
COST April 2012 Stuart Monro 1/24

Cost Models for Combinator
Parallelism in GPGPUs

Stuart Monro
monros@dcs.gla.ac.uk

COST April 2012 Stuart Monro 2/24

Collaboration Benefits

COST has funded collaboration between the University of Glasgow and the Chemnitz
University of Technology

This has allowed us to combine the following:

Chemnitz

 Expertise in cost modelling and implementation
 Expertise in the development of programming models

Glasgow

 Expertise in functional programming & development of combinator algorithms

Both

 Expertise in parallel programming

Project that will be discussed in this talk requires deep knowledge in all of these areas
to ensure success, collaboration is aiding in this

COST April 2012 Stuart Monro 3/24

Motivation

High Level Techniques for Parallel Programming

with a focus on

Programming models and cost models for data parallelism

Aim is to produce a programming model offering the following benefits:

 Abstracting away from the architectural complexity of the GPU

 Supporting parallel programming on heterogeneous architecture

 A cost model to support program organisation decisions

 Integration with existing task parallel models (such as TwoL)

COST April 2012 Stuart Monro 4/24

Background

 CPUs have hit a wall in speed improvements

 The key to improving performance now is parallelism

 Restructuring a sequential algorithm in order to parallelise it is not straightforward.

There is a large design space
Multicores – task & data parallelism
FPGAs – task & data parallelism
CPU clusters – task & data
GPUs – data (& task?)

Regardless of which approach we take we need multiple processors
GPUs are cost effective:

 Tesla C Series 2075 €2,100
 GTX 670M €760
 GTX 680 €500

COST April 2012 Stuart Monro 5/24

Background

 Too expensive in terms of time & effort to code up different architectures to compare
them, need a cost model to provide a comparison on which to base a decision

 This comparison can be provided by using a cost model to gain a rough
understanding on likely performance improvement

 The accuracy required for the predicted performance improvement varies from case
to case:

 E.g. sequential program takes 9 months to run, when predicting performance
improvement, accuracy of +/- 1 week is acceptable

The cost model can also help in terms of considering development time e.g.:
CPU cluster will result in 15% speed up & will require 100 hours of development
time
GPU will result in 25% speed up & will require 500 hours of development time

If a 15% performance gain is sufficient for the programmer's needs then CPU cluster
may be best solution

The cost model informs the decision

COST April 2012 Stuart Monro 6/24

Cost Models

 A cost model expresses the execution time, memory consumption or power
consumption of an algorithm as a function of relevant parameters

 It can be used to predict the performance of an algorithm based on those parameters

 For example consider the following:

int sourceArray[i];
int resArray[i];
int j = 42;

for (k = 0; k < i; k++)
if sourceArray[k] < j

resArray[k] = 1;
 The performance of a parallel algorithm to carry out this task could potentially

depend on the following parameters:
Number of comparisons
Number of threads
Number and type of memory accesses
Cache behaviour

COST April 2012 Stuart Monro 7/24

Cost Models

 Cost models can assist both in:

Choosing the architecture
Structuring the algorithm.

 They can be used by the programmer to make key decisions based on empirical data.

 There is a trade off between the usability and accuracy of the cost model:

The more accurate the model, the more complex it will be to use

A cost model does not need to be 100% accurate to be useful

COST April 2012 Stuart Monro 8/24

Research Approach

 Select a complex system

 Take actual measurements of that system's performance

 Use curve fitting to develop a cost model

Why?

 The GPU is a complex system
Complicated to work out theoretical models based on architectural details
Architectural details are proprietary & not all are public

 GPU characteristics vary
Aim to develop portable experiments
Quickly applied to new chips when they become available

 Performance may be dependant on problem size
Need to know the constants in a model
These can only be identified through measurement

COST April 2012 Stuart Monro 9/24

Methodology

The approach used to develop cost models

Different Architectures
(All Nvidia)

 GeForce GTX 590 - 512 CUDA cores – clock speed 1.22 GHz

 GeForce GT 520 - 48 CUDA cores – clock speed 1.62 GHz

 GeForce 8800 GTX - 128 CUDA cores – clock speed 1.35 GHz

 GeForce 8200 – 8 CUDA cores – clock speed 1.5 GHz

Different architectures used to identify whether models are portable or must be
architecture-specific

Depending on the outcome, models will be developed accordingly

COST April 2012 Stuart Monro 10/24

Methodology

The approach used to develop cost models

Measurements

GPU kernel (example – Logical AND operation)

 dev_shared[threadIdx.x] = dev_dataArray[tid];

startComparison = clock();

result = dev_shared[threadIdx.x] && comparisonVal;

endComparison = clock();
elapsedTime = endComparison - startComparison;
dev_timingArray[tid] = elapsedTime;

if (result)
dev_shared[threadIdx.x] = trueResult;

else
dev_shared[threadIdx.x] = falseResult;

dev_dataArray[tid] = dev_shared[threadIdx.x];

COST April 2012 Stuart Monro 11/24

Methodology

The approach used to develop cost models

Measurements

Timing done at thread level, focusing on the operation only

 dev_shared[threadIdx.x] = dev_dataArray[tid];

startComparison = clock();

result = dev_shared[threadIdx.x] && comparisonVal;

endComparison = clock();
elapsedTime = endComparison - startComparison;
dev_timingArray[tid] = elapsedTime;

if (result)
dev_shared[threadIdx.x] = trueResult;

else
dev_shared[threadIdx.x] = falseResult;

dev_dataArray[tid] = dev_shared[threadIdx.x];

