness Resolution: From a state with unclassified links, given no operations that add new unclassified
links (e.g. Unclassify, Create Link, Mark Inactive Path) occur, then we eventually reach a state – through
repeated application of Resolve unclassified link – containing no unclassified links.

2.4.2. Overlay Properties

We aim to verify the following overlay property:

Virtual Link Fulfillment: Given a state where any virtual links have no a-u path, we reach a future state
where all virtual links obtain an a-u path.

That is, we ensure topology control satisfies application requirements. Note that this is not always possible,
for example when we require communication with an isolated sensor, in which case we expect the property to
be false.

3. Technical Background

Graph rewriting systems are often best understood from a categorical standpoint and as such this section
assumes knowledge of elementary category theory. We have ensured the rest of the paper does not require
an understanding of the categorical details, and note that users of graph rewriting systems likewise do not
require knowledge of category theory to make use of the formalisms for modelling.

3.1. Graph Transformation Systems (GTS)

Algebraic graph transformation [EEPT06] is formalised in a categorical setting, where objects are graphs
and arrows are graph morphisms, i.e. structure-preserving functions on nodes and edges. For modelling,
the category of all graphs is too loose, and instead we wish to form only graphs that are valid for a given
modelling domain. To achieve this we constrain the graph objects of interest using a type graph. Type graphs
specify a meta-model that determines the model entities (as nodes) as well as relationships between them
(as one-to-one edges) e.g. entity e0 may connect to n entity e1’s. A graph that adheres to a particular type
graph T is said to be typed over T .
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on the type graph of Fig. 2a

Fig. 2. GTS Type Graph example

Definition 1 (Graphs and Typed Graphs). A (directed) graph is a tuple G = 〈N,E, s, t〉, where N and E
are finite sets of nodes and edges, and s, t : E → N are the source and target functions on edges. We denote
the components of a graph G as NG, EG, sG, tG.

A graph morphism f : G → H is a pair of functions f = 〈fN : NG → NH , fE : EG → EH〉 such that
fN ◦ sG = sH ◦ fE and fN ◦ tG = tH ◦ fE. A graph morphism is an isomorphism if both fN and fE are
bijections. A partial graph morphism g : G → H is a graph morphism dom(g) → H where dom(g) is a
subgraph of G. We denote the category of graphs and partial graph morphisms as GraphP.

A type graph is a distinguished graph T = 〈NT , ET , sT , tT 〉 over node and edge types NT and ET .
The category of typed graphs over a type graph T is the slice category (GraphP ↓ T ), also denoted

GraphT [CMR96]. That is, objects of GraphT are pairs (G, t) where t : G→ T is a typing morphism, and
an arrow f : (G, t)→ (G′, t′) is a morphism f : G→ G′ such that t′ ◦ f = t.

For example, Fig. 2a shows a type graph for representing a simple WSN topology. It specifies that a node
entity (shown as a black circle) may connect to other nodes (including itself) through i, a, or u labelled
links. Labels on edges represent their type, and the type encodes the status of the link (active, inactive,
unclassified). An instance of this typed graph is in Fig. 2b.

3.1.1. Rewriting

Graph transformation usually takes the form of a pushout in GraphP. The main constructions are double-
pushout (DPO) and single-pushout (SPO) rewriting that, from a practical standpoint, differ mainly in their
treatment of dangling edges, i.e. in SPO deleting a node also deletes dangling connected edges. As we do
not delete nodes in our WSN model the differences are minimal. We introduce SPO rewriting here as the
DPO-approach can be embedded within the SPO-approach [EHK+97], i.e. there are notions of equivalence
between them. Practically, tools choose a preferred rewriting approach, but the rules provided by the user
are similar in both approaches. We assume rules presented here are well formed.

Intuitively, an SPO graph transformation rule p : L→ R, describes how a sub-graph L may be rewritten
into a sub-graph R. A rule consists of a left-hand side L, a right-hand side R, and a partial morphism p
describing how they are connected, i.e. which nodes/edges are the same. As p is partial we can express nodes
that are deleted from L, i.e. have no corresponding node in R, and new nodes created by R, i.e. with no
corresponding node in L. Transforms are type-safe in that L and R must both be instances of the same type
graph.

Applying a rule to a graph G consists of 3 steps:

1. Find an occurrence/match of L in G

2. Delete elements of the match not in R

3. Creates elements of R that do not appear in L

A formal definition of SPO rewriting is given below.

Definition 2 (SPO Rule). An SPO rule r = p : L → R consists of a rule name r and a partial graph
morphism p : L→ R. An SPO rule application applying rule r at match m : L→ G (total morphism) such
that f : G→ H,h : R→ H is a pushout over p,m in GraphP according to the diagram:
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Fig. 3. Rule Inact: Inactivate Unclassified Edge
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Fig. 4. Figure 2b after applying Inact
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An SPO rule with negative application condition (NAC) n = N
n←− L

p−→ R consists of a rule name r
and a span of morphisms with n total and p partial. An SPO rule application with NAC transforms the

graph G to H, as a result of applying rule n = N
n←− L p−→ R at match (total morphism) m : L→ G so that

f : G→ H,h : R → H is a pushout over p,m in GraphP. Additionally, there is no morphism c : N → G
with c ◦ n = m, as seen in the diagram:

L Rp

G

m

H

N

(PO)

f

h

n

6

For example, the rule Inact in Fig. 3 represents the inactivation of an unclassified link as specified by
the Resolve Unclassified Link operation: whenever a triangle with two a-edges and one u-edge can be found
in the input graph, the u-edge gets inactivated (set to i).

The result of applying Inact to the instance in Fig. 2b is shown in Fig. 4. Here we match n6 = x, n2 = y,
and n3 = z, allowing the link in between n2 and n5 to be made active.

A rule featuring a NAC is shown in Fig. 5. Act NAC is applied conditionally only if there is no active
triangle of links between y and z, e.g. through x. NACs are only specified on the left hand side of the rule as
they are checked during the matching process and never the creation process.

Formally, graph transformation systems (GTS) consist of a set of rules and (optionally) a start graph. In
practice, the term GTS often simply refers to the whole formalism.

