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Abstract

We present a technique to tackle the parameterised probabilistic model checking problem for a particular
class of randomised distributed systems, which we model as Markov Decision Processes. These systems,
termed degenerative, have the property that a model of a system with some communication graph will
eventually behave like a model of a system with a reduced graph. We describe an induction schema for
reasoning about models of a degenerative system over arbitrary graphs. We thereby show that a certain
class of quantitative LTL properties will hold for a model of a system with any communication graph if it
holds for all models of a system with some base graph. We demonstrate our technique via a case study (a

randomised leader election protocol) specified using the PRISM modelling language.

Keywords: Probabilistic model checking, parameterised model checking, degenerative systems, PRISM.

1 Introduction

Model checking of distributed systems is restricted to verifying systems with a fixed
number of processes. Proving a property for a system with N identical processes,
for any N > 0, is known as the parameterised model checking problem (PMCP).
This problem is undecidable in general [2] but techniques can be used to solve it for
certain types of system.

Probabilistic model checking augments traditional model checking, enabling
quantitative as well as qualitative analysis. Probabilistic model checking has become
an important area of research due to the increased use of probabilistic algorithms
and the requirement for analysis of not just system correctness but also system per-
formance. Probabilistic model checkers, such as PRISM [14], enable properties such
as “the system will fail with probability less than 0.01” and “with probability 1, the
system will terminate” to be verified. Probabilistic model checking tools vary in the
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type of underlying model that they support. We focus on probabilistic model check-
ing of randomised distributed systems, models of which exhibit both probabilistic
and non-deterministic choice, therefore we restrict our attention to reasoning over
MDPs.

In this paper we tackle the PMCP for randomised distributed systems by ex-
tending an inductive proof for a non-probabilistic parameterised distributed system
[16]. We generalise this proof for a class of probabilistic systems, described as de-
generative — they have the property that a system configuration of a given size
eventually behaves like a smaller configuration. The proof employs induction over
the topology of the system in order to show that any property in a class of prop-
erties that holds for a model of a base system topology will hold for a model of a
system of any size and configuration. The induction relies on determining that any
behaviour of a model of the system of a given size is equivalent to a behaviour in
a model of a smaller system. To illustrate our technique we consider a family of
models of the IEEE 1394 Firewire tree identify protocol [11] specified using PRISM.

2 Background

2.1 Markov Decision Processes

In the sequel, for a set Y, Dist(Y') denotes the set of all discrete probability distri-
butions over Y i.e. the set of all functions y: Y — [0,1] such that > -y p(y) = 1.

We model randomised distributed systems as Markov Decision Processes
(MDPs). In particular, we consider state-labelled MDPs, where the states are aug-
mented with a set of (atomic) propositions true in that state.

Definition 2.1 (See, for example, [18]). A (labelled) Markov Decision Process is
a tuple M = (S, sg, Steps, Act, L) where S is a finite set of states, sg € S is the
initial state, Act is a set of actions, Steps : S — 9ActxDist(s) j5 the probabilistic
transition function such that, Vs € S, Steps(s) # 0 and L : S — 247 is a labelling

function over a set of propositions AP.

For an MDP, M = (S, s¢, Steps, Act, L), the function Steps maps each state in
S to a non-empty subset of Act x Dist(S). Intuitively, for s € S, Steps makes a
non-deterministic choice over |Steps(s)| action, distribution pairs, choosing action a
and distribution p, say. A probabilistic choice is made over S where the probability
of moving to a state s is given by u(s’). We say that a is enabled from s. If u(s') > 0
for some state s’ we say there is a transition from s to s, written s =% s’. Action
a € Act is non-probabilistic iff, Vs € S, ¥(a, ) € Steps(s), u(s') =1 for some s’ € S
and is a stutter action iff, Vs € S, V(a, u) € Steps(s), u(s') >0 = L(s) = L(¢).
An infinite path, o in M is a non-empty sequence sg I g B where for i > 0,
si € S, (ag, pi) € Steps(si), p(si+1) > 0. Similarly, a finite path is a non-empty
sequence, sg =t g ML LRl o for some n > 0. For a finite or infinite
path, «, || denotes the length (the number of actions) of the path (with |a| = oc

for an infinite path), and #r47(a) the sequence given by the labelling of the states

in « restricted to the set of propositions in AP. For a finite path, o = sg iy
sp T o et last(a) = s, and Pa) = po(s1).p1(s2) . . . fin_1(sn)
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(with P(a) = 1 if a = sg). For two paths, @ and o/ with « finite, if « is a prefix of
o/ we write @ < o (and a < o if it is a strict prefix). The set of all infinite paths
starting at state s is given by Path(s) and the set of all finite paths starting at s by
Path tin(s).

