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Abstract

A translator from ASN.1 to LOTOS is described: an ASN.1 module is translated into
a LOTOS specification which consists of a collection of ACT ONE data types and the
single constant process stop. The translator provides other functions and has been
formally specified. The results have been checked using the topo LOTOS compiler. The
translator may be used as part of a combined specification technique: ASN.1 for the data
type descriptions and basic LOTOS for process descriptions.
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0. Introduction

ASN.1 (Abstract Notation One) [ISO 8824] is a notation for defining the data types
used in OSI application layer protocols. The syntax of the language is specified as an
International Standard, but the semantics is only informally specified using natural
language.

LOTOS (Language of Temporal Ordering Specification) [ISO 8807] is a notation for
defining processes and data types; although it was designed with OSI application layer
standards in mind, it is also a general purpose specification language for distributed and
concurrent systems. The data type sublanguage of LOTOS is the algebraic specification
language ACT ONE, the remainder of the language is called basic LOTOS. Both the syntax
and the semantics of the language are formally specified as an International Standard.

In [Thomas 89] a first, formal, denotational semantics for ASN.1 was presented. As
a result of feedback from the ASN.1 community, the semantics has evolved quite
significantly [Thomas 89, Thomas 90, Thomas 91r, Thomas 92]. This paper describes a
translator tool from ASN.1 to LOTOS, based on the formal semantics in [Thomas 92]. The
results of translator have been checked using the topo LOTOS compiler. Essentially, an
ASN.1 module is translated into a LOTOS specification which consists of a collection of
ACT ONE data types and the single constant process stop. The translator provides other
functions as well.

The main aim of the translation is to enable the integration of protocols written in both
notations and the integration of tools and associated encodings. A translation between
ASN.1 and ACT ONE allows a protocol specifier to use a mixture of notations: ASN.1 for
the data type descriptions and basic LOTOS for process descriptions. In particular, the
translator may be used by a protocol specifier who later instantiates the trivial (stop
process by a more appropriate behaviour. Moreover, by defining a relationship between the
two notations, we are better able to discuss the relative merits of each language and to
suggest improvements.

An overall objective has been to give a framework for the translation from ASN.1 to
ACT ONE. Since the standard description of ASN.1 semantics has been informal, we



expected that several aspects of our formal semantics would have to be changed because a
different interpretation of the standard was intended. Thus, we were more concerned with a
good framework in which to define and experiment with the semantics, rather than the
exact definitions, in some cases.

In this paper we do not discuss the semantics in detail, but we concentrate on the
practical implications of the semantics. A prototype translator, based on the denotational
semantics, has been implemented in Miranda (Miranda is a trademark of Research Software
Ltd.); see [Turner 86] for a discussion of the language. The translator has been evolving
since 1989 when the first formal semantics was defined. Functional language prototypes
have been essential to the evolution: each successive semantics has been easily implemented
and demonstrated to the ASN.1 community for feedback.

The structure of the paper is as follows. Section 1 contains an overview and
comparison of the ASN.1 and LOTOS languages. In Section 2 we discuss related work
and Section 3 contains an overview of the design decisions involved in making the
semantics. An overview of the semantics is given in Section 4 and in Section 5 we describe
the implementation of the prototype translator and give some examples of its use. Section 6
contains an example translation and in Section 7 some further features of ASN.1 are
discussed. In Section 8 we review the evolution of the translation and discuss the results; in
the final section we present our conclusions and directions for future work.

1. ASN.1 and LOTOS

Before presenting an overview of the syntax of ASN.1 and ACT ONE, the important
differences and similarities between ASN.1 and LOTOS are highlighted below.

ASN.1 LOTOS
e formal syntax e formal syntax
e informal semantics e formal semantics
e data types e data types
® N0 Processes ® processes
¢ ISO/CCITT standard ¢ ISO standard
e encoding rules ¢ no encoding rules
e concise, brief notation e verbose notation for data types
e used extensively, for some time ¢ newer technology
e modules ¢ no modules
1.1 ASN.1

ASN.1 is a language for defining types and values. Here, we concentrate on the basic
type definitions; other aspects of types such as subtypes, tables, etc. are discussed later.