Although, according to the definition of GTS, a transformation rule may be applied whenever a match
is found, this is often undesirable from a practical standpoint, e.g. when we wish a rule to apply only if
another rule has been applied previously. To overcome this, the use of imperative control units [ABJ+10] is
common in practical GTS. Control units capture imperative behaviour such as: looping, by applying a given
rule as many times as possible (or n times); conditionals, where a choice of two rules are applied based on
the existence/absence of a given match; sequentially applying rules one after another; and applying rules in a
priority order. That is, control units determine the conditions for rule application.

n1 x

n4
z

n5
y

6= a6= a

u n4
z

n5
y

a

Fig. 5. Negative Application Condition Rule Act NAC: Active Unclassified Edge
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Fig. 6. Rule Act: Active Unclassified Edge

Inact
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if then

else

Fig. 7. Conditional unit example. Rule Act should only be applied if the pattern specified by the graph of
the left-hand-side of rule Inact does not occur in the current model instance

An example control unit is in Fig. 7. It specifies that rule Act (Fig. 6) should only be applied when there
are no matches of the pattern graph specified by the left-hand-side of Inact. Using this control unit, we
allow the left-hand-side of Inact to operate like a negative application condition for Act. This allows us to
replace the Act NAC rule with the simpler Act rule.

While control units are flexible, unlike rewriting, they are not included in the formal GTS theory.
Throughout this paper we use GTS to refer to GTS with control units.

GTS enjoy a variety of implementations ranging from domain agnostic tools (e.g. Groove [GdMR+12],
AGG [Tae03]) to tools focusing on software engineering practice (e.g. Henshin [SBG+17], eMoflon [LAS14]).
The GTS model presented here is implemented using Henshin and is available online3.

3.2. Bigraphical Reactive Systems (BRS)

Bigraphs are a universal mathematical model for representing the spatial configuration of physical or virtual
objects and their interaction capabilities. They were initially introduced by Milner [Mil09] and then extended
to bigraphs with sharing in [SC15] to accommodate spatial locations that can overlap. For brevity, we use the
term ‘bigraphs’ to refer to ‘bigraphs with sharing’. A bigraph consists of a pair of relations over the same set of
entities: a directed acyclic graph, called the place graph, representing topological space in terms of containment,
and a hyper-graph, called the link graph, expressing the interactions and (non-spatial) relationships among
entities. Each entity is assigned a type that determines its arity, i.e. number of links, and whether it is atomic
i.e. it cannot contain other entities.

Bigraphs can be described in algebraic terms or with an equivalent diagrammatic representation. We
focus on the diagrammatic representation here as an intuitive notation, and the equivalent algebric terms
may be found in the provided model4.

Example bigraphs are in Figs. 8a and 8b. In the diagrammatic representation of bigraphs we permit any
kind of coloured shape as shorthand notation for particular entities – indicated by labels S, N, L, etc.

Spatial placement of entities is described in three ways: Nesting defines the containment relation on
entities, e.g. an L within an N; merge product places two entities side-by-side at the same spatial location,
e.g. two L’s within the same N; parallel product is similar but entities are placed in two different locations.
Filled grey rectangles denote sites that indicate parts of the model that have been abstracted away, i.e. an
unspecified bigraph (including the empty bigraph) may exist there. Unfilled dashed rectangles drawn around
sets of entities indicate regions of adjacent parts of the system. Intuitively, to create larger bigraphs from
smaller bigraphs we compose them by placing regions inside sites as shown by the red lines in Fig. 8b (in
this case the regions appear in both sites due to sharing).

Connectivity between entities is represented by green edges called links. Links may be only partially
specified, in which case they connect a name which is usually drawn above the bigraph. Entities must always
have as many links as their arity, however links may be closed (disconnected).

3https://github.com/timofr/sosywsn/tree/master/modeling/henshin/WSN_Henshin
4http://www.dcs.gla.ac.uk/~michele/wsn.big

https://github.com/timofr/sosywsn/tree/master/modeling/henshin/WSN_Henshin
http://www.dcs.gla.ac.uk/~michele/wsn.big
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(a) Bigraphical model of an example WSN of three nodes (N) and one active communication link shown as the link between the
two small teal circles

(b) Equivalent graphical form highlighting sharing relation in red

Fig. 8. Example Bigraph representing a WSN

Fig. 9. unclass A

Share expressions are a specialised version of nesting allowing to specify shared entities, i.e. entities
situated in the intersection of other entities. An example of shared entities is in Fig. 8a where the N entities
are nested below two different S entities. The sharing can be seen more clearly in the equivalent bigraph
shown in Fig. 8b. Here, red dashed lines highlight the sharing relation between nodes and signals.

The bigraph of Fig. 8a models a WSN of three nodes with their overlapping wireless signals, denoted
by types N and S, respectively. The full typing hierarchy, including allowed nesting relationships, will be
introduced in the following sections (see Tables 1 and 2). When there is no ambiguity, we will omit explicit
labels from the diagram. We also use shorthand shapes, for example, the teal circles are a shorthand for the
bigraph created from entity E – representing a link end – nesting an A that acts as a token that this link end
is active.

Bigraphs are abstract or concrete. In this paper we work primarily with abstract bigraphs, where entities
do not have identifiers, e.g. N matches any physical sensor node in the system.

3.2.1. Rewriting

The dynamic aspects of the theory are expressed by means of rewriting through reaction rules.

Definition 3 (Reaction rule). A reaction rule is a pair (R,R′) with R and R′ bigraphs that can be inserted
into the same host bigraph. A reaction rule, indicated by R IR′, is applicable to a bigraph B when R is
an occurrence in B. The result of the application is bigraph B′ which is obtained by substituting (in B) an
occurrence of R with R′. Such a reaction is indicated with B BB′.

An example reaction rule, unclass A is given in Fig. 9. This rule describes a reaction on underlay links
to change their status from active (shown as the teal circles) and unclassified (shown as the yellow circles).
Placing the link ends in separate regions states that they need not share a single parent. If only one region is
used then they must have the same parent node. The result of applying unclass A to the bigraph shown in
Fig. 8a is shown in Fig. 10.

Reaction rules may also be equipped with instantiation maps to specify how the parameter of R should
be composed with the parameter of R′. This powerful extension allows to easily duplicate or discard parts of
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Fig. 10. Figure 8a after applying unclass A (Fig. 9)

ε I ε

J

l

r r′

d

a a′

Fig. 11. Applying reaction rule r I r′ to a bigraph a

a bigraph upon reaction rule application. Graphically we represent this using blue arrows from the right-hand
to the left-hand side (an example using instantiation maps is in Fig. 14b).

Finally, a Bigraphical Reactive System (BRS) consists of a set of reaction rules together with an initial
bigraph on which the rules operate. Rule priorities, in the style of [BBKW89], can be introduced by defining
a partial ordering on the reaction rules of a BRS. We write r < r′ to indicate that reaction rule r′ has higher
priority than reaction rule r. As we will see, combing rule priorities and tagging schemes are a common
method for controlling rule application, i.e. allowing features similar to GTS with control units. While we
allow rule priorities to be directly specified for BRS, it is possible to encode priorities directly in BRS models
allowing us to remain in the core BRS formalism.

