From 1 Notation to Another One: An ACT-ONE Semantics for ASN.1

Muffy Thomas
Dept. of Computing Science, Glasgow University, Scotland.
Under sponsorship from British Telecom Research.

1 Introduction

ASN.1 (Abstract Syntax Notation One) [ISO 8824], is a notation for defining the data values
used in OSI Application layer protocol standards. Although it is a language with an
International Standard - [ISO 8824] - the standard is written in natural language (English) and
is therefore open to the usual problems and ambiguities of natural language specifications that
can lead to different interpretations of the same standard.

We have defined a formal semantics for ASN.1 using the algebraic abstract data type language
ACT-ONE. ACT-ONE is a sublanguage of the ISO language LOTOS [ISO 8807] and has a formal
mathematical semantics. The aims of giving an ACT-ONE semantics to ASN.1 are twofold. The
first is to provide a formal semantics for the language ASN.1 [ISO 8824]; clearly, a formal
semantics is desirable for any language with a large community of users. The second is to
provide a means of relating (i.e. comparing and translating) ASN.1 and ACT-ONE
specifications. This will allow us to integrate protocol specifications written in the two
languages and exploit support tools for both environments. The formalisation of this
relationship will allow the designer to use existing ASN.1 data descriptions (with their
associated encoding rules) in LOTOS process descriptions and to identify a subset of LOTOS
(ACT-ONE) data types that can be compiled into ASN.1 types. Thus, a formal mathematical
semantics for ASN.1 will allow a rigorous discussion of the features and ambiguities within the
two languages and this may lead to suggestions for improvements.

The purpose of this paper is to motivate the need for such a semantics and to demonstrate some
parts of the semantics. The complete semantics of the language is given in [Thomas 89].

In section 2, we give an overview of the approach, which is denotational in style, and we
discuss some of the problems of defining a formal semantics for ASN.1. In section 3 we give an
example using a primitive type of ASN.1 and in the following section discuss some of the
constructed types of ASN.1. In section 5 we present our conclusions and suggestions for
improvements and compare our approach with the related work. Directions for future work are
presented in the final section.

We assume some familiarity with both ASN.1 and ACT-ONE; the reader may consult Annex E
of [ISO 8824] for a tutorial introduction to ASN.1 and [Ehrig Mahr 85] for an introduction to
algebraic specification and the language ACT-ONE.

2 Outline of Semantics

Each ASN.1 data type denotes an ACT-ONE data type and the style of the semantics is
denotational: the denotation (or meaning) of an ASN.1 type may depend on the denotations of
its components. The approach is "syntactic” in the sense that we map ASN.1 types into

ACT-ONE type specifications; these latter specifications denote algebras (as defined by the
initial semantics of ACT-ONE). ACT-ONE is a high-level specification language with a
two-level semantics: we use some of the high-level ACT-ONE structuring constructs in our
semantic descriptions, and introduce some additional meta-level constructs in our descriptions.

The ASN.1 language allows the description of data at the level of values, types and modules
(collections of types and values); thus three semantic evaluation functions are defined: Eval
(for values), Tval (for types), and Mwval (for modules). The most important of these is the

function Tral which gives meanings to the primitive and constructed ASN.1 types: it maps an
ASN.1 type into an ACT-ONE type. In this paper we shall restrict our attention to the function

Tval, which is only defined for well-formed ASN.1 types.

We have not considered the encoding and decoding rules of ASN.1 as we consider these to be
"implementation” aspects of the language rather than an integral part of the language which
must be translated. If encoding/decoding rules are required for the ACT-ONE equivalents of
ASN.1 data types, then perhaps encoding/decoding rules for ACT-ONE types in general should
be defined.