We assume some familiarity with ASN.1, the reader is referred to [ISO 8824] for a
complete description of the language. ASN.1 types are either primitive or compound. The
former include the usual basic types such as integers, bit strings etc.; the latter include
homogeneous sequences and sets, heterogeneous sequences and sets, choice types, etc.
The notation for the compound types is very concise and allows for possibilities such as
optional and default component types. An example ASN.1 module is given below.
examplel DEFINITIONS ::=

BEGIN
Tl ::= SET OF T3
T2 ::= SEQUENCE { one INTEGER,two BOOLEAN OPTIONAL,
three INTEGER DEFAULT 3}
T3 ::= INTEGER {zero(0), one(l)}
T4 ::= SET OF ENUMERATED {one(l), two(2), three(3)}
T5 ::= SEQUENCE {four INTEGER, COMPONENTS OF T2}
T6 ::= CHOICE {on BOOLEAN, num INTEGER}
T7 ::= CHOICE {num INTEGER, on BOOLEAN}

END



1.2 ACT ONE

ACT ONE is an algebraic specification language for specifying abstract data types.
The philosophy underpinning the language is that data types are algebras: sets and
operations, and that an abstract data type is a representation independent specification of
(possibly) many data types. Specifications are equational and the semantics of
specifications is initial algebra. We assume some familiarity with ACT ONE and algebraic
specification, the reader is referred to [ISO 8807] and [Ehrig Mahr 85] for full
descriptions of the language and concepts. We use three of the ACT ONE structuring
concepts: parameterisation, actualisation, and combination. We do not describe the
language constructs here; instead, we illustrate them with some examples. The basic form
of a specification body is a "flat" specification. A "flat" specification consists of three parts:
the sorts, the operation names and arities, and the equations. For example, a specification
of simple truth values is:
type Simple Truth_Values is
sorts bool
opns true : =-> bool

false : -> bool
not : bool -> bool

eqgns
forall b:bool
ofsort bool

not (not (b)) = b;
not (true) = false;
not (false) = true;

endtype

Specifications can be reused in another specification. For example, a specification
of simple numbers can use the specification of simple truth values as follows:
type Simple Numbers is Simple Truth Values
sorts num
opns 0 : => num

succ : num -> num

iszero : num -> bool
eqns
forall n:num
ofsort bool

iszero(0) = true;

iszero(succ(n)) = false;
endtype

Specifications can be generic, or parameterised. The parameter requirements are

specified as formal sorts, operations and equations. A parameterised specification can be
instantiated, or actualised by another specification which meets the formal parameter
requirements. This means that there must be an appropriate correspondence between formal
and actual sorts and operations such that the operation arities match and the (formal)
equational theory is included in the actual equational theory (after renaming).

2. Related Work

The early work of [Bochmann Deslauriers 89] on translating ASN.1 into ACT ONE
differs from our work in several ways. Their approach does not consider optional or
default types, nor does it distinguish between heterogeneous sequences and sets. Our
treatment of heterogeneous sequences and sets is much more complex; reflecting, we
believe, the very powerful nature of the notation. Moreover, they translate all the primitive
types directly into standard library types, losing some of the ASN.1 features such as
conversions between hexadecimal and bit strings and the ability to introduce local
identifiers. Although we also translate some primitive types into standard library types, our



approach still allows for the introduction of local identifiers.

The work of Segala [Segala 89a, Segala 89b] defines a translation from ASN.1 to
ACT ONE by enhancing ACT ONE with a set of macro constructors. The macro
constructors correspond very closely to the ASN.1 type constructors, thus the actual
translation is less complex than the one contained herein. Since our aim was to produce
standard ACT ONE, we did not consider such a "two-level" approach.

The paper by [Burmeister et al 90] outlines an approach which is similar to ours. The
essential difference is the degree of formality: the results are presented much less rigorously
in order to make the approach "user friendly". The LOTOS library types are used
extensively for the primitive types, but our approach agrees in principle on most compound
data types; excepting tagging, and homogeneous sets and sequences where the differences
are more fundamental. The author is not aware of an implementation.

The One20ne translator [Brady et al 90] also translates ASN.1 into ACT ONE. The
approach taken differs from ours, and the others mentioned above, in that the entire ASN.1
language has been modelled, rather than specific modules. Thus, in their approach, the
translation of an ASN.1 type T is not an ACT ONE type T, but an operation of a
(pre-defined) sort ASN1_TYPE.