3.2.2. Bigraph Categories

Like GTS, bigraphs may also be treated from a categorical perspective, this provides the basis for their
rewriting semantics. The category of bigraphs takes interfaces, i.e. sites/regions and names, as objects and
bigraphs as arrows. This is in contrast to GTS that has graphs as objects and graph homomorphisms as
arrows.

Any bigraph can be treated as the composition (and tensor product) of arrows in the category of bigraphs5.
The categorical models are high-level in that you cannot see the internal structure of the bigraph (i.e. nodes
and edges), only how they glue together. Aside from re-writing the categorical framework provides powerful
tools for deriving bisimulations (see [Mil09][Chapter 6]).

Rewriting is described categorically through the diagram shown in Fig. 11. In the diagram, I and J
represent interfaces, with ε the empty interface implying no sites and names, while a, a′, r, r′, and d are
bigraphs. The diagram shows how a bigraph a may be written as the composition of r and d. By replacing r
with r′, leaving the context d unchanged, we obtain a rewrite of a to a new bigraph a′. The use of ε as the
domain of bigraphs a and r forces any rule parameters to be determined before matching occurs, e.g. sites
are filled6.

While the rules are specified for abstract bigraphs, rewriting itself happens on concrete bigraphs, where
entities have identifiers. That is, we find a subgraph in the (concrete) bigraph that matches the pattern of the
(abstract) rewrite rule. The operator l allows us to rewrite into a set of support equivalent a′’s, e.g. we can
change the identifiers during a reaction. We do not discuss support equivalence in detail here, but it allows,
for example, a renaming of entities, while maintaining the structure of the bigraph itself.

This form of rewriting differs from GTS by rewriting entire sub-(bi)graphs at once as opposed to performing

5There are multiple categories of bigraphs covering the place-graphs/link-graph, abstract/concrete structures, lean-equivalent
bigraphs etc; however these are all constructed a similar manner.

6This implies that a single reaction rule gives rise to a family of rules matching any given parameters.
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[0..*] node

[2..2] node [0..*] link

[0..1] underlaynetwork

[0..*] underlaylink

Fig. 12. GTS (Henshin) type graph for the underlay network showing entities and their relationships

deletions, mappings, and additions as three steps. Recent work explores a similar style of direct sub-graph
rewriting applied to GTS [KR18].

Unlike GTS that enjoys a variety of implementations, there are only two implementations of BRS:
BigRed [PDH13] and BigraphER [SC16]. The BRS model presented here uses BigraphER, which is
available online7.

4. Modelling WSN Underlay Networks

The underlay network has two main entities: sensor nodes and communication links between them. For
modelling, we abstract away the physical connection details, e.g. protocols, and focus only on the network
aspects.

For the remainder of the paper we use the notation – Create Link to refer to the model requirement,
create to refer to a GTS transformation rule modelling the requirement, and create to refer to a BRS
reaction rule modelling the requirement.

The type graph for the GTS underlay model is given in Fig. 12. Here we use the Henshin format for type
graphs that resembles UML class diagrams. As is common for practical modelling, the type graph allows for
entity attributes [EEPT06, Chapter 8] to be specified. Entity attributes can be used for matching, e.g. match
a Node only if it has a particular id, and may be updated during rewrites, e.g. moving a Node by updating
the x, y coordinates. A sensor network consists of any number of Nodes and an (underlay) Link may exist
between any two nodes. Different link statuses are represented by adding attributes to the links, i.e. via a
classification attribute. Graphically we draw nodes as circles and link entities as graph links labelled with
their classification (cf. Fig. 2b for a sample topology).

7http://www.dcs.gla.ac.uk/~michele/wsn.big

http://www.dcs.gla.ac.uk/~michele/wsn.big
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Table 1. Entities for the BRS of WSN underlay model

Description Type Arity Atomic Parent Notation

Signal range S 1 oval
Node N 1 S circle
Link L 0 N rounded box
End (any type) E 1 L small circle
Active end E.A 1 X L small teal circle
Inactive end E.I 1 X L small purple circle
Unclassified end E.U 1 X L small yellow circle
Tagged end E.U′ 1 X L small amber circle

To create new links between nodes we need to know when they are close-enough to form a connection.
This requires a basic encoding of the physical location of nodes. In the GTS model we achieve this through
node attributes, where each node has an x, y location.

The BRS entities are given in Table 1. Bigraphs adopt a similar approach to GTS with both sensors and
links being distinct entities. Using bigraphs with sharing, the model also expresses wireless signal ranges
allowing additional checks that connected nodes meet the physical requirements. In our model, we use ovals
to denote wireless signals (type S) and circles (type N) for nodes. Each node is linked to its signal (to allow it
to be identified later) as in Fig. 8a. Communication links between nodes are modelled by bigraphical links
between pairs of ends. These are entities of type E represented graphically as small circles. The type of a link
is specified by the type of atomic entity contained by its ends. This is shown by the use of different coloured
circles in the diagrammatic notation. All ends of a node are grouped within an entity of type L, indicated by
a rounded box. This modelling strategy allows nodes to be connected to an arbitrary number of links while
keeping the same type, overcoming the fixed arity limitation of bigraphs.

Unlike the graph model, bigraphs have a built-in notion of locality and we use this to describe the physical
topology of the system. In this case we say two nodes are close-enough to form a connection if they share the
same parent node. As we may always subdivide space, e.g. by splitting it into two smaller spaces, we can
model arbitrary physical topologies.

Discussion 1 GTS excel in representing systems that themselves are graph-like, e.g. the underlay network.
However, this flat, non-hierarchical structure is also a drawback of graph-based meta-models: frequent
modelling patterns such as hierarchy layers, multiple connections, etc have to be encoded in the type graph
and this potentially confuses different modelling concerns. On the other hand, a BRS model supports
hierarchical structures allowing intuitive modelling of patterns such as layers, and physical aspects of domains
to be directly modelled as topological spaces, e.g. two nodes sharing a single region. The physical topology,
i.e. closeness, fits naturally into the bigraph model due to the built-in notion of locality, while for GTSs this
must be encoded separately.

In terms of number of entities, GTS requires less entities8 (4) than BRS (8). This is due to GTS allowing
arbitrary numbers of links between nodes without a wrapper entity, and BRS requiring additional entities to
tag the link statues as opposed to using attributes in the GTS model9.

4.1. Dynamics

The dynamics of the underlay model is specified through graph transformation rules/bigraph reaction rules.
In particular we specify: node behaviour, e.g. the creation of new links; link behaviour, e.g. unclassifying links;
and topology control, e.g. (de-)activating links as required.