2.1 Syntactic Categories

In this section, we review the BNF description of the abstract syntax for ASN.1 types from [ISO
8824], excepting the non-terminals NamedType and Ntype, which we have modified. Also, two
constructions are excluded: the tagged type and the any type. Comments are enclosed in /™"

and "*/" and the only BNF operators used are "::=" and "
Typereference = ASCII_String
Type = primitive | constructed | Typereference

|

primitive == INTEGER {NamedNumberList} | INTEGER | BOOLEAN |
BIT STRING {NamedBitList} | BIT STRING | OCTET STRING | NULL

constructed = SEQUENCE OF Type | SET OF Type |
SEQUENCE {ElementTypeList} | SET {ElementTypeList} |
CHOICE {AlternativeTypeList} '

NamedNumberList = Identifier(SignedNumber) |
Identifier(SignedNumber):NamedNumberList

NamedBitList ::=Identifier(Number) | !dentifier(Number): NamedBitList

ElementTypelList .= NamedType | NamedType : ElementTypelist

AlternativeTypelist = Ntype | Ntype : AlternativeTypeList

/*Ntype and NamedType differ from the ISO description */
/* N is normal, O is optional, D is default type with default value V*/

NamedType -:=<Ntype, N> | <Ntype,O> | <Ntype,D,V> | Components of Type

Ntype = <Identifier,NType> | Type | Identifier < NType

2.2 Semantic Domains

The semantic domains consist essentially of abstract ACT-ONE specifications as defined in
[ISO 8807]. However, for readability we have in many cases used the concrete syntax ot
ACT-ONE rather than the abstract syntax. Any specification references not defined in this
paper are references to specifications from the standard library of data types given in Annex A,
[1SO 8807].

We briefly review the structure of ACT-ONE specifications below. We use only two of the

structuring concepts in the following: combination and parameterisation; the full definition of
the abstract syntax (using all structuring concepts) can be found in [ISO 8807].

ACT-ONE_Spec ::= fype Name js Pexpr endtype

Name := ASCII_string

Pexpr = Namexpr Pspec | Name gctualized by Namexpr [using repl]
Namexpr = Name | Namexpr, Name

Pspec = [formal sorts Sortlist] [formal opns Opnlist] [formal egns Eqlist]

[sorts Sortlist] [opns Opnlist] [eqns Eglist]

The full definitions of types Opnlist, Sortlist, and Eqlist are standard and have been omitted.

Some additional operations on specifications have been defined for convenience: operations to
add and remove sorts, operations, and equations. The full definitions of these operations:
plussorts, pluseqns, plusopns, minuseqns, and minusopns respectively, are given in [Thomas 89].
In addition to these operations, we shall refer to the (bodies) of specifications with the
operation

body : Name -> Pexpr,
which binds the specification names to their respective bodies.

2.3 Type Evaluations

The denotation of an ASN.1 type is essentially an ACT-ONE specification. However, because
new specification names may need (o be introduced, the evaluation of a type may affect the
environment. Thus, the type evaluation function is:
Tval: (Type x Environment) -> (Pexpr x Environment)

where X is the usual product type constructor and -> is the usual (continuous) function space
constructor. We assume that each ASN.1 type name is mapped to the identical ACT-ONE type
name and so only one simple environment for referencing and dereferencing names is required.
The environment is defined by:

Environment = Typereference -> Type
and the associated projection functions are

proj1: (Pexpr x Environment) -> Pexpr
proj2: (Pexpr x Environment) -> Environment.

As an example of the need for environments, consider the ASN.1 declaration
T = SEQUENCE OF SEQUENCE OF INTEGER.

."_— —

s01 []Typereference\] p= SO‘L[|Eookup[l.Typereference, p Il p
24 Interpretation of ASN.1 Standard

The ASN.1 language standard explicitly defines various types of data, but not the associated
operations on the data. Many of the relevant selector operations on data are implicitly present
in the standard, for example, the operations to select the first and trailing bits in a bit string,
However, many operations are not made explicit and must be inferred. For example, selectors
for the SEQGUENCE type are not defined in the standard, so we have assumed a selector for each
Element Type (named either by its position in the Element Type List, or by its identifier).
Selectors for the SET type have not been introduced because of the commutative property of the

type.