2.2  Adversaries

In order to analyse an MDP we need to resolve the non-determinism. This is done
by considering adversaries, constructs that make a choice over Steps(s) for each
state s of an MDP, based on the history of choices made up to state s. Formally,
an adversary A of an MDP M = (S, sq, Steps, Act, L) maps every finite path « of
M onto an element A(«) of the set Steps(last («)) [19]. An adversary produces an
infinite-state Markov chain, with each state given by the history of states so far vis-
ited. An adversary uniquely determines a Markov chain of this form, so in the sequel
it will be convenient to refer to an adversary of an MDP when describing the Markov
chain induced by it. Also, Adv ¢ denotes the set of adversaries for MDP M and, for
adversary A and state s, PathA(s) denotes the subset of Paths which corresponds
to A and similarly, Path’;‘m(s), the subset of Path t;,(s) that corresponds to A [19].
For path « € Path?m(s), define the path cylinder, C(a) = {w € Path?(s)|a < w}.
The probability measure, Probf, is defined on the smallest o-algebra that contains
all the sets C(a) for all o € Pathf;‘m(s), such that, Prob2(C(a)) = P(a) (for more
detail see, for example, [13]).

2.8 Cuts

Definition 2.2 Let M =(S,sq,Steps,Act,L) be an MDP and let A € Adv . Define
Cut(A) to be a family of sets s.t. for D € Cut(A), D C Pathf;‘m(so) where, for all

a€D,atd and o £ aforany o € D, o/ #aand Y, Probl (C(e)) = 1.

Intuitively, a cut (a simplification of a fringe as defined for probabilistic au-
tomata by Segala [20]) represents a finite portion of the Markov chain induced by
an adversary. Given an adversary A of an MDP, for n > 0, let cut®(n) € Cut(A)
be defined such that for all a € cut?*(n), |a| = n. For C € Cut(A) we say that C is
a cut of A. Furthermore, we describe cut?(n) as a cut of A at depth n.

2.4 Quantitative Linear Time Logic

To specify properties of MDPs we employ Linear Time Logic (LTL). LTL for-
mulae are defined in terms of paths of an MDP and have a formal syntax ¢ ::
true | a | g1 | o1 A do | o1 UG | X1 where a is an atomic proposition, and U and
X are the standard until and next-time operators. See for example, [7] for a full
description. LTL, y is defined as for LTL but without the next-time operator (the
exclusion of this operator is not a great hardship since one seldom reasons about
exactly the next state in a distributed algorithm).

A quantitative LTL (QLTL) formula, is defined over states of an MDP with
syntax ¢ = Pugp[t)], where e {<,<,>,>},p € [0,1] and ¢ is a LTL path formula
(similarly for QLTLy x). For MDP, M, state s of M, adversary A of M and LTL
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path formula ¢, by abuse of notation, in the sequel, we let Probf(w) = Probf({ o€
Path?(s)|a k= }). For QLTL property, ¢ = Puyp[t], s satisfies ¢, denoted s = ¢,
iff, VA € Advpg, Prob?(y) bap. M satisfies ¢, (M = ¢) iff sg |= ¢ where sg is the
initial state of M.

2.5 Stuttering equivalence

For any string v, the stuttering removal operator # applied to v replaces every
maximal finite subsequence of identical elements by a single copy of this element.
Let M and M’ be MDPs with propositions AP and AP’ respectively. A path «
of M is said to be stuttering equivalent to a path o in M’ (denoted a ~ ') with
respect to AP" C AP N AP’ if and only if #tr4F" (v) = #tr4P"(3). We extend
stuttering equivalence of paths to adversaries by considering trace cylinders over
sequences of sets of atomic propositions. Our definitions are based on those given
in [5].

Definition 2.3 Let AP be a set of propositions. The trace cylinder
CUT 1. 1Y) (for lo,ly,...,1, € 24T pairwise distinct, n > 0) is defined by
CUF, If, ... . L)y ={te @A)t =1k ik ikn . for some ko, ky, ... ky > 1}
where, for k > 1,1k =1,1,...,1 for | € 247,
N—_——
k

For an adversary A of an MDP M with initial state sg, and set of propositions
AP, by abuse of notation in the sequel let ProbZ (C(if,If,...,1})) = Probi ({a €
Path”(so)|trAT (o) € C(I 1T, 1D)Y).

Definition 2.4 Given two MDPs, M = (S, sg, Steps, Act,L) and M’ =
(S, sy, Steps’, Act', L"), with propositions AP and AP’ respectively, two adver-
saries A € Advp, A" € Advngy are probabilistic stuttering equivalent (denoted
A ~ A wrt. AP” C AP N AP if and only if, Prob2 (C(f,lf,...,l}) =
Prob;‘g (CUF, 1T, ..., 1)) for all pairwise disjoint lo, Iy, ... , 1, € 247" n > 0.