4.1.1. Node Behaviour

In GTS, underlay link creation/deletion corresponds to adding/removing a link entity to/from the graph
and are specified using the transformation rules shown in Fig. 13. Create Link (Fig. 13a) makes use of a

8Assuming all links are currently UnderlayLink
9BigraphER allows a basic form of attributes via parameterised entities. For example, Node(i) could describe a node with id

i. We choose to use distinct entities here as this is closer to the original bigraph formalism.
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(b) Delete Link

Fig. 13. Node behaviour rules for GTS

(a) Reaction rule create

(b) Reaction rule delete

Fig. 14. Node behaviour rules for BRS

negative application condition (cf. Definition 2) to avoid creating duplicate links between a pair of nodes.
We show these graphically as struck-out edges to indicate that an edge does not exist. Create Link also
requires a side-condition that applies the rule only if the node attributes, i.e. x and y, ensure the signal
ranges of the nodes overlap (via a disk assumption with constant radius comm radius). The physical topology
is modelled in the side-conditions because the lack of built-in notation of physical topology in GTS makes it
difficult to encode directly.

Delete Link (Fig. 13b) performs the opposite operation to Create Link, removing a link between two
nodes if one exists. By not explicitly specifying the link type, this rule applies to any edge classification.

Node behaviour in BRS is given by the reaction rules in Fig. 14. create (Fig. 14a) models explicitly
(through sharing) that an unclassified link is established whenever communication between two nodes is
physically possible, i.e. when two nodes are within each others signal range, in this case when the nodes share
a common parent (are in the same region). Like the GTS model, this avoids duplicate links as the signals
between two nodes are no longer disjoint after an initial application.

The inverse operation, delete (Fig. 14b), models the nodes out of signal range causing their overlap
to split. Here, we use the instatiation map indicated by blue dotted arrows. This rule can be applied to
delete any type of link between two nodes as the contents of the two E entities, shown as small circles in the
left-hand side, are discarded by the instantiation map in the right-hand side.
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Fig. 15. Unclassify Link

Fig. 16. unclass I

Discussion 2 While the GTS model provides simpler methods for modelling node behaviour, e.g. negative
conditions to handle duplicate links, it relies on side-conditions, based on entity attributes, to determine when
rules can be applied, which requires a more complex theory, e.g. one that includes mathematical operations
on attributes. The BRS model instead uses the built-in notion of locality to determine when links may be
created, but requires more complex and less intuitive rules, e.g. instatiation maps to handle deletion.

In this case, the reaction rules for BRS are less intuitive than those for GTS, due to the complex diagrams
required to indicate sharing.

From a pragmatic point of view, the use of sites as placeholders in BRS rules increases the applicability
of a rule by allowing matching of structures whose exact content is not known a priori. In GTS, handling
unknown structures often involves using additional control units or adding attributes into the model, and the
operation may consist of several steps.

4.1.2. Link Behaviour

The GTS rule Unclassify Link is shown in Fig. 15. This cannot be specified straightforwardly as a rule that
allows any edge type in the left-hand side also matches links that are already unclassified, hence introducing
unwanted identity transformations (i.e. rule applications which leave the graph unchanged). Instead, we use
a side-condition, based on the link attributes, to specify the link status must not be already unclassified,
allowing a single-rule specification.

An additional approach is to specify two distinct rules for unclassifying active and inactive edges,
respectively. The BRS model adopts this same approach by introducing two distinct rules, unclass A and
unclass I, as shown in Figs. 9 and 16.

Discussion 3 In this case, both the GTS and BRS are similar (and could be written the same with multiple
GTS rules), requiring small changes to link attributes/entity types. By using a variable condition, the GTS
rule is open to extension, e.g. if a new link classification is added, while the BRS requires adding additional
(yet trivial) rules.

4.1.3. Topology Control

Topology control revises the status of unclassified links to reduce the number of active links required. In
GTS, topology control consists of the Inact rule shown in Fig. 3 that inactivates a link if another path
between a triple of nodes exists. This rule only specifies the inactivation case and a complete topology control
specification also contains requires a counterpart rule Act, which turns unclassified nodes to active if required.
As activation relies on the non-existence of an alternative active 2-hop path, rule Act involves a negative
condition.

In BRS, the Resolve Unclassified Link operation implementing Topology control is modelled using tagging,
as introduced in [CKSS14]. Diagrams for three reaction rules implementing topology control are in Fig. 17.
Firstly, we tag with U′ (small amber circle) all the redundant unclassified links. Then, active is applied
to activate all the remaining U-links that were not tagged during the previous step. Finally, the tags are
removed and types changed to I by applications of reaction rule untag. Sites within L-boxes allow for tag to
be applied when nodes have more than two links.

As bigraph theory lacks the control units of GTS, we instead use priorities that ensure, for example,
active may only apply if there are no remaining occurrences of the left hand side of tag. The reactions
should fire in the following order: untag < active < tag.
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(a) tag

(b) active

(c) untag

Fig. 17. BRS reaction rules for topology control

Discussion 4 The rules for topology control are similar in both cases, with the BRS model requiring one
additional rule to handle untagging. The key difference between GTS and BRS is how they determine when a
specific rule(s) should be applied.

GTS systems often rely on control units to control rule applications (e.g. Fig. 7). Although this approach
has its merits in relating GTS-based modelling to widely known imperative techniques, adding external
control units obstructs the declarative nature of a GTS specification. Furthermore, almost all of the semantics
proposed so far for GTS with control units focus on input-output model pairs. Only very recently, have
there been proposed theoretical approaches which consider GTS control units using established theoretical
frameworks like process algebrae or Petri nets [KLS18, KCL18].

In BRS practice, structures needed to control rule application are typically encoded within the bigraph
itself using some form of tagging. This potentially adds confusion to the model, e.g. by adding entities that
do not exist in the system being modelled. BRS often couples these structures with rule priorities, with
partial ordering being theoretically more founded than the ad-hoc imperative control units used in GTS.

Finally, GTS provides a direct, inherent technique to formulate negative conditions both on rule as well
as control level; this is currently out-of-scope in BRS (but, again, might be encoded by help structures).
Recent work by Tsigkanos et al. [TKG17] narrowed the gap between GTS and BRS in this area by extending
reaction rules with positive/negative application conditions specified in a spatial logic for closure spaces, while
Archibald et al. have added a limited form of application condition directly into the bigraph theory [ACS20].

5. Modelling WSN Overlay Networks

The overlay network (Section 2) provides a set of virtual links over the sensor nodes to detail and manage
routing pathways. As both the underlay and overlay share the same set of nodes, the main additional entity
required is virtual links.

Ideally we should be able to treat the overlay and underlay networks as two separate models, allowing them
to be verified both separately and together. This highlights the issue of whether the modelling frameworks
provide a means for creating modules, i.e. subsets of rules/entities that provide a separation of concerns.
Unfortunately, modules do not exist in either GTS and BRS, highlighting a future research direction. One
promising approach in BRS is the use of multi-perspective modelling [BCRS16, SKCM18], where distinct
bigraph regions are used to separate modelling concerns, e.g. into an underlay and overlay perspective. It
remains unclear however how the multi-perspective approach should best maintain a single node set over
multiple regions. We do not attempt a multi-perspective approach here, and instead opt to extend the existing
model by adding additional entities and rules without making distinction between overlay and underlay
entities.

