
Automatic verification of any number of concurrent, communicating processes

Muffy Calder and Alice Miller
Department of Computing Science

University of Glasgow
Glasgow, Scotland.

E-mail: muffy,alice@dcs.gla.ac.uk

Abstract

The automatic verification of concurrent systems by
model-checking is limited due to the inability to generalise
results to systems consisting of any number of processes. We
use abstraction to prove general results, by model-checking,
about feature interaction analysis of a telecommunication-
s service involving any number of processes. The key idea
is to model-check a system of constant number (�) of con-
current processes, in parallel with an “abstract” process
which represents the product of any number of other pro-
cesses. The system, for any specified set of selected features,
is generated automatically using Perl scripts.

1 Introduction

The automatic verification of concurrent systems by
model-checking has traditionally been limited due to the
inability to generalise results to systems consisting of any
number of processes. For example, we may be able to show
that a property holds for 4 processes, i.e. for ��������������,
but how can we deduce that (if at all) the property holds
for ���������������� � � � ������, for an arbitrary n? It is not
possible to demonstrate this with straight-forward model-
checking [1].

Our application domain is feature interaction analysis
[2]. Analysis involves examining a system of basic service
processes, running concurrently, some with additional fea-
tures, to determine whether or not certain properties hold.
An interaction may be indicated when a property holds in
the presence of one feature alone (i.e. all but one process
offers only the basic service) but is violated in the presence
of more than one feature. It is important to know when anal-
ysis results do (and do not) scale up.

For example, for a system of four concurrent ser-
vice processes, with different combinations of pairs of
features, the goal of the analysis is to prove (or dis-

prove) that ����������������� �� ���� �� � � � � �� where
����������������� is the finite-state model of the parallel
composition of processes ��� ��� ��� �� (instances of a pa-
rameterised process �) and ���� �� � � � � �� is a temporal log-
ic formula containing free variables indexed by �� �� � � � � �,
where � � � � �. The �� communicate peer to peer, asyn-
chronously. In general, the �� are not isomorphic (because
they have different sets of features enabled).

We have demonstrated a number of such results [3] for
a basic telecommunications service with features modelled
in Promela. The properties are specified in linear tempo-
ral logic (LTL) and verified using the SPIN model checker
[6]. The ���� �� � � � � �� express properties about feature be-
haviour (e.g. if process � has call forwarding to process �
and process � initiates a call to process �, then eventually a
call from process � to process � will be attempted). In some
cases it is necessary to consider more than 4 processes (up
to 6) to fully capture all possible combinations.

The problem is how to generalise such results to any
number of concurrent, communicating processes, i.e. to
demonstrate that the property � holds regardless of the
number of processes involved (providing this number is suf-
ficiently large). In this paper, we offer a solution based on
abstraction.

We give a technique to prove that, for a fixed � and � �
� � ���, for any �, if ��� ����� � � � � ���� are isomorphic
(they have no features enabled), then

���������������� � � � ������� �� ���� �� � � � � ���

The technique involves representing the behaviour of
���� � � � ������ by an abstract process, Abs. A model of the
� concrete processes ��� ��� � � � � ���� together with the
abstract process is generated automatically from a model of
the concrete processes together with a single basic call pro-
cess �. For example if � � 	, a model of ���� � � � ������Abs
is generated from a model of ���� � � � �������. In this case,
for any � � � � � we show, by model-checking, that
��������������Abs) �� ���� � � � � �� and can hence infer that
������������������� � � � ������� �� ���� � � � � ��.

concrete
processes

abstract
process

Abs

p0 p1 p2

n−1p. . .p3

Figure 1. Representing n processes

The technique is summarised by Figure 1. The concrete
processes are ��� ��� ��. Communication between concrete
processes is via channels (denoted by rectangles) and is un-
changed. Note that the contents of a communications chan-
nel fundamentally determines process behaviour. The ob-
servable behaviour of processes �� � � � ���� is represented
by Abs in the following way. Communication to/from a
concrete process from/to any other process takes place vi-
a a virtual channel. Rather than concrete processes read-
ing/writing to this (virtual) channel and behaving accord-
ingly, each possible read is replaced by a non-deterministic
choice over the possible contents of such a channel. In this
way all possible behaviours are explored. (A write to such
a channel is no longer relevant.)

The number of concrete processes that are required de-
pends on the number of distinct variables that occur in the
feature descriptions and the property to be verified. We have
shown [4] that if two features are enabled in total, then for
our specific set of properties at most
 concrete processes
are required (that is, � �
).

The generation of the initial model on � � � processes
(for any specified set of selected features) is automatically
generated from a template, using Perl scripts. Similarly, the
conversion from an � � � process model to an � process
plus abstract model is performed automatically.

2 Basic call service and features

2.1 Basic call

The basic call service permits call set-up and tear-down
between two parties. Call control is asymmetric: one party
has originating behaviour, and controls the call, the other
has terminating behaviour. Our model follows the IN (In-
telligent Networks) model, distributed functional plane.