An important feature of our translation is that it was formally specified before
implementation. None of the related work, to our knowledge, is based on a formal
specification of the translation.

3. Design Decisions

In this section we outline some of the important features of the semantics and the
design decisions taken. A full discussion of the design decisions, and the evolution of the
design, is given in [Thomas Rudkin MacLeod 90, Thomas 91r, Thomas 92]. Our basic
design principle was to put as much as possible into the model. Therefore tags, classes,
and identifiers are defined within the ACT ONE types. We have not considered the
encoding and decoding rules of ASN.1 as we consider these to be implementation aspects
of the language rather than an integral part of the language which must be translated.

It is important to note that the ASN.1 language standard only defines the various
types of data, but not the associated operations on the data. Therefore, in most cases, we
have inferred the associated operations when translating into ACT ONE.

3.1 Primitive Types

The primitive types, or at least parts thereof, are taken from the LOTOS standard
library (Annex A) wherever possible. These library types do not always exactly reflect the
type descriptions in the ASN.1 standard, but the LOTOS library types are well known and
so we have tried to compromise between staying faithful to the type descriptions and the
convenience of using the standard library. For example, we use the standard library
specification of natural numbers in our specification of the integers.

3.2 Classes and Tags

We have defined ACT ONE types TaGs and cLass, corresponding to ASN.1 tags
and classes, and they are included in the translation of every (ASN.1) type. A Tag-sorted
operation named tag is also included in the translation of each ASN.1 type and the
appropriate equation is given for that type. Since (re-)tagging may be implicit or explicit,
we may also prefix tags.

3.3 Type Equivalence

ASN.1 types and values may be renamed within in a module; we consider renamed
types, and types with renamed values, to be equivalent. For example a module may contain
the following declarations:



TL &= INTEGER

T2 = INTEGER

T3 = INTEGER {largest (42)}

T4 = SEQUENCE {on BOOLEAN, num T1}
TS = SEQUENCE {on BOOLEAN, num T2}

T6 ::= SEQUENCE {on BOOLEAN, int T2}

We consxder T1, T2, and T3 to be equivalent (the renaming of 42 introduced by T3
affects both T1 and T2). The equivalence is extended to a congruence (equivalent types may
be substituted in any context). For example, T4 and T5 are congruent because T1 and T2 are
equivalent, but T4 and T6 are not congruent because the component names (i.e. num and
int) differ.

Equivalent (congruent) ASN.1 types denote identical ACT ONE types. In ACT ONE
the use of different names for identical types is achieved by renaming with the is construct.
For example, if T and 7' are names for identical types, then T' can be defined by T* is T.
When translating an ASN.1 module containing several equivalent types, one of those types
is translated to an ACT ONE type; all others just enumerate different names for that type.

The formal rules for type equivalence are given in [Thomas 91r]. The type
equivalence used here is not the only possibility; a discussion of the requirements for and
the specification of ASN.1 type equivalences is contained in [Thomas Rudkin MacLeod
91).

3.4 Type Names and Sort Names

The names of types and sorts within a translated module are unique. Every named
ASN.1 type with name T is translated into an ACT ONE type with sort of interest T_sort.
The operation names within a translated module may be overloaded but only if every
ground term within the LOTOS specification is unique. For example, we may have a type
T1 with an operation £:T1_sort -> T1_sort and a type T2 with an operation
£:T2_sort ->T2_sort. Then, every term of form £ (x) has a unique sort: if x has sort
T1_sort then £ (x) has sort T1_sort; if x has sort T2_sort then £ (x) has sort T2 _sort.
However, we may not have two constants £:-> T1_sort and £:-> T2_sort, as then the
sort of £ would be ambiguous.

3.5 Scope of Identifiers

Two ASN.1 types, INTEGER and BIT STRING, may include the use of identifiers, but
there is no explicit mention of the scope of these identifiers in the original standard for the
language. We have assumed that the scope of an identifier which is used in a type
declaration is exactly the scope of that type. This is achieved by incorporating the identifiers
into the model: in the translation of the type, the identifiers are defined as (constant)
operators of the relevant sort and their bindings are given by the equations. This is
illustrated in the example in §6. The issues of scope are discussed further in [Thomas
Rudkin MacLeod 90] and [Thomas Rudkin MacLeod 91].