Figure 18 shows the full GTS type graph containing the entities for both the underlay and overlay networks.
Two new entities are added: OverlayLink that models a virtual link between two nodes, and OverlayNetwork
that operates as a wrapper to manage the virtual link set. An interesting feature, available only in GTS, is
the use of inheritance to allow a Link between two nodes to be either an UnderlayLink or an OverlayLink.

Table 2 shows the full set of entities for the BRS model. The main entity added is the virtual link V. As
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[0..*] node

[2..2] node [0..*] link

[0..1] underlaynetwork

[0..1] overlaynetwork

[0..*] overlaylink

[0..*] underlaylink

Fig. 18. GTS (Henshin) full type graph showing entities and their relationships

Table 2. Full set of entities for the BRS model
Description Type Arity Atomic Parent Notation

Underlay

Signal range S 1 oval
Node N 1 S circle
Link L 0 N rounded box
End (any type) E 1 L small circle
Active end E.A 1 X L small teal circle
Inactive end E.I 1 X L small purple circle
Unclassified end E.U 1 X L small yellow circle
Tagged end E.U′ 1 X L small amber circle

Overlay

Virtual Link V 1 L triangle
Active Virtual Link V.A 1 X L green triangle
Tagged Virtual Link V.A′ 1 X L blue triangle
Error Virtual Link V.Err 1 X L red triangle

with the link-end (E) entities in the underlay network, we use additional entities to tag the status of a virtual
link, e.g. an error tag if there is no valid a-u underlay path meeting the virtual link requirement.

Discussion 5 As with the underlay network, GTS requires fewer additional entities (2 instead of 4) than
BRS to represent the overlay network. Again, this is mainly due to additional tagged entities that are required
to implement control sequences in BRS.

GTS makes use of inheritance in order to allow both underlay and overlay links to work in rules that
match on abstract Links. Inheritance is not directly supported in BRS, however it can be mimicked through
nesting. For example, we may define an entity Link that contains either a Underlay or Overlay entity. This
allows rules that match on any link type, while still allowing rules that only work on specific types, e.g. by
matching on Link.Overlay.
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(a) tag V

(b) create V1

(c) create V2

(d) untag V

Fig. 19. BRS reaction rules to create virtual links

5.1. Dynamics

We specify two dynamic behaviours for the overlay network: Requirement management that allows a user to
create/delete a virtual link between sensors, and Routing maintenance that attempts to ensure there is a
valid underlay path for each virtual link.

5.1.1. Requirement Management

In the GTS model, the rules to create/delete a virtual link are similar to those that create an underlay link
(cf. Fig. 13). They differ by no longer requiring a side condition to detect when the sensors are close-enough
to communicate as in the overlay network any pair of sensors may be (virtually) connected/disconnected.

Due to the lack of wireless signals in the overlay network, it is not possible for the BRS to reuse rules
similar to those for creating underlay links as we risk creating duplicate virtual links between pairs of sensors.
As the BRS lacks negative application conditions, we avoid duplicating links through a multi-step tagging
technique show in Fig. 19. Priorities enforce the order of rule application: first, sensors already linked by an
active virtual link are tagged using tag V. Second, create V1 or create V2 creates a virtual link between
the required sensors if at least one sensor is not tagged. Finally, all tags are removed using untag V. Notice
that tag V and untag V are applied to all matches, while create V1/create V2 is applied to a particular
pair of nodes.

The BRS Delete Virtual Link operation is modelled by the simple reaction rule of Fig. 20. The use of
sites within the virtual links allows the rule to be applied regardless of the status of the virtual edge, e.g. the
same rule can remove virtual links that are active or in an error state.

Discussion 6 The lack of negative application conditions to detect duplicate links in BRS is costly, requiring
4 rules to create a virtual link as opposed to 1 in GTS. An alternative approach using 2 rules would be to
allow the creation of duplicate links between sensors, with a second rule to garbage collect any duplicate
links, however this can leave the model in an inconsistent state should other rules be applied before garbage
collection.

In both cases the deletion of a link is simple and requires only a single rule. Even with negative
application conditions in GTS, it is often much easier, in both GTS and BRS, to match on the existence of
an entity/relationship rather than the non-existence.
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Fig. 20. delete V

5.1.2. Routing Maintenance

Routing maintenance requires interaction between the overlay and underlay networks to ensure the require-
ments, as specified by virtual links, are met (if the given physical sensor layout allows). Routing maintenance
poses a challenge for both GTS and BRS, as a full-fledged search algorithm has to be encoded in transforma-
tion/reaction rules. We sketch how to encode path searches the following, in particular how we implement the
Search Active Path functionality. Activating a-u paths, for example, uses a similar search but allowing for u
links to be included. Complete implementations of all search functionality is found in the reference models 10.

In GTS, we associate an explored attribute to each sensor that determines if the sensor has been visited
in the current run of the path search algorithm. This is similar to the tagging approach seen in the BRS
underlay model, however here we use attributes instead of defining tagged variants of entities.

We sketch the search algorithm here, using the rules shown in Fig. 21. In practice, the GTS model
implements the Fig. 21e control unit as a combination of 4 control units. The search algorithm is parameterised
by the start and end sensors, i.e. those participating in the virtual link we wish to check. This requires each
sensor in the system to be assigned a unique id, in this case an entity attribute that is set when the initial
topology is created.

The search is guided using a control unit like the one shown in Fig. 21e. Search begins by setting every
sensor in the system to unexplored using rule unsetExplored (Fig. 21a). Then, starting from the start sensor,
we set the sensor as explored using setExplored then search, in a depth-first fashion, every unexplored
node reachable through an a-path. Reachable nodes are determined by rule getNext (Fig. 21c) that returns
the id of an unexplored neighbour. This id is then passed to setExplored and the algorithm loops. If
getNext fails to match, i.e. when there are no unexplored neighbours remaining, the search backtracks and
the next unexplored neighbour is explored. Once all reachable sensors have been tagged, we check, using
checkExplored (Fig. 21d), if the end sensor has been explored. If so, we know there is a valid a-path from
start to end.