Figure 2 gives a diagrammatic representation of an ab-
stract automaton for the basic call service behaviour (the

c?<p,1>
tconnect

on

off
tclose

tpickup

p!!c,1
c!!p,1

talert

p?<c,0>

idle dial
c!c,0

c?p,0
c?p,0

preidle

c?<x,y>

off on

oconnect

oalert

p!c,0
c!!p,0

calling

dial

c?<p,0>

off

on
c?x,y
p!!c,0

Figure 2. Basic call service behaviour

Figure 3. Interpretation of channel states
channel A interpretation

empty A is free
(A,0) A is engaged, but not connected
(B,0) B is terminating party, attempting connection
(B,1) if A contains (A,1) then A and B are connected

full implementation is somewhat more complicated). States
to the left of the idle state represent terminating behaviour,
states to the right represent originating behaviour. Transi-
tions between states are triggered by user-initiated events at
the terminal device, such as (handset) on and (handset) of-
f, or by communication events on shared channels. Trivial
behaviour is omitted.

Originating and terminating automata influence each
other’s behaviour through communication via (shared)
channels. In Figure 2 the channels are referred to as 	,
for the channel associated with that process, and �, for the
channel associated with the partner process. � is chosen
non-deterministically. We use the notation 	�
� � to denote
write the value �
� �� to the channel 	, 	��
� � to denote over-
write the channel 	 with �
� ��, 	 �
� � to denote poll
or non-destructively read value �
� �� from channel 	, and
	
� � to denote destructively read value �
� �� from chan-
nel 	. When the value may be arbitrary, we use variables

and �; otherwise we use the actual constants required, e.g.
�,�, �, etc. Channels may contain channels.

Each channel has capacity for at most one message: a
pair consisting of a channel name (the other party in the
call) and a status bit (the status of the connection). The
interpretation of messages is given in Table 3.

2.2 Features

Since the purpose of this paper is not to describe the fea-
tures but to to illustrate the abstraction process, we therefore
refer only to the CFU feature – call forward unconditional.

For illustration, we provide the LTL formula for C-
FU but not the detailed description of the (parameterised)
Promela process User, its variables and associated proposi-

tions. ������ �� denotes the proposition “a call is attempted
from ������� to �������” which is itself defined in terms of
the global variables associated with the ���� process (see
[3]).
Property 1 – CFU Assume that ������� has CFU �������.
If ������� rings ������� then a connection between � and �
will be attempted before ������� has handset on.
LTL: ����� ������
� = ����������� �� �������������	��������,
� = ������ ��, � = (������ �� ��).

3 Feature validation and interaction analysis

The basic idea of feature interaction analysis is detecting
when features behave as expected in isolation, but not in the
presence of each other. Analysis involves feature validation
(checking a feature in isolation) and then checking feature
tuples for violation of expected behaviour.

3.1 Analysis of any number of call processes

For a given number of features present, and the property
to be verified, there is a fixed number of processes � for
which proof of the property is sufficient to prove the prop-
erty for any number of processes. For example, suppose
we wish to prove the (CFU) property above with � � �,
� � �, � � � for the model representing the behaviour of
������������������ � � � �������� � �� when ������� has C-
FU to ������� and the other users are basic call processes,
for any �. Proof of the property for � � � seems to be suf-
ficient (the three processes involved in the feature and the
property, plus an external process). But why and when is
it is sound to make such a conclusion? Clearly, any exter-
nal process (that is, any process not involved in the feature
or the property) can only affect the behaviour of any of the
processes involved in the feature or property via commu-
nication to or from such a process. Therefore, as long as
all possibilities of such communication is considered, the
(internal) behaviour of the external processes does not af-
fect the truth (or otherwise) of the property. The following
theorem (stated here without proof) clarifies this reasoning.
Generalisation Theorem Suppose that �� �
������ ��� � � � � ����� is a network of � processes
such that, for � � � � � � �, �� has no features enabled.
If ���������� �� ���� �� � � � � �� where ����������
is the finite-state model representing �� acting concur-
rently with the abstract process ��� (described earlier),
���� �� � � � � �� is a temporal logic formula containing free
variables indexed by �� �� � � � � �, where � � � � � � �,
then ����� �� ���� �� � � � � ��.

The consequences of the theorem are the technique out-
lined in Figure 1 where we represent the behaviour of

Table 1.
3-user Depth States Mem Time State-vector

0.09 0.07 0.3 2.8 96
4-user Depth States Mem Time State-vector

7.0 4.2 16.1 80 116
N-user Depth States Mem Time State-vector

2.0 0.8 3.2 17.5 116

���� � � � ������ by Abs. A model of the � concrete pro-
cesses ��� ��� � � � � ���� together with the abstract process
��� is generated automatically from a model of the con-
crete processes together with a single basic call process
�. For example if � � 	, a model of ������������Abs
is generated from a model of �������������. In this case,
for any � � � � � we show, by model-checking, that
��������������Abs) �� ���� � � � � �� and can hence infer that
������������������� � � � ������� �� ���� � � � � ��.

We refer to the � process model plus abstract process
model as the � -users model. Due to lack of space we do
not give details here of how it is generated, but the full Perl
script to convert any ��� ��-users model (with � �) to
an � -users model is given in [4].