3.6 Omissions

With respect to the standard [ISO 8824], we have omitted the ANY type and External
types. Some further features of ASN.1, such as tables, functions and subtypes, are
discussed in §7.

4. Overview of the Semantics

A denotational semantics is essentially a mapping from a source language (the synzax)
to a target language (the semantics). The main features of a denotational semantics for
ASN.1 are the syntactic domains, (in this case, essentially the syntactic categories of
ASN.1) the semantic domains, (in this case, essentially the syntactic categories of ACT
ONE and lists of ACT ONE specifications) and the semantic evaluation functions. The



functions are defined such that the evaluation of a compound ASN.1 construct depends on
the evaluation of the components.

4.1 New Type Names

The denotation, or translation, of an ASN.1 data type is essentially an ACT ONE
specification of the same name, but it may include other ACT ONE data types. The new
ACT ONE type names may be introduced in two ways.

First, ASN.1 allows the use of unnamed component types whereas ACT ONE does
not. For example, when translating the ASN.1 type

T ::=SET OF SEQUENCE OF INTEGER
a name for the intermediate type SEQUENCE OF INTEGER is required in ACT ONE.
Assuming that we have (parameterised) ACT ONE types named sEQUENCE (with formal
sort Data and sort of interest seq) and seT (with formal sort pata and sort of interest
Set), we would translate the type T into

type T is SET actualizedby Sequence 1

using sortnames T_sort for Set,

Sequence_1 sort for Data endtype
where the intermediate type SEQUENCE 1 is defined by :

type Sequence_l is SEQUENCE actualizedby ASN1INTEGER

using sortnames Sequence_ 1 sort for Seq,
IntString for Data endtype
and the type ASN1INTEGER is the translation of INTEGER.

Second, new type names may be introduced when types are (re-)tagged. Since the
only difference between a tagged type and an untagged type is one equation, we give the
common specification a new name and include this specification in the other two
specifications, inserting the additional equations as appropriate.

In both cases, the new names depend on the type constructor and the type concerned.
For example, sequence types have the names sequence_0, Sequence_1, ..., integer
types have the names Integer_0, Integer_1, ..., choice types have the names
Choice_0, Choice_1, ..., etc. The names for tagged types include the tag number and
class.

4.2 Environments

Because both source and target languages have named types, environments are
necessary to allow for the referencing and dereferencing of types. There are two types of
environment: source environments and target environments. They are defined as mappings
between ASN.1 type names (the ASN.1 category Typereference) and ASN.1 types (the
ASN.1 category Type), and queues of ACT ONE type names (the ACT ONE category
Name)and ACT ONE types (the ACT ONE category Pexpr), respectively. The
environments are defined by:

Envs = Typereference — Type and Envt = Queue(Name) — Pexpr
where — is the function space constructor.

4.3 The Main Semantic Evaluation Functions

The ASN.1 language allows for the description of data at the level of values, types
and modules (collections of types and values); thus five main semantic evaluation functions
are defined: Eval (for value evaluations), Vdecl (for value declarations), Tval (for type
evaluations), Tdecl (for type declarations) and Mval (for module evaluations).

The definitions of these functions are too complex to be given here; instead, to give a
flavour of the semantics, we describe the types of these functions. The functions have
higher order types, although the result types are tuples. This mixture of curried/uncurried
types is purely a matter of personal taste and does not reflect any particular feature of the



semantics.

Informally, the function Mval gives meaning to an ASN.1 module: it maps a list of
ASN.1 type and value declarations into a list, or environment, (there are no module
constructs in ACT ONE) of ACT ONE data types. The function Tval gives meanings to
the primitive and compound ASN.1 types: it maps an ASN.1 type into an ACT ONE type.
The function Tdecl maps an ASN.1 type declaration - a type reference and body - into an

ACT ONE type declaration with the same type reference. For example, an ASN.1 type
declaration of the form

T ::= ASN.1l_type
is mapped into the ACT ONE declaration

type T is ACT _ONE_ type
where ACT_ONE_type is the image of AsN.1_type under Tval. The function Eval maps
an ASN.1 value into the appropriate ACT ONE value and Vdecl maps a value declaration
into an ACT ONE type declaration.

More formally, the function Eval maps an ASN.1 value, given an ASN.1 type and
target environment, into an appropriate ACT ONE value. The type of the function Eval is
given by:

Eval : Value - Type — Envt — ACT ONE_value.