COST April 2012 Stuart Monro 12/24

Methodology

The approach used to develop cost models

Measurements

Results of operation are recorded & later returned to the user to avoid compiler
optimisations

 dev_shared[threadIdx.x] = dev_dataArray[tid];

startComparison = clock();

result = dev_shared[threadIdx.x] && comparisonVal;

endComparison = clock();
elapsedTime = endComparison - startComparison;
dev_timingArray[tid] = elapsedTime;

if (result)
dev_shared[threadIdx.x] = trueResult;

else
dev_shared[threadIdx.x] = falseResult;

dev_dataArray[tid] = dev_shared[threadIdx.x];

COST April 2012 Stuart Monro 13/24

Methodology

The approach used to develop cost models

Measurements

Repeated multiple times
For different sizes of source data set

Produces high number (between 100 – 1000) of result data sets to base cost models
on

Curve Fitting

Matlab used to analyse all result data sets and produce basic models based on those.
These models typically take the form:

Where:
A & B are specified by Matlab
x is the number of operations to be performed

COST April 2012 Stuart Monro 14/24

Methodology

The approach used to develop cost models

Model Checking

 “Clean” data sets produced
 Models checked against those for accuracy
 Approach for checking:

Automated script takes model as input values
Iterates through every entry in clean data set
Calculates predicted time for each entry using model
Compares prediction with actual

Accepted Margin Of Error

The output from model checking is the predicted time (PT) and the actual time (AT)

If

then it is considered that the model falls within the accepted margin of error

COST April 2012 Stuart Monro 15/24

Methodology

The approach used to develop cost models

Model Finalisation

 One basic model developed for each data set

 Minor discrepancies normally seen in values of A & B

 Average out discrepancies

 Test finalised model against clean data sets

COST April 2012 Stuart Monro 16/24

Models Produced to Date / Under Development

Data types models developed for:

 Integers – 4 bytes
 Doubles (where supported) – 8 bytes

Operations

 Add
 Multiply
 Compare
 Logical AND
 Logical OR

Data Transfer

 Host to device global memory
 Device global memory to host
 Device global to shared memory
 Device shared to global memory

COST April 2012 Stuart Monro 17/24

Combinator Algorithms

 Capture methods & patterns of parallelism

 Roughly analogous to Java design patterns but with a mathematical foundation

 Can be difficult to implement, particularly in parallel architectures

 However many parallel algorithms can be expressed using combinators
This makes them a powerful programming methodology
Rewards the effort involved in implementation

 Aim is to implement some algorithms which use combinators and use cost models to
predict their performance

COST April 2012 Stuart Monro 18/24

Combinator Algorithms

 Fundamental data structure – the array

Standard operations across an array:

Map

Iterate across array, adding 42 to each index position

for (i = 0; i < arrayLength; i++)
array[i] += 42;

1 3 5 7 9 11 13 15

43 45 47 49 51 53 55 57

+ 42

COST April 2012 Stuart Monro 19/24

Combinator Algorithms

Standard operations across an array:

Fold

Iterate across array, calculate sum of all values

for (i = 0; i < arrayLength; i++)
result += array[i];

1 3 5 7 9 11 13 15

4 5 7 9 11 13 15

9 7 9 11 13 15

16 9 11 13 15

25 11 13 15

36 13 15

49 15

64

1 + 3 =

4 + 5 =

9 + 7 =

16 + 9 =

25 + 11 =

36 + 13 =

49 + 15 =

COST April 2012 Stuart Monro 20/24

Combinator Algorithms

Further array operations:

 Scan family
 Sweep

Which can be seen as a combination of maps & folds.

E.g. ScanL (scan from left or prefix sum):

Uses fold approach as illustrated in previous slide
Output is not a single value:

for (i = 1; i < sourceArrayLength; i++)
 resultArray[i] = sourceArray[i-1] + resultArray[i-1];

1 3 5 7 9 11 13 15 1 4 9 16 25 36 49 64
sourceArray resultArray

COST April 2012 Stuart Monro 21/24

Combinator Algorithms

Using these standard algorithms as building blocks we can construct many more
algorithms and functions.

First we need to develop cost models for the basic functions

Key decision:

Which aspects of each function contributes to the cost model?

 Host code?

 Data transfer?

 Kernel call?

 Algorithm?

Case by case approach

COST April 2012 Stuart Monro 22/24

Combinator Algorithms

Intended Cost Model for Map

Kernel code:

Fetch array from global memory into shared

Start timing

Add constant to each value in shared memory array

Stop timing

Write start & stop times to timing array

Write shared memory array back to global

Only the map function itself is timed as cost models for all other operations exist or are
in development

COST April 2012 Stuart Monro 23/24

Combinator Algorithms

Intended Cost Model for Fold (AKA Reduce)

More complex than map:

 Initial reduction is performed in shared memory on the device until original source
array has been reduced to one value per block

 Those remaining values are copied back to the host

 Final reduction is performed on the host until a single value remains

The overall time required to perform the operation will consist of:

Time to perform reduction in shared memory on device
Time to perform final reduction on host

Time required to transfer data will not be recorded as cost models are being developed
separately.

COST April 2012 Stuart Monro 24/24

Future Work

 Model for Scan

 High level programming models
Level of abstraction
Libraries
Cost-model based decisions

 Ongoing collaboration to develop programming models

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