Like GTS, the BRS approach makes use of tagging to perform path search as shown by the 5 reaction rules
in Fig. 22. Initially, rule source chooses one end of a virtual link (Vx.A

′) and tags it as the source of the path
(F). Afterwards, path0 tags all sensors reachable by following active underlay links (Ex.A) from the source.
At this point, if active V can be applied, the tentative virtual link is promoted to active. Otherwise, path is
applied again to explore additional a-paths. Finally, when active V and path are no longer applicable, i.e.
there are no paths remaining from the source, the tentative link is tagged as Vx.Err to indicate the virtual
link cannot be established given the current network configuration. Rule priorities are specified as

source < error < path < active V < path0

Placing source at the lowest priority ensures that the entire search algorithm runs to completion for a single
source node before the another source node is marked.

In both cases, the Activate a-u Path requirement can be modelled by performing a similar search that
allows a-u paths, and performing an additional step to activate any unclassified nodes that are discovered.
Mark Inactive Path is specified by an analogous extension in which inactive links are identified and iteratively
unclassified by the Unclassify operation.

Discussion 7 Both GTS and BRS make use of a similar tag based approach to performing search. Such
a method is essential to ensure sensors are not visited more than once, and similar approaches are used in
standard graph search algorithms.

GTS requires heavy use of control units to implement search (e.g. 4 for SearchActivePath). As control
units are not part of the core GTS theory, they may prove problematic when expressing complex algorithms.
However, rule-based rewriting is often not adequate for such tasks, e.g. mimicking a recursive behaviour is

10GTS: https://github.com/timofr/sosywsn/tree/master/modeling/henshin/WSN_Henshin; BRS: http://www.dcs.gla.ac.
uk/~michele/wsn.big

https://github.com/timofr/sosywsn/tree/master/modeling/henshin/WSN_Henshin
http://www.dcs.gla.ac.uk/~michele/wsn.big
http://www.dcs.gla.ac.uk/~michele/wsn.big
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Fig. 21. GTS rules and control unit for searching an active path

cumbersome and error-prone using GTS. While the BRS approach of rule priorities removes the need for
imperative control units, it relies on adding algorithmic entities, e.g. tags, to the model resulting in larger,
and possibly more complex, models.

6. Analysis of WSN models

We give a flavour of model analysis for GTS and BRS here, focusing on verifying properties of both the
underlay and overlay networks. We conclude this section with a detailed discussion of the concurrent behaviour
of the system, e.g. the interactions between the underlay and overlay network.

6.1. Instance Correctness

Checking reachability and correctness properties rely on generating a transition system from a given starting
topology. This requires the generation of correct starting instances.

Correctness for GTS requires all graphs to be an instantiation of the meta-model (type-graph), that is, to
be well typed. Automated checking that a graph conforms to a given meta-model is available in the major
tools for GTS. While it is possible to check an whether instance is well-typed, methods for automatically
generating well-typed instances, perhaps with additional properties such as bounds on the number of nodes
and connectivity, remains an active research area [Tae12, SBL+20]. It is further complicated if, for example,
we also need to generate valid and meaningful entity attributes as well as structure.
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(a) source

(b) path0

(c) path

(d) active V

(e) error

Fig. 22. Diagrams for reaction rules source (a), path0 (b), path (c), active V (d), and error (e)

Correctness of BRS models may be checked by providing a sorting scheme [Mil09, Chapter 6]. Intuitively
a sorting scheme assigns a sort to each entity type, and a set of constraints on these sorts. For example,
we may specify that a sensor node cannot contain another sensor node. Generating correct test instances
then corresponds to generating a well sorted bigraph. Currently no tool provides support for working with
sorting schemes, including checking a bigraph matches a given scheme, and instances must be verified by
hand. Creating such a tool is a fruitful area for future work. One practical approach is to construct instances
from a set of reaction rules, e.g. implementing newNode functionality. We then prove, again currently by hand,
that the reaction rules only produce well sorted bigraphs. Then, by constructing test instances through the
reaction rules we are guaranteed to obtain a well-sorted bigraph. This approach is based on the idea that is it
usually simpler to show a rule is well sorted as opposed to an arbitrary bigraph.

6.2. Inductive Reasoning

By utilising a formalism with a strong mathematical foundation, we gain the ability to reason about resulting
models using mathematical proof techniques. In particular, we may make use of inductive reasoning to prove
that properties hold in all cases, e.g. regardless of the number of nodes and starting topology.

The idea behind inductive reasoning is to prove that there is no sequence of transformation/reaction rules
that cause the system to enter an invalid state. As with mathematical induction, we first reason about the
system in some base state, by checking that transformation/reaction rules preserve some required property.
We then lift this to arbitrary models by an inductive step (that utilises the base case).

The induction need not be over all rules, for example, for the Connectedness property below we assume
the rule to delete a link is omitted.

Rule ordering is important in inductive reasoning and we must ensure, for example, that the application of
a rule does not enable another rule, that was not previously applicable, to put the system in an invalid state.

Inductive reasoning is complicated, but not impossible (e.g. [DG15, Pen09]), for GTS due to the use of
control units that allow complex rule application orders. For BRS, rule priorities are simpler to reason over,
and inductive reasoning has been previously applied [BCRS16]. None of major tools for GTS or BRS support
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inductive reasoning automatically. As with tooling for automated sort checking, we believe automating
inductive reasoning to be a key area for future work.

6.3. State Space Analysis

Inductive reasoning requires careful analysis of the models and is not suitable for non-expert users. Instead
both GTS and BRS models can be analysed through state space exploration. Here, starting with an initial
(bi)graph, rewrites are repeatedly applied until a labelled transition system (LTS) is created. In this case
we have predicate labels on states and rule names on transitions. In BRS theory there are techniques, from
the process algebra community, to allow action labels on transitions [Mil09, Chapter 6.]. Model checking
techniques, often combined with temporal logic, then specify and check properties we expect to hold on the
transition system. Full state space analysis is not possible for all systems, e.g. they may be infinite, but is
possible for many practical cases [BDK+12].

Regarding tool support, state space generation is a built-in feature of Henshin, while Groove natively
supports model checking of temporal logic formulas. BigraphER provides tools to export a transition system
for use external model checking tools, e.g. PRISM [KNP11]. Separating model generation (through rewrite
rules) from model checking may lead to some inefficiencies in analysis, e.g. it is not possible to reduce the
search space through symbolic analysis on the original model, however rewrite based approaches have several
benefits over component-based (such as those found in PRISM) including “changeability”, “expressiveness”,
and “simplicity” [KG12].

6.4. Underlay Properties

As described in Section 2.4, we consider three properties of the underlay network: Connectedness, Redundancy
Reduction, and Liveness Resolution.

Connectedness Connectedness is the property that, given a connected start state, i.e. one where there is
at least one a-u path between each pair of nodes, on any execution where no underlay link is deleted, all
reachable states remain connected.

Connectedness is difficult to prove for both GTS and BRS models (and models in general) as it requires
universal quantification over the whole model, i.e. forall pairs of nodes rather than requiring a single match.
Using model checking here is difficult, often requiring external algorithms to perform a search of the whole
topology at each new state.