The result of evaluating an ASN.1 value declaration is a essentially an ACT ONE
type declaration. For example, an ASN.1 value declaration of the form

V T ::= ASN.l1l value
is mapped into the ACT ONE type declaration

type T is ACT ONE_type'
where ACT_ONE_type' is ACT_ONE_type with an additional constant v and equation
v = v', where v' is the evaluation of AsN.1_value. The given target environment is then
updated with the appropriate enrichment to the type T. Thus, the function Vdecl maps a
value declaration, given an ASN.1 type and source and target environments, into a target
ACT ONE environment; the type of the function Vdecl is given by:

Vdecl: Valuereference — Value — Type — Envs — Envt — Envt.

The denotation of an ASN.1 type is essentially an ACT ONE specification. However,
since new (ACT ONE) specifications may be introduced during the evaluation of a type, the
target environment may be updated. Moreover, although the corresponding new ASN.1
names and types are not of interest as such, the source environment is updated because
type equivalence is only defined on ASN.1 types. Therefore, the denotation is actually a
triple. The type of the function Tval is given by:

Tval: Type — Envs — Envt — (Pexpr, Envs, Envt).

The result of evaluating an ASN.1 type declaration is essentially a target ACT ONE
environment. For example, when a declaration has the form Tname ::= Type, then the
resulting environment is the given target environment updated with the binding of Tname to
the evaluation of Type. Type may or may not already exist in the given target environment.
Since the evaluation of Type may involve the evaluation and naming of its component
types, the source environment may also be updated with any new types. Therefore, the
denotation is actually a pair of environments. The type of the function Tdecl is given by:

Tdecl: Typereference — Type — Envs — Envt —» (Envs,Envt).

The denotation of an ASN.1 module, given a given source and target environment, is
a (target) ACT ONE environment. The type of the function Mval is given by:

Mval: AssignmentList —» Envs — Envt — Envt.



5. Overview of the Translator

The prototype translator, based on the denotational semantics, is implemented in
Miranda (Miranda is a trademark of Research Software Ltd.). Miranda was chosen
because it is a polymorphic, lazy, functional programming language with user defined
algebraic types. The syntactic and semantic domains are implemented as Miranda types and
each semantic function is a Miranda function of the appropriate type.

As an example, consider the implementation of the function Mval, as described
above. Mval is defined by two cases: type declarations and value declarations. Consider
the case of type declarations. Each type declaration is evaluated with a given source and
target environment; both the source environment and target environment are updated with
the appropriate names and types as the declarations are processed, plus any additional
names and types required when evaluating a compound type. We use the notation
env[name/type] to denote the function env with the additional mapping of name to type,
(assuming that name is not already bound in env). The ASN.1 syntax appears in Courier
font, whereas the semantics is given in Geneva font. We use the notation x:t1 for an
ASN.1 list of Typeassignment with x as the head of the list. The semantic evaluation
function, for this case, is given by:

Mval ([|(Tname ::= T):t1]]) envs envt = Mval t1 envs'[Tname/T] envt'
where (envs'.envt')= Tdecl [| Tname ::= T |] envs envt.

In Miranda, this function is implemented by the code:
typeassignment ::= TA typereference asnltype
sourceenv == [typeassignment]
targetenv == [([typereference],pexpr)]
mval :: ([typeassignment],targetenv, sourceenv) -> targetenv
mval (hd:tl,envt,envs) = mval(tl,envt',envs'++[hd])

where (envs',envt')= tdecl (hd,envs,envt)

The type typeassignment is a (user) defined composite type with type constructor
TA and component types typereference and asnltype (these are implementations of the
respective ASN.1 syntactic types and are not given here). The type sourceenv is the
implementation of Envs and is a synonym for the type of lists of typeassignment; the type
targetenv is the implementation of Envt and is a synonym for the type of lists of pairs of
lists of typereference and pexpr (not given here). We implement the environment
functions by using the implementation of the ASN.1 syntactic type typeassignment for
the source environment and lists of pairs for the target environment. In the implementation
of target environment, we use lists to implement queues. The type and definition of the
function mval should be obvious, and it is easy to verify this implementation against the
denotational semantics.