The ACT-ONE denotation of each ASN.1 type defines a (semantic) congruence on the various
syntactic forms of data. It is not clear from the standard whether or not a syntactic test for
equality is also required. We have assumed that because equality predicates are used
(informally) by users of the ASN.1 notation, syntactic equality predicates should be included in

each of the ACT-ONE denotations. These operators (called "eq" and "neq") could be omitted if
not required; here, they are omitted in the constructed types.

Several ASN.1 type declarations include the use of identifiers, but there is no explicit mention
in the standard of the scope of those identifiers. We have assumed that the scope of an
identifier which is used in a type declaration is exactly the scope of that type. This is
achieved by incorporating the identifiers into the model: in the denotation of the type, the
identifiers are defined as (constant) operators of the relevant sort and their bindings are given
by the equations.

In order to give meaning to tagged types, the following ACT-ONE type of TAGS, which is an
enrichment of the type CLASS, is included in every denotation of an ASN.1 type:

type CLASS is

BOOL

sorts Class
universal :Class
application : Class
private : Class
context_specific: Class

endiype

type TAGS is

DecNatRepr, CLASS

sorts Tag

opns <,_> : Class, Decstring -> Tag

endtype

3 Primitive Types

The primitive ASN.1 types are integers, booleans, bit strings, octet strings, and the null type.
The types of bit strings and octet strings allow several representations of values: binary,
hexadecimal, and lists of non-zero bit positions, thus the respective ACT-ONE specifications
for these types are rather complex. Therefore, to illustrate the semantics, we choose a simple

In ACT-ONE, a name for the intermediate type SEQUENCE OF INTEGER is required. Assuming
that we have a (parameterised) ACT-ONE type SEQUENCE, we would translate the
declaration of T into

T is SEQUENCE gactualized by Dummy
using sortnames Seq for Data

where

Dummy is SEQUENCE actualized by INTEGER
using sortnames Int for Data.

There are several functions associated with environments; their types are given below using the
additional type constructor + for disjoint union.

the empty environment
new: Environment

the update operation
[/]: (Environment x Type x Typereference) -> Environment

the name lookup operation
name: ((Type + Typereference) x Environment) -> (Typereference + {undef})

the type lookup operation
lookup: ((Type + Typereference) x Environment) -> (Type + {undef})

an operation to generate a new name
newnare: Environment -> Typereference

and two predicates
isname: (Type + Typereference) -> Bool
istype: (Type +Typereference) -> Bool

We rnote that name and [ookup are the identity functions for Typereference and Type
respectively. For example, for all t:Type, for all p:Environment, [ookup(t,p) = t.

Finally, in order to define the denotation of some constructed types, the "sorts of interest" of the
corresponding (ACT-ONE) denotations of the ASN.1 types must be defined. These are given by
the following function §01 which maps an ASN.1 type into an ACT-ONE sort.

801 : ((Type + Typereference) x Environment) -> Sort

S01 [|BIT STRING|Jp = BString

§01 [|BIT STRING {NamedBitList}|] p = BString
S01 [[INTEGER]] p = DecString

S01 [|[BOOLEAN]] p = Boole

501 [[OCTETSTRING]|] p = Octetstring

8§01 [|SET OF Type|] p = Set

501 [|SEQUENCE OF Type |] p = Seq

S01 [|SET {ElementTypeList}|] p = Set

801 [|[SEQUENCE {ElementTypeList}|] p = Seq
501 [|CHOICE {AlternativeTypeList}|] p = Choice

example: the type of integers both with and without identifiers. The denotation of ASN.1
integers, with and without identifiers, uses the following ACT-ONE specification of integers
(which refers to the standard library type DecNatRepr):

type INTEGER js
DecNatRepr,TAGS
opns - : DecString -> Decstring
- : Nat -> Nat
tag : DecString -> Tag
€ans
forall ds,x,y:Decstring
ofsort Nat
NatNum(-ds) = -(NatNum(ds))
ofsort Tag
tag(ds) = <universal,2>
ofsort Bool
xeqy => -(x) eq -(y) = true
xneqy => -(x) eq -(y) = false
xeqy => -(x) neq -(ly) = false
xneqy => -(x) neq -(y) = true
endtype

Assuming that p is an environment, the ACT-ONE denotation of integers without identifiers is
given by:

Tval]INTEGER|]p = body(INTEGER) x p.