For convenience, and consistency with [5], we henceforth use the shorthand
stuttering equivalence for probabilistic stuttering equivalence when it is clear that we
are referring to equivalence between adversaries.

Let S, T be sets, R C S x T and p € Dist(S), v € Dist(T). A weight function
for u and v with respect to R is a function w : § x T' — [0, 1] such that w(s,t) >
0= sRt, u(s) = > epw(s,t) for any s € S and v(t) = > gw(s,t) for any t € T.
We write iy Cg v iff there is a weight function for u and v with respect to R.

We now give conditions on a pair of adversaries that allow us to show stuttering
equivalence without considering trace cylinders and examining only finite paths.
The proof of Lemma 2.5 is given in [20] for a more general case.

Lemma 2.5 Let M = (S, s, Steps, Act, L) and M' = (S', s}, Steps’, Act’, L") be
MDPs with sets of propositions AP and AP’ respectively. Let AP" C AP N AP,
Let A and A’ be adversaries of M and M’ respectively. A ~ A’ if there exists cuts
Dy, Dy, ... with, Vi > 0D; € Cut(A’), such that

(i) Vi >0, Va € Diy1, a € D; or a = B.a, pu, s and 3 € D;,
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Fig. 1. Two MDPs, M and M’, with stuttering equivalent adversaries

(ii) For every a € Pathﬁn(so), lim; o0 D gep, a<p P(B) = Probﬁ) (C(a)),

(iii) For eachi > 0, define y; : cut{ — [0,1], pl : Dy — [0,1] such that for o € cut?,
o € Dy, pi(a) = Pla), pi(a) = P(a!). Then u; Cg il where for a € cutf,
o € D, Rla,d) iff a ~ o w.r.t. AP".

LTL\ x properties induce stutter-invariant measurable languages [22] and so, by
standard arguments of measure theory, it follows that

Lemma 2.6 If M and M’ are MDPs with propositions AP and AP’ and adver-
saries A and A’, respectively, then for any LTL\ x path formula v with propositions

in AP" C APNAP', if A= A w.r.t. AP" then Prob} () = Probl (1)).

Example 2.7 In Figure 1 we give an example of MDPs, M and M’, both over set
of propositions AP = {x = 0,2 = 1}, with initial states so and s{, respectively and
action sets {a,b,c} and {b, c} respectively. There is only one adversary associated
with each MDP: let these be A and A’, then A ~ A’ w.r.t. AP since,

Probl (C({w = 0}T)) = Prob} (C({x = 0}")) =

Probi (C({w = 0}, {w = 1}%)) = Proby} (C({z = 0}, {z = 1}T)) = 1
and the probability measure over all other trace-cylinders is zero. If ¢ is LTLy x
property, (true U (z = 1)), Prob?o(zp) = Probfé:(z/)) = 1. Thus, M and M’ satisfy
P>1[y].

2.6 Isomorphism between Adversaries

Isomorphic adversaries must have exactly the same structural behaviour (up to
labelling of states). Definition 2.8 and Lemma 2.9 are adapted from [9].

Definition 2.8 Let M = (S, s, Steps, Act, L) and M’ = (5, SO,Steps Act’ L’) be
MDPs with adversaries A and A’ respectively. Let p : Path fm(So) — Path fm(so)
be a bijection with p(sg) = sj. Suppose, for all a € Pathfm( 0), if Ala) = (a, p)

and p(a Nl t)=d D) Y then w(t) = @/ (') for all ¢t s.t. p(t) > 0. Then ¢ is an

isomorphism from A to A’, and A and A’ are isomorphic (denoted A = A’).

Lemma 2.9 Let M = (S, so, Steps, Act, L) and M' = (S', s}, Steps’, Act’, L") be
MDPs with propositions AP and AP’, respectively and let ¥ : AP — AP’ be a
bijection. For LTL property 1 with propositions in AP, ¥.(1) is the LTL formula
obtained from 1 by replacing every proposition a with X(a). Let ¢ be an isomorphism
between adversaries A (of M) and A" (of M) such that, for all o € Pathﬁn(so) and
a € AP, a € L(last(a)) <= X(a) € L'(last(s(c))). Then for any LTL formula 1
with propositions from AP, Prob;% () = Prob;%/(E(w)).
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Fig. 2. Communication Topology I for Example 3.2

Note that in Example 2.7, A and A’ are not isomorphic.