Inductive reasoning allows universal properties to be checked. A sketch of this inductive reasoning for BRS
is as follows. The base case is a topology consisting of two nodes. As the start state is connected, there must
be either an a or u link between these two nodes. As we assume no underlay link is deleted, the only rule that
can change the link status to i is untag (Fig. 17c). Links may only be tagged using the tag rule (Fig. 17a)
which requires three nodes, hence the two node topology is always connected. For an n node topology we may
have triangles of nodes and at most one link in the triangle might be inactive if tag/untag have been applied.
The other two links must be a-u links and, given the base case, these are always connected. Therefore the
whole topology remains connected. Inductive reasoning for GTS takes a similar form.

Redundancy Reduction Redundancy Reduction is the property that the system reduces the number of
active links to the minimum required by removing active triangles. That is, in a topology with no unclassified
links there will be no active triangles.

For GTS we can formulate the Redundancy Reduction property over a single forbidden structure i.e.
a triangle of active links. The non-existence of this structure is then verified using a rule with a negative
application condition. Alternatively, this structure can be used in an identity transformation rule that matches
the active triangle structure but performs no changes to the graph. This causes the rule to be labelled in the
resulting transition system allowing it to be checked by a model checker. We use the second form here as it is
closer to how the BRS detects the potential for redundancy reduction.

Similarly to GTS, in BRS we may define predicates as bigraphs [BCRS16] that are checked, via matching,
at each step of generating the transition system, and appear as state labels allowing for verification via a
model checker.
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n1

n2n3

aa

a

(a) φ1 = activeTriangle
(b) φ1 = activeTriangle

Fig. 23. Redundancy reduction predicates to detect active triangles

n1 n4u

(a) φ2 = unclassified (b) φ2 = unclassified

Fig. 24. Liveness predicates to detect unclassified links

The predicates, φ1 for both GTS and BRS are given in Fig. 23. Both predicates are simple and detect
when an active triangle exists between three nodes in the system. If this is the case, then there is the potential
for further redundancy reduction that has not taken place.

We may then specify, as an LTL formula that, assuming the network does not change, i.e. no new undefined
links are created, we eventually reach a state with no active triangles: F(¬φ1).

Liveness Resolution Liveness Resolution expresses that the system, given no operations that add unclassified
links, reaches a state containing no unclassified links i.e. links are either assigned active or inactive.

As with Redundancy Reduction we can specify a predicate, φ2, shown in Fig. 24, that match when an
unclassified link exists in the system. We can then check that eventually all unclassified links are assigned a
state using the LTL formula F(¬φ2).

6.5. Overlay Properties

We are interested in a single overlay network property: Virtual Link Fulfilment. This property specifies that,
for virtual links with no a-u path, a a-u path will eventually be created, i.e. topology control works correctly.
Note that it is not always possible to create such a link, for example, when we have a virtual link to an
isolated node with no underlay links.

The topology search algorithms have features to determine if a virtual link is unfulfilled, i.e. Err tagged
links. To check the Virtual Link Fulfilment property, we can check simple predicates based around this
existing functionality as shown in Fig. 25. As the GTS model requires parameters to identify the particular
nodes in the predicate there is essentially one predicate for each start/end pair that have a virtual link.

Importantly, the virtual link fulfilment predicates are only valid after the current round of the search
algorithm has run, i.e. when the models have not reset the tags. Therefore, we do not know the state of the
predicate between search runs. As we only wish to check that eventually all links are fulfilled this is not an
issue for verification.

Again, the LTL formula states that eventually we should not have any unfulfilled links if topology control
works correctly: F(¬φ3)

n1

id=start
explored=T

n1

id=end
explored=F

(a) φ3 = unfulfilled(start,end) (b) φ3 = unfulfilled

Fig. 25. Virtual Link Fulfillment Predicates
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6.6. Complex and Quantitative Properties

The model checking approach is not limited to simple reachability properties such as those given above. For
example, we may specify that topology control never introduces new active triangles as it runs:

φ2 → (¬φ1U¬φ2)

This states that whenever topology control is needed, i.e. we have an unclassified link, we should never obtain
an active triangle until topology control is complete, i.e. all links are classified.

In general, we are not only interested in qualitative properties, e.g. that there are no active triangles, but
may also be interested in quantitative properties such as the time it takes topology control to complete or
how the system operates under uncertainty, e.g. the probability of a node failure. GTS were be extended with
probabilistic and real-time support [MGK18], while stochastic and probabilistic models (but not real-time
models) are supported for BRS [KMT08] in BigraphER. From a practical modelling perspective, adding
rates/probabilities/timing amounts to adding conditions to the rewrite rules, e.g. l→ r with probability p.
Such probabilistic and timed models have been previously used in wireless sensor protocol design [KMH08].

6.7. Concurrency Analysis

The co-existence of different events, such as an underlay link being deleted due to node movement while
topology control is running, naturally results in concurrent behaviour.

Conflicts occur when the execution of an rule obstructs another rule. For example, in our model, an
operation deleting an unclassified link conflicts with any action changing the status of the same link. Such a
conflict is asymmetric as link deletion can still be performed after a status change but not the other way
around.

The three underlay components (node behaviour, link behaviour, topology control) are naturally concurrent.
In GTS, the arising conflicts can be avoided using control units and negative application conditions. To
statically detect potential conflicts, critical pair analysis (CPA) theory has been proposed for GTS [EEPT06],
with ongoing theoretical research [BLST17] and tool support as in Henshin and AGG. However, the CPA
techniques are based solely on the transformation rules and do not account for the use of control units. Given
the common use of control units in GTS, CPA often results in false positives, reducing the benefit to the
modeller. Recent work proposes the first notions for an operational, thus, control-aware interpretation of
independence and conflicts [KCL18].

In BRS, tagging schemes and rule priorities are used to avoid conflicts between rules. To aid in concurrency
analysis, BigraphER is able to detect undesirable states at run-time, whose analysis might help in conflict
identification and subsequent model refinement. Likewise, BigraphER supports filtering of intermediary
states that are used only for control allowing, for example, the recursive topology control algorithm to be
treated as a single step action.

Explicit Synchronisation, allows two rules to run at the same time, i.e. in a single transition step. In
GTS there are no established techniques to compose independent rule applications into synchronised actions.
There have been proposed various rule composition techniques for GTS, most notably amalgamation [RK09],
however these techniques do not explicitly address a concurrent scenario.

Explicit synchronisation is not specified in BRS. In general, when both R IR′ and P IP ′ are
applicable, only one rule application can take place at one evaluation step. Explicit synchronisation can be
expressed by adding reaction rule R ‖ P IR′ ‖ P ′ to the BRS; assuming R and P do not overlap.