Assuming that [rral is a function used in the definition of Eral and maps ASN.1 integer values
into ACT-ONE integers values, the denotation of integers with identifiers is given by:

Tval[|INTEGER NamedNumberList|] p =
proji:(Tval[|INTEGER]] p)
plusopns addid(NamedNumberList)
pluseqns addeq(NamedNumberList)
Xp

where
addeq 'List(ld x SignedNumber) -> Eqns
addid: List(ld x SignedNumber) -> Opns

addid(id(n):(id'(n"):l)) = id:DecString, addid(id'(n):1)
addid(id(n):[]) = id:DecString

addeq(id(n):(id'(n'):l)) = (ofsort DecString, id = Tral(n)), addeq(id'(n'):l)
addeq(id(n):[]) = (ofsort DecString, id = Tral(n)).

As an example, consider the following ASN.1 type declaration.

DAYSOFTHEMONTH ::= INTEGER ({first(1),last(31)}

| —

Given an appropriate environment p, we translate this declaration into:
l!D.E.DAYSOFTHEMONTH is Tval]| INTEGER {first(1),last(31)} [lp.

proj1(Tvall| INTEGER ({first(1),last(31)} [Ip)

body(INTEGER)
plusopns first:DecString
last:DecString

pluseqgns
ofsort DecString first = 1;
ofsort DecString last = 31;
endtype
DecNatRepr,TAGS
opns - : DecString -> Decstring
- : Nat -> Nat
tag : DecString -> Tag
first:DecString
last:DecString
eans
for_all ds,x,y:Decstring
ofsort Nat
NatNum(-ds) = -(NatNum(ds))
ofsort Tag
tag(ds) = <universal,2>
ofsort Bool
xeqy => -(x) eq -(y) = true
xneqy => -(x) eq -(y) = false
xeqy => (x) neq -(y) = false
xneqy => -(x} neq -(y) = true
ofsort DecString
first = 1
last = 31
endtype

4 Constructed Types

The constructed ASN.1 types are (homogeneous) sequences and sets (SEQUENCE OF Type and
SET OF Type resp.), the two heterogeneous record types (SEQUENCE {ElementTypeList} and

SET {ElementTypelist} resp.), and the choice type (CHOICE {AlternativeTypeList}). The
choice type is quite straightforward and so we do not discuss it here.

41 Setand Sequence Types

The denotations of (homogeneous) sequences and sets use the pa rameterised types SEQUENCE
and SET; new type names may be required in order to actualise the parameters. The only

 CE——

difference between the two types is that the SET type has a commutative constructor operation;
we consider only sequences in our example. The ACT-ONE parameterised type SEQUENCE and
the ACT-ONE denotation of a sequence type (SEQU ENCE OF Type) are given below. We should

note that new type names are introduced only when the argument Type is not a named type (i.e.
it is neither a type name nor a type already associated with a name in the current
environment.)

type SEQUENCE is

TAGS
rmalsor Data

sorts Seq

opns {} :Seq
o+ - Data, Seq-> Seq
tag :Seq->Tag

eqans

forall s:Seq

ofsort Tag

tag(s) = <universal, 16>

gndtype

Tral]] SEQUENCE OF Typelp =

if (name[|Typellp) <> undef

then

(SEQUENCE actualized by name||Typellp
using 01| Type|lp for Data) x p

else
(SEQU ENCE actualized by newname(p)

using so1[|Typellp for Data) x p[nzwnamc(p)ﬁype]

As an example, consider the ASN.1 type declaration
HOLIDAYS ::= SEQUENCE OF DAYSOFTHEMONTH

where DAYSOFTHEMONTH is defined in the previous section. Given an appropriate
environment p,Lsrmrrm[lDAYSOFTH EMONTH|] is true and so the first branch of the conditional
applies. Thus,

Tral] SEQUENCE OF DAYSOFTHEMONTHI}p =

(SEQUENCE actualized by DAYSOFTHEMONTH using Decstring for Data) x p.