4 Results

4.1 Validation of single features

We have validated each feature for the � -users model.
For the benefit of readers with a knowledge of SPIN, in Ta-
ble 1, we provide results for the CFU property for the 3-user
model, the 4-user model and the � -user model respectively.
For all verification runs we used a Sun Ultra 80 worksta-
tion with four 450MHz UltraSPARC-II CPUs and 2GB of
main memory running the Solaris 7 operating system. No-
tice how the values of Depth (����), (stored) States (����),
Mem (Mbytes, with compression), Time (user � system, in
seconds) and State-vector (bytes) for the � -user model lie
in-between those values corresponding to the 	-user model
and �- user model respectively. 1

4.2 Pairwise analysis of features

Once, for a given pair of features and a given property,
the number of concrete users required has been established,
it is straightforward to perform pairwise analysis. We give
here a simple example where the number of concrete users
required is 	 and ������� has CFU to ������� and �������
has CFU to �������.

1Note that the Depth parameter indicates the number of steps (including
individual steps within atomic statements) involved in the longest path,
which is more than the number of states encountered on such a path.

There is an interaction. The scenario offered as a
counter-example (by SPIN) is when an attempted call from
������� is forwarded to �������, not to �������.The same
scenario is offered during verification of the corresponding
�-user model. Even with two features, the number of con-
crete users required may be greater than 	. For example,
consider the same property when the second feature above
is replaced by �����	� has CFU to �������. This would
require
 concrete user processes.

5 Discussion

The results above clearly demonstrate the feasibility of
the abstraction technique for this application domain – the
model checking requirements are well within the capability
of our machine. The transformation to a � -user model is
relatively straightforward: we need only consider the com-
munication between the external processes and the concrete
processes. On the other hand, an induction approach [5, 8]
requires the construction of an inductive invariant. This is
a non-trivial exercise as it involves incorporating the be-
haviour of the entire system within the invariant.

The abstraction approach is sound because the result-
ing abstraction is conservative. While the approach is po-
tentially unconservative, because the resulting system of-
fers all possible communication between concrete and ab-
stract processes, the communications protocol is strong e-
nough to prevent any incorrect communication from taking
place. Overall soundness is assured because processes on-
ly communicate via specified shared variables and interpro-
cess communication is mediated by a strong protocol. For-
malisation of this argument to a general setting is further
work.

While methods based on a combination of abstraction
and model-checking [7, 9] have been applied in other do-
mains, we are unaware of any previous generalisation re-
sults in the feature interaction domain.

6 Conclusions

The automatic verification of concurrent systems by
model-checking has traditionally been limited due to the
inability to generalise results to systems consisting of any
number of processes. This may be a serious limitation be-
cause it is often important to show that results do, or do not,
scale up.

We show a technique that can be used to prove general
results about an arbitrary number of processes. The tech-
nique does not involve explicit induction, and consequent-
ly is rather simpler to apply. The key idea is to consider
a system of constant number (�) of concurrent processes,
in parallel with one abstract process which represents the
product of any number of other processes.

We have applied the technique to feature interaction
analysis of a telecommunications service. The general sys-
tem, for any specified set of selected features, is generated
automatically using Perl scripts. Empirical results demon-
strate feasibility of the approach and that interaction results
scale up.

Acknowledgments

The authors would like to thank Ken McMillan for valu-
able discussions relating to this work.

References

[1] Krzysztof R. Apt and Dexter C. Kozen. Limits for au-
tomatic verification of finite-state concurrent systems.
Information Processing Letters, 22:307–309, 1986.

[2] M. Calder and E. Magill, eds. Feature Interaction-
s in Telecommunications and Software Systems, vol-
ume VI. IOS Press, Amsterdam, 2000.

[3] M. Calder and A. Miller. Using SPIN for feature inter-
action analysis - a case study. In Proceedings of SPIN
2001, LNCS, vol. 2057, Springer-Verlag. pp. 143–162,
2001.

[4] M. Calder and A. Miller. Feature validation for any
number of processes. TR2002-110, Dept. of Comput-
ing Science,University of Glasgow, 2002.

[5] E.M. Clarke, O. Grumberg, and S. Jha. Verifying
parameterized networks using abstraction and regular
languages. In Proceedings of CONCUR ‘95, LNCS,
vol. 962, Springer-Verlag. pp. 395–407, 1995.

[6] Gerard J. Holzmann. The model checker Spin. IEEE
Transactions on Software Engineering, 23(5):279–
295, May 1997.

[7] C. Norris Ip and David L. Dill. Verifying systems with
replicated components in mur�. Formal Methods in
System Design, 14:273–310, 1999.

[8] R. P. Kurshan and K.L. McMillan. A structural in-
duction theorem for processes. In Proceedings of 8th
ACM Symposium on Principles of Distributed Com-
puting, pages 239–247. ACM Press, 1989.

[9] K. L. McMillan. Parameterized verification of the
flash cache coherence protocol by compositional mod-
el checking. In Proceedings of CHARME 2001, LNC-
S, vol. 2144, pp. 179–195, 2001.