5.1 Using the Translator

The translator has been extensively tested and the results processed by the ropo
LOTOS compiler: one of LITE tools (from the LOTOSphere Esprit project).

An ASN.1 module is given as an ASCII string, according to the syntax defined in
[ISO 8824]. Type names must begin with a character in the range 'A" ... 'Z'; all other
identifiers must begin with a character in the range 'a' .. 'z'. A module may contain
comments and tabulation characters; the order in which types are defined is irrelevant.

The translator consists of a collection of Miranda functions. There are five functions
of interest to the user: translate, sortofinterest, names, translatevalue, and
equivalent. In all cases the functions require a file containing an ASN.1 module; the
types (all higher order) and informal specifications of the functions, as comments, are
given below.



type NULL is TAGS
sorts Null
opns
null: => Null
tag: Null -> Tag
eqgns
forall x:Null
ofsort Tag
tag(x) = mktag(UNIVERSAL,S5);
endtype
behaviour stop
endspec

Function: sortofinterest

Miranda sortofinterest "T3" "example2"
Null

Miranda sortofinterest "T4" "example2"
Bool

Function: names

Miranda names "T3" "example2"
NULL

Tl

T2

73

Function: equivalent

Miranda equivalent "T1" "T2" "example2"
True

Miranda equivalent "T1" "T4" "example2"
False

Function; translatevalue

Miranda translatevalue "NULL" "T1" "example2"
null

Miranda translatevalue "TRUE" "T4" "example2"
true

6. An Example Translation

This section contains the translation of another example ASN.1 module. It is
not exhaustive; indeed, many features of ASN.1 are not used, for brevity. We are
able, though, to illustrate the three main ways in which an ASN.1 type is translated:
either as an actualisation of a parameterised type (c.f. T1), or as a more complex,
combined type constructed "on the fly" (c.f. T2), or as a primitive type with some
modifications (c.f. T3).
example3 DEFINITIONS ::=

BEGIN
Tl ::= SET CF T3
T2 ::= SEQUENCE { one INTEGER, two BOOLEAN QOPTIONAL,
three INTEGER DEFAULT 3}
T3 ::= INTEGER {zero(0), one(l)}

END



The ACT ONE has been generated using the translator but the script has been edited

and some types removed for brevity. Comments have been added to the script: they appear,
in a this font, within (* and *).

(* The LOTOS translation of the ASN.1 file example3 *)

specification Dummy:noexit

library

Boolean, NaturalNumber, NatRepresentations, HexNatRepr, HexString,
HexDigit, DecNatRepr, DecString, DecDigit, OctNatRepr, OctString,
OctDigit, BitNatRepr, BitString, Bit

endlib

type TAGS is ... endtype

type ASN1BOOLEAN is ... endtype
type BASICINTEGER is .. endtype
type DIGIT is ... endtype

type DIGITSTRING is ... endtype

(*two constants, named zero and one, are added to SIGNEDINTEGER, as a*)
(* consequence of the declaration in T3 *)
type SIGNEDINTEGER is DIGITSTRING, BASICINTEGER
sorts Sign, IntString
opns
zero: =-> IntString
one: => IntString

(* a SIGNEDINTEGER has the form: int (+,s)or int (-, s), where s is a ¥)
(* DIGITSTRING ¥)
endtype

type ASN1INTEGER is SIGNEDINTEGER, TAGS
opns

tag: IntString -> Tag
eqgns
forall x:IntString
ofsort Tag

tag(x) = mktag(UNIVERSAL,2);
endtype

(* paTa is the formal parameter specification for sets*)
type DATA is

formalsorts Data

endtype

(* asn1skET is the parameterised specification for sets*)
type ASNISET is Data, TAGS, Boolean
sorts Set

opns
empty: -> Set
mksetof: Data, Set -> Set
tag: Set -> Tag

egns

forall s:Set,
%, y:Data



ofsort Tag

tag(s) = mktag(UNIVERSAL,17);
ofsort Set

mksetof (x,mksetof(y,s)) = mksetof (y,mksetof(x,s));
endtype
(*Recall: T1 ::= SET OF T3 ¥*)

type Tl is ASN1SET actualizedby T3 using
sortnames T1l_sort for Set, IntString for Data
opnnames emptyTl for empty