4.2 Records

[n this section we discuss the semantics of the two heterogeneous record types: sequences of types
and sets of types. These types are more complicated than the other constructed types for three
reasons. First, they are parameterised by several (possibly) distinct types; second, the
parameters may be optional or default, thus affecting the way in which values of these types
are constructed; and third, the parameters may be component or selection types.

If a type is optional then a value of that type may be omitted from values of the constructed
type; if a type s default then when a value of that type is omitted in a value of the constructed
type, the default value is assumed to be present. A component type is used as an abbreviation for

the components of a type; for example, if T is SEQUENCE {INTEGER, BIT STRING}, then a

reference to COMPONENTS OF T is a reference to its component types INTEGER and BIT STRING.
A selection type is used to refer to a component of a constructed type with the same identifier;

for example, if T is CHOICE {id1 INTEGER, id2 BIT STRING}, then id1< T refers to the type
id1 INTEGER.

As before, the only difference between the sets and sequences is the commutativity of
constructors. We choose the simpler type of sequences as an example.

The denotation of the sequence type involves several auxiliary functions which we give after
the equation for the SEQUENCE {ElementTypelList} type.

Tral [[SEQUENCE {ElementTypeList}|lp =
mapname(flatten(ElementTypeList)p)p, TAGS
sorts Seq
opns {} :Seq
p!usopns(szqari,r.::zs(f[attzr;(ElementTypeLiSt)p,Seq)p)

eqng
forall s:Seq
ofsort Tag
tag(s) = <universal, 16>

p!useqns(dzfa.ufns(ﬁa.mzn(Elem entTypeList)p,Seq)p)
p!useqns(szfzctors(_ﬂa.tten(Elem entTypeList)p,Seq)p)
endtype Xxp

The auxiliary functions are defined below. First, we give informal descriptions:

mapnarne converts a list of ASN.1 types and type references into a list of ACT-ONE
type references.

mapsort converts a list of ASN.1 types and type references into a list of ACT-ONE
sorts and identifier names.

flatten: expands component and selection types in type list.

expandcomp expands components in type list.
expandsel expands selection types in type list.
findid finds a field name in a list of types.

seqarities adds arities of operators for sequence construction, and selection, allowing for
default and optional types to be omitted. The selector names are the resp.
identifiers if they are defined and the argument position number (eg. 1,2,3...)

otherwise.
selectors defines equations for selectors.
defaults defines equations for default values.

The formal definitions are given, using the one element list as the base case (because empty
argument lists are not allowed) and ¢ as the "absent” identifier, or ficld name, by:

mnpna-mz(<Ntype,X>:1':e'|ist)p
name(Ntype',p): mapname(t':elist) if Ntype = <id,Ntype'>
name(Ntype,p): rrm.pnumz(l':elist) otherwise

I

mapname(<Ntype,X>t:[])p
= name(Ntype',p) if Ntype = <id,Ntype'>
= name(Ntype,p) otherwise

mapsort(t:t'elist)p
< 501(lookup[|T|lp)p.id>: mapsort(t:elist)p if t=<<id, T>,X>
< §01(lookup[|T|lp)p.e>: mapsort(t'elist)p otherwise