Concurrency analysis in both GTS and BRS is a promising area for future research. The different
philosophy and approaches to control/concurrency is a crucial discrepancies between GTS and BRS. This is
due to their theoretical origins: GTS generalises term rewriting [Roz97] and originates in classical grammars
where operational and concurrency issues are out-of-scope, while BRS are a generalisation of process calculi,
having operational semantics and concurrency at their core.

7. Comparison of GTS and BRS

To guide future application modelling, to aid in selecting between GTS and BRS, and to highlight areas we
think fruitful for future investigation, we have discussed the similarities and differences of GTS and BRS
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Table 3. Summary comparison of features of GTS and BRS
Feature GTS BRS

Categorical Object Graphs Interfaces
Categorical Arrows (Partial) Graph Morphisms Bigraphs
Matching Semantics 3 Step gluing Sub-graph rewriting
Locality × X
Hierarchical Entities × X
Hyperedges × X
Entity Attributes X Via nesting
Explicit Abstraction × X
Inheritance X ×
Instantiation maps × X
Negative Application Conditions X ×
Control Flow Imperative Control Units Priorities/Tagging
State Space Analysis X X
Inductive Reasoning X X
Tool Support Henshin, Groove, AGG, eMoflon BigraphER, BigRed
Meta-Models Type Graphs Sorting

throughout. This section brings together these discussions and highlights areas of future work. As BRS is a
newer formalism than GTS we expect most ideas to flow GTS to BRS. A summary of the different features is
in Table 3.

While both based on graph structures the formalisms are theoretically quite different. GTS tends to use
traditional DAG structures with nodes representing entities and binary links representing relationships. On
the other hand, BRS have two overlaid graph structures: a DAG11 with binary links representing containment
and a hypergraph allowing multi-arity links. As we have seen (Section 4) fixed arity constraints on bigraph
entities are often restrictive when modelling, with additional place graph nodes operating as link ends often
used to overcome this. An interesting research question is whether bigraphs themselves could be redefined,
and what you gain/lose, by disallowing hyperedges in the link graph and instead requiring explicit entities
in all cases – bringing it closer to a GTS-style setup with essentially (ignoring interfaces) coloured links to
represent place vs linking dimensions.

GTS provides additional features that augment the graph structures. For example, they allow Entity
Attributes, e.g. a entity contains an integer x, with languages that allow querying and updating. Likewise
Imperative Control Units augment the rewriting system to provide fine-grained, and possibly conditional,
control. BRS have less features in this regard: attributes can be described by nesting additional controls,
however as features to query and update the attributes must be provided directly through reaction rules
it is difficult to perform calculations without encoding a programming language within the bigraph itself12.
Likewise, control flow is limited to priorities only, with all other control flow being pushed into the model,
e.g. through tagging. We believe BRS can benefit from making it easier to specify attributed and control
flow and could borrow many of these aspects from the GTS theory. One promising area is to allow a strategy
language, like those found in term rewriting [MMV04], to specify imperative control flow while sticking to the
core rewriting theory of bigraphs.

One of the key features lacking from BRS are (negative) application conditions that significantly increase
the expressiveness of GTS. Adding this feature to BRS is challenging due to the differences in how the systems
are constructed i.e. bigraphs are formed compositionally requiring careful management of symmetries/interface
renaming etc., while GTS treats graphs as objects with (partial) maps between graphs. In order to reuse
techniques, a promising direction is to learn from pushing BRS closer to GTS e.g. [Ehr02, SS04], while also
pushing GTS closer to compositionally defined structures, e.g. [DJ19]. While we expect interesting results
from such work, we are not advocating that GTS should become BRS (or vice-versa). As we have shown
throughout this paper each to excels in different aspects of modelling.

Although not explored much in this paper, the compositional nature of bigraphs allows them to be
constructed algebraically as well as diagrammatically. The algebra forms the basis of the BigraphER
programming language allowing users to specify large models (that are difficult to draw) and to benefit from

11Assuming sharing.
12The BigraphER implementation makes this easier by allowing rules to be generated for specific sets of inputs, i.e. to

generate all rules that match (entities) x and y and rewrite to (entity) x+ y.
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reuse of expressions. Likewise we envisage the same algebraic language being usable by multiple independent
tools. GTS on the other hand tend to be largely described diagrammatically.

GTS and BRS support similar features for model analysis, in particular, both make heavy use of reachability
analysis, e.g. to allow model checking. Concurrency analysis, e.g. confluence/critical pairs, is a large research
topic in GTS that is under-explored for BRS with no general theory or tool support available. This is perhaps
surprising given the background of BRS is the process algebra/concurrency communities. Exploring this
further fruitful area for future research and we expect BRS can learn significantly from the GTS, term
rewriting, and concurrency communities.

Finally, while we focused on GTS and BRS there remains interesting future work to compare a wider range
of modelling formalisms, e.g. process algebra, from a practical modelling standpoint: to highlight interesting
cases and allow modelling formalisms to further learn from and guide each other.

8. Conclusions

By modelling topology control in wireless sensor networks using both graph transformation systems (GTS)
and bigraphical reactive systems (BRS), we have gained a deeper understanding of the practical modelling
abilities of both formalisms.

To show the usefulness of formal models, we described how analysis can be performed in both formalisms.
State space analysis, where the model is analysed as a labelled transition system – with states are represented
as (bi-)graphs, and transitions as (bi-)graph transforms/rewrites – is common for both GTS and BRS.
Labelled transition systems work well with existing model checking tools that allow temporal properties to be
checked. While this is appropriate for simple predicates, e.g. such as checking the system eventually converges
to a particular state, it cannot handle properties with universal quantification over the whole model, e.g.
a property holds for all pairs of sensor nodes. Approaches, for both GTS and BRS, to handle universally
quantified predicates is an area of active research. A promising approach is inductive reasoning, based on
the rewrite rules, to prove no sequence can produce a failure state. Currently no tools support automated
inductive reasoning. Concurrency analysis is currently stronger for BRS due to the process calculi background,
yet many techniques are being considered for GTS. This remains an area of future research.

While we have only shown GTS and BRS applied to a single application area, as systems continue to be
larger, more complex, and operate in uncertain environments, the need for intuitive modelling tools becomes
greater. GTS and BRS both have the ability to express complex relationships between entities without
sacrificing on the readability of the models, and this paper motivates their future use in WSNs, networking,
and other domains.
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Mühlhäuser. A systematic approach to constructing families of incremental topology control
algorithms using graph transformation. Software Engineering und Software Management 2018,
Fachtagung des GI-Fachbereichs Softwaretechnik, SE 2018, 5.-9. März 2018, Ulm, Germany.,
pages 109–110, 2018.
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