endtype
(* Recall: T2 ::= SEQUENCE {one INTEGER,two BOOLEAN OPTIONAL, *)
[ three INTEGER DEFAULT 3}%)

type T2 is TAGS, ASN1BOOLEAN, ASN1INTEGER
sorts T2_sort
opns
(* The optional and default values may be absent: there are 3 ways to construct a *)
(* T2 sequence*)
mk_T2: IntString, Bool, IntString -> T2 sort
mk T2: IntString, Bool -> T2 sort
mk_T2: IntString, IntString -> T2 sort
mk T2: IntString -> T2 sort
(* The component names are selector operations*)
ocne: T2_sort -> IntString
two: T2_sort -> Bool
three: T2 _sort -> IntString

tag: T2 _sort -> Tag
eqns
forall s:T2_sort, x1l:IntString,x2:Bool,x3:IntString
ofsort Tag
tag(s) = mktag(UNIVERSAL,16);
ofsort Bool
two (mk_T2(x1,x2,x3)) = x2;
ofsort IntString
one (mk_T2(x1)) = x1;
three(mk T2(x1,x3)) = x3;
one (mk_T2(x1,x3)) = xl;
three (mk_T2 (x1,x2,x3)) = x3;
one (mk_T2 (x1,x2,x3)) = x1;
ofsort T2 sort
(* If the integer value is missing, then it is 3 by default*)

mk_ T2 (x1l,int (+,Dig(3))) = mk T2(x1);

mk T2 (xl,x2,int (+,Dig(3))) = mk_T2(x1,x2);
endtype
(* Recall: T3::= INTEGER {zero(0), one(l)} ¥)

type T3 is ASN1INTEGER endtype

behaviour stop
endspec



translate :: string -> string
|| translate f = the LOTOS translation of the ASN.l module in file f.

sortofinterest :: string -> string -> string
|| sortofinterest t £ = the sort of interest for the translation
Il of type t, given the ASN.l module in file f.

names :: string -> string -> string
| names t £ = the list of type names for the translation of type
Il t, given the ASN.1 module in file f.

translatevalue :: string -> string -> string -> string
|| translatevalue v t £ = the ACT ONE translation of value v of
|| type t, given the ASN.l module in file f.

equivalent :: string =-> string -> string -> bool
|| equivalent tl t2 f = the equivalence between the types tl and
|l t2, given the ASN.1l module in file f.
These functions are illustrated by example below. In each case, assume that the file
"example2" contains the following simple ASN.1 module:
example2 DEFINITIONS ::=

BEGIN

Tl ::= NULL

T2 ::= NULL

T3 e P2

T4 ::= BOOLEAN
END

In each example, the expression to be evaluated follows the Miranda prompt; the
result of the evaluation begins on the following line. We note that the library specification
Boolean is used to model truth values within ACT ONE types; the specification
ASN1BOOLEAN is used as the denotation of the ASN.1 type BooLEAN. We have removed
most of the type TaGs, for brevity.

Function: translate
Miranda translate "example2"

(* The LOTOS translation of the ASN.1 file example2 *)
specification Dummy:noexit

library Boolean endlib

type TAGS is ...

type T1 is NULL endtype

type T2 is NULL endtype

type T3 is NULL endtype

type T4 is ASNIBOOLEAN endtype

type ASN1BOCLEAN is Boolean, TAGS
opns

tag: Bool -> Tag
egns
forall b:Bool
ofsort Tag

tag(b) = mktag(UNIVERSAL,1);
endtype



7. Further Features of ASN.1
The aim of this paper is primarily to describe the translator tool and so we only briefly
discuss the features of ASN.1 which are not implemented. Several further features of
ASN.1 have been considered and formalised: subtypes, tables, functions, identifier scope
and type compatibility relations.

In [Thomas 91], subtypes are formalised as a set of inference rules describing the

translation of the ASN.1 subtype relation: although each subtype may be translated into an
ACT ONE type, the relation between types cannot, in all cases, be preserved using the
current ACT ONE structuring operations. A natural solution to this problem is to extend
ACT ONE from many-sorted to order-sorted algebra (we note that such an extension might
also be desirable for other reasons, for example, for error handling).

The table type is an enhancement which replaces macros as a construct for defining
new, arbitrary types in ASN.1. In [Thomas 90t], we consider a semantics for tables. Since
table types and table values allow for the declarations, in effect, of hi gher order types, they
cannot have ACT ONE denotations. However, we do give some formal rules for evaluating
table cells (given a set of table types and values) as (basic) ASN.1 values and types; the
result is encodable values and types, in most cases.