1}

mapsort(t[])p
<§501(lookup||T|lp)p,id> if t=<<id,T>X>
<8501(lookup[|T|lp)p.e> otherwise

flatten(t:t"eList)p
= 2xpundsz£(expa-udcomp(t:t':elisl)p)p

expandcomp(t:itelist)p
= expandcomp(elist)p ++ expandcomp(t:elist)p

if t= COMPONENTS OF T
t: expandcomp(t'elist)p otherwise

where fookup[|T|lp = SEQUENCE {elist'}

expandcomp(t:[])p
= zxpunz{cornp(elist')p ift= COMPONENTS OF T
s t otherwise

where Lookup{|T|lp = SEQUENCE {elist}

expandsel(t:t:elist)p
= <id,expand(id,Ntyp)p >:expandsel(l':elist)p if t = <id < Ntyp, X>
= t.lexpandsel(lelist)p otherwise

expandsel(t:(])p
<id,expand(id,Ntyp)p > if t = <id < Ntyp, X>
- 1 otherwise

I

expand(id,Ntyp)p
= ftudi,d(id,zxpandszf(elisi)p)
if (fookup(Ntyp)p=CHOICE {elist}
or Iookup(lep)p=SEOUENCE {elist} or [ookup(Ntyp)p=SET {elist})

findid(id 1:1':elist)

= <id,T> if t = <<id,T>,X>
= ftndi,d(id,!‘ -elist) otherwise

10

findid(id,t[])

= <id,T> if t = <<id,T>,X>

undef otherwise

The remaining three operations are specified as follows:

seqarities(Sq yersO:S)P
defines a declaration of a set of operators containing:

let mapsort(Sq,...Sp)p = <81,i1>,...,<Sp.ip>, in
i) the n-ary operator { i1 _, i2 e in .} 1848 > 8

ii) n unary operators defined by:
(for all j:1<gj<n if ij =¢ then j: s -> 8 glse ij 18 ->8)

iii) the m-ary operators which allow optional and default types to be absent:

(for all sequences <t{,j{>,...,<tm.m>, s:t.

m<nand <ty,j{>,....<tm.m> is a proper subsequence of <1 J11>,...,<8p,in>
(for alli, 1<i<n s.t. sje {t1,...tm} => (§j =<T,0> or S; =<T,D>)

the m-ary operator {j{ _,j2 _im —} i totm > s))

selectors(Sq,...,.Sn,8)p
defines a set of equations containing:

let mapsort(Sq,....Sp)p = <S4 Jq>,...,<Sp.ip>, in

(for all j:1<j<n
if ij = € then
forall x{:81.....Xn:Sn
ofsort sj
j(Xq,..Xp) = X
else
forall x{:81,....Xn:Sn
ofsort s;
H(x1..“,xn) = Xj)

defaults(sq,...,Sn,S)p
defines a set of equations containing:

let mapsort(Sq,...Sp)p = <81,i1>,....<Sp,ip> in

(forall je {1,..n)
(for all sj s.t. Si = <T,D,Vj>
forall x4: Sq..y Xj-1: Sj-1» Xj+17 Sj41s == Xn: tn
ofsort s
{4 g ij_1 Xj-1, ii+1 Xjaqomee in Xn!

= {4 X4 oo B4 Xjo1o 6 Vo Bt Xja10ee in Xn}))

11

As an example, consider the following ASN.1 type declaration involving a default type:

Ex{ ::= SEQUENCE {index INTEGER, hash BIT STRING DEFAULT 0000}.

Using our abstract syntax, the right hand side is:

SEQUENCE {<index, <INTEGER,N>>,<hash,<BIT STRING,D,0000>>}.

Assuming an environment p, the first component of the ACT-ONE denotation of this type is
given by:

proj 1(Tval [|[SEQU ENCE { <index, <INTEGER,N>>,
<hash,<BIT STRING,D,0000>>} [lp) =
rnaprmme(_f&;tt.zn(dndex,<|NTEGER,N>>,<haSh,<BITSTF{!NG,D,0000>>}p)p, TAGS

sorts Seq
opns {} :Seq
plusopns

(seqarities (mapsort(flatten
(<index,<|NTEGER,N>>,<hash,<B|TSTRING,D,0000>>)p.Seq)p)p)
eqans
forall s:Seq
ofsort Tag
tag(s) = <universal, 16>
p.-'useqns(afzfauf.ts(ma-psort{ flatten
(<index,<|NTEGER,N>>,<haSh,<BITSTRING,D,OOOO>>)p.Seq)p)p)
pluseqns(selectors(mapsort(flatten
(<index,<|NTEGER,N>),<hash.<BITSTF{|NG,D,OOOO>>)p,Seq)p)p)
end type

INTEGER, BITSTRING, TAGS

sorts Seq

opns {} :Seq

plusopns(seqarities(< DecString,index>,<BString,hash>,Seq)p)

eans
forall s:Seq
ofsort Tag

tag(s) = <universal, 16>
p.*useqns(defuufts(-:DecString,index>,<BString,hash>,Seq)p)
pruseqns(s.e{zcr.ors(cDecString.index>.<BSiring,haSh>,Seq)p)

endtype

INTEGER, BITSTRING, TAGS

sorts Seq
opns {} :Seq
{index _, hash _} - DecString, BString -> Seq
{index _ } : DecString -> Seq
index : Seq -> Decstring
hash : Seq -> BString

12

£,

eqns
forall s:Seq, i: DecString, h: BString
ofsort Tag

tag(s) = <universal, 16>
ofsort Seq

{index i} = {index i, hash 0000}
ofsort DecString

index({index i, hash h }) =i
ofsort BString

hash({index i, hash h }) = h
endtype

As a second example, consider the following ASN.1 type declaration involving a components
type:
Ex2 ::= SEQUENCE { INTEGER, COMPONENTS OF Ex1}.

Assuming that p is suitable environment containing the declaration of Ex1 as given above, we
have:

prof1(Tval [[SEQUENCE { INTEGER, COMPONENTS OF Ex1} []p) =
mapname flatten(INTEGER,COMPONENTS OF Ex1)p)p, TAGS
sorts Seq
opns {} :Seq
plusopns(seqarities(mapsort

(flatten(INTEGER,COMPONENTS OF Ex1)p,Seq)p)p)

eqns
forall s:Seq
ofsort Tag
tag(s) = <universal, 16>
plusegns(defaults(mapsort
(flatten(INTEGER,COMPONENTS OF Ex1)p,Seq)p)p)

endtype

mapname(expandsel(expandcomp(INTEG ER,COMPONENTS OF Ex1)p)p)p, TAGS

sorts Seq

opns {} :Seq

plusopns(seqarities(mapsort(expandsel
(expandcomp(INTEGER,COMPONENTS OF Ex1)p.Seq)p)p)p)

eqns
forall s:Seq
ofsort Tag
tag(s) = <universal, 16>
pluseqns(defaults(mapsort(expandsel
(zxpmmfcomp(lNTEGEH,COMPONENTS OF Ex1)p,Seq)p)p)p)

endtype

m.apnanw

(<¢,INTEGER>,<index,<INTEGER N>>,<hash,<BITSTRING,D,0000>>)p, TAGS
sorts Seq
opns {} :Seq

13

plusopns
(seqarities(mapsort
(< g, INTEGER>,<index,<INTEGER,N>>,<hash,<BITSTRING,D,0000>>)p,Seq)p)

eqns
forall s:Seq
ofsort Tag
tag(s) = <universal, 16>
pluseqns(defaults(mapsort
(< &, INTEGER>,<index,<INTEGER,N>>,<hash,<BITSTRING,D,0000>>)p,Seq)p)

end type

INTEGER, BITSTRING, TAGS

sorts Seq
opns
{} :Seq
{_, index _, hash _} : DecString, Decstring, BString -> Seq
{ _, index _} : DecString, DecString-> Seq
1 : Seq -> DecString
index : Seq -> DecString
hash : Seq -> BString
eang
forall s:Seq, i,j: DecString, h: BString
ofsort Tag
tag(s) = <universal, 16>
ofsort Seq
{ i, index j } = {index i, index j, hash 0000 }
ofsort DecString