In [Thomas 90f], we consider a semantics for the function enhancement. Since
function (definitions) are neither values nor types, they cannot be translated into ACT
ONE. However, since function applications may denote values and types, they can be
translated, in the usual way, given a suitable environment containing the function
definitions.

The issues of type equivalence, compatibility and scoping are discussed, with a view
to formalisation, in [Thomas Rudkin MacLeod 91]. We believe that a formalisation of these
issues should have been part of the original standard; moreover, had the semantics of the
entire language been formalised earlier, these aspects would not have been overlooked.

8. Discussion
8.1 Comparison of ASN.1 and ACT ONE

The LOTOS sublanguage ACT ONE is a general purpose algebraic specification
language. Although it is VETy expressive (we can define any computable algebra), the basic
constructs are very primitive indeed and the specification of even trivial types is laborious.
The static type system is very limiting; dynamic types, or at least order-sorted typing,
would be a great enhancement.

On the other hand, ASN.1 is a very simpl(?, concise, but powerful notation for certain

component cannot be defined within the language; in this case, a language like ACT ONE is
required. However, within the context of communications and specifying OSI protocols,
such "algorithmic" types would be a rare occurrence.

An important application of this work is the development of a combined specification
technique. The user of this combined language can effectively use ASN.1 as the data typing
part of LOTOS: the result is a technique with the compactness of ASN.1 and the
expressibility of ACT ONE. A preliminary report on experience with such an approach at
British Telecom is contained in [Rudkin MacLeod 91].

8.2 Role of the Prototype Translator

As stated earlier, one of the aims of formalising the ASN.1 standard is to allow a
more rigorous discussion of the features of the languages and interpretations of the
standard. The prototype translator has been an important feature in this discussion as



experimentation has led to new ambiguities and problems. The fact that the prototype has
been formally specified has improved both confidence in its reliability and ease of
modification. Viewed as an experiment in the application of formal methods, the results
have been very encouraging.

The translator has been applied to several real applications with success. However, it
is only a prototype and does have its limitations. For example, the use of optional and
default values in (heterogeneous) sequences and sets causes a combinatorial explosion of
operations and equations (see the example in §6 for a hint!). An attempt to translate the
ACSE protocol [Wilson 92] which includes an AARQ-apdu type with 8 optional values and
an AARE-apdu with 4 optional values caused the implementation to exhaust the heap. To
overcome this problem, the translator must be optimised and/or reimplemented, or the
protocol transformed to eliminate some of the optional values.

There were many problems with formalising the ASN.1 standard. We cannot review
the problems here, but note that the current semantics and translator are the result of
progress through the following language design life cycle:

Language Design

I

Formal Semantics

!

Prototype

v

Compiler

More specifically, the progress has been the following:

| ISO Standard I

I

1st Den. Semantics

I

2nd Den. Semantics

!

1st Prototype

!

3rd Den. Semantics

.

2nd Prototype




9. Future Work

First, we must incorporate any further feedback from the ASN.1 community. We
need to know whether or not the semantics accurately describes ASN.1 as commonly used,
other ways in which the translator might be used, and what further tools/environments
might be useful.

Second, the ASN.1 language, the formal semantics and the translator must be
extended to include any feedback and extensions to the language such as subtypes and

tables; a more robust translator should be produced when all the language features are
fixed.

9.1 Conclusions

This paper describes a translator tool from ASN.1 to LOTOS: an ASN.1 module is
translated into a LOTOS specification which consists of a collection of ACT ONE data
types and a single constant process. The translator is based on a formal semantics for
ASN.1 and provides other functions as well.

A prototype translator has been implemented and the results of translator have been
checked using the topo LOTOS compiler.

An interesting application of this work is the development of a combined specification
technique. A translation between ASN.1 and ACT ONE allows a protocol specifier to use a
mixture of notations: ASN.1 for the data type descriptions and basic LOTOS for process
descriptions. In particular, such the translator may be used by a protocol specifier who later
instantiates the (stop) process by a more appropriate behaviour. The result is a technique
with the compactness of ASN.1 and the expressibility of ACT ONE.
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