1({i, index j,hash h }) =i

index({i, index j,hash h }) =]
ofsort BString

hash({i, index j,hash h }} = h
endtype

This example very clearly illustrates the advantages of ASN.1: it is a very brief, but powerful,
notation for certain kinds of data types. Namely, ASN.1 is very convenient to use when defining
types with only a variety of injection and projection operations; of course it is not suitable for
defining a type with an "algorithmic" component. In this case, a more powerful language such
as ACT-ONE is required.

5 Conclusions

Several formal description techniques (FDTs) and notations are now used in the specification of
OSI protocols, so it is very important to understand each of the techniques and the
relationships between them. In this paper we have given an overview of an ACT-ONE
semantics for ASN.1 using several examples for illustration. We have briefly mentioned some
of the problems of giving such a formal semantics to a language with a natural language
standard: clearly, different interpretations are possible.

One of the aims of formalising the standard is to allow a more rigorous discussion of the
features of the languages and interpretations of the standard. The work of [Bochmann

14

“

Deslauriers 89] on translating ASN.1 into ACT-ONE differs from our work in several ways. For
example, their approach does not consider optional or default types, nor does it distinguish
between sequences and sets. Moreover, they translate the primitive types into standard library
types, thus losing some of the ASN.1 features such as conversions between hexadecimal and bit
strings and the ability to introduce local identifiers. In summary, the emphasis of their work
appears to be on the construction of a compiler rather than the faithful preservation of the
description of ASN.1 given in the standard.

On the other hand, our aim has been to stay faithful to the standard as much as possible. This
approach has revealed problems both with ASN.1 and ACT-ONE. For example, selection types
are allowed (in the syntax) to appear in any context whereas the standard description seems to
imply that they may only refer to CHOICE types (our semantics gives meaning to any occurrence
in a constructed type). Also, the question of equality on types remains unresolved in the
standard. With respect to the target language ACT-ONE, we have found that many of the
specifications would have been more easier and more elegant to write if we had a partial
ordering on sorts. For example, the idea of many different representations of bit strings is best
described using a partial ordering on the respective sorts; in ACT-ONE (without subsorting) we
are forced to have several disjoint sorts and explicit coercion functions between them. These and
other points concerning the two languages are discussed more fully in [Thomas 89].

6 Further Work

The semantics will be implemented as a compiler from ASN.1 to ACT-ONE. Also, we will
identify a subset of ACT-ONE types which will allow us to define the inverse of the semantics
and thus compilation from ACT-ONE into ASN.1. Finally, the work must be extended to include
the entire language, including macros.

References

[Bochmann Deslauriers 89]
G. v. Bochmann, M. Deslauriers, Combining ASN1 support with the LOTOS language, in H.
Brinksma, C. Scoll, C. Vissers (Eds.), Protocol Specification, Testing and Verification IX,
North-Holland (in print).

[Thomas 89]
M. Thomas, A Semantics for ASN.1, Draft Report, 1989.

[Ehrig Mahr 85]
H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification, Springer-Verlag, 1985.

(1SO 8824]
Information processing systems - Open Systems Interconnection - Specification of Abstract
Syntax Notation One, International Organisation for Standarisation, ISO 8824:1987 (E).

[ISO 88071
Information processing systems - Open Systems Interconnection - LOTOS - A Formal Description
Technique based on the Temporal Ordering of Observational Behaviour, ISO 8807.

Acknowledgements

Acknowledgement is made to the Research and Technology Board of British Telecom for
permission to publish this paper. We thank David Freestone, Keith Rayner, Steve Rudkin, and

15

Doug Steedman for providing many stimulating comments, and Kei Davis for careful
proof-reading.

16

	scan
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015