2.7 Graphs

We define a graph, G = (E,V,I), to be a tuple with V" a set of vertices, F, a set of
edges between pairs of vertices and I, a labelling of vertices with each vertex v € V'
uniquely labelled by a value I(v) € {0,1,...,|G| — 1} (where |G| = |V is the size
of the graph). By abuse of notation, i denotes the vertex v with I(v) = i. Given
a permutation, o on {0,1,...,|G| — 1}, we define the permuted graph under o as
o(g) = (E,V,I') where I'(v) = o(I(v)) and describe ¢ as a permutation on G. For
a graph, G = (E,V,I) and V' CV, G[V'] = (E', V', I') is the subgraph induced by
V' obtained by deleting the vertices in V' \ V'’ and the associated edges from G.

3 Parameterised Model Checking for Randomised De-
generative Systems

8.1  Communication Graphs and Reductions

In the sequel we use the term communication graph to describe a vertex-labelled,
non-empty, finite, simple, connected graph (by abuse of notation, we refer to a
communication graph simply as a graph). Also, for a communication graph G we
refer to vertex v, with I(v) = i as process ¢ and describe i as a process indez. If
there is an edge (v, w) of G, with I(v) = i, I(w) = j, we say process ¢ and process
j communicate. A set of communication graphs is defined as a communication
topology (or simply a topology).

Informally a system is degenerative if it eventually behaves as a ‘smaller’ system.
We formalise the notion of ‘smaller’ in terms of the topology of the system and define
a set of ‘least’ elements of a topology as follows.

Definition 3.1 Let I" be a topology and G = (E,V,I) € I'. Let o be a permutation
of G and let W C V. Then R = (W,0) is a reduction of G in I' iff the graph
R(G) = o(G)[W] belongs to I'. We describe R(G) as the reduced communication
graph of G in I under R or simply a reduced communication graph of G.

Example 3.2 Consider the topology I consisting of graphs G, G; and Go, illustrated
in Figure 2. Define sets Wi and W thus: Wy = {0, 1,2,3} and Wy = {0, 1,2, 3,4},
and let permutations o1 and o9 be the identity permutation and a permutation that
fixes 0 and 1 and maps 3 to 2, 4 to 3 and 5 to 4 respectively. Then, if Ry = (W7,07)
and Ry = (Wh,09), R1(G) = G1 and R2(G) = Go. Hence Ry and Ry are reductions
of Gin I
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Definition 3.3 Let ® and I" be topologies such that ® C T" and let Qr = {Qg|G €
'} be a family of sets of reductions for communication graphs in I such that for
all G € &, Qg = (. Then T is reducible to ® under Qr iff, for all G € T'\ ®, there
exists a sequence of reductions, Rq,Ra, ..., R, (for some n > 1) such that, for all
1<i<n, R; € QRi—1(R¢—2(...(R1(g)))) and Rp(Rp—1(...(R1(G))...)) € ®.

3.2 Specifying Sets of Models Over a Communication Topology

We consider MDPs defined with respect to some variable set. For a communication
graph G, we consider variable sets over G, Xg = Ui]i _OlXé U Gg U Cg where, for 0 <
i < N—1, each X is a set of local variables associated with process i. These are the
same (up to indexing) for each process. The set Gg are the global variables that are
common to all processes. The channel variables, Cg = {c¢;jx|j and k communicate},
are used to send messages between a pair of processes. For x € Xg, D(z) denotes
the domain of x and D(Xg) the cross-product of the domains of the variables in Xg.
We assume that D(c) = D(¢) for all ¢, € Cg. We define the set of propositions
over Xg as, APg = {z =d|x € Xg,d € D(z)}.

In the sequel, we distinguish between indexed and unindered variables in Xg.
A variable is indexed if it is subscripted with a process index (all local and channel
variables are indexed), or if its domain is the set of process indices plus the unas-
signed value, L (otherwise it is unindexed). The elected variable in the example
described in Section 4 is an indexed variable. For the same example, a local vari-
able mymsg (say) storing the most recent message received by a given process would
have domain {L, bmp, bme, ack} and would therefore be unindexed.

We can extend this definition to the set of propositions APg over Xg. A propo-
sition z = d (z € Xg, d € D(z)) is indexed if z is indexed and d # L (otherwise it
is unindexed). A LTL or QLTL property is unindexed if it contains only unindexed
propositions.

We also assume for an MDP that there is a set of actions over a graph G,
Actg = Uij\i _OlActi, such that each action is defined with respect to a process and
that the sets of ‘local’ actions, Act;, are isomorphic (up to process indexing).

Definition 3.4 Let G = (E,V,I) be a communication graph, Xg a variable
set over G and Actg an action set over G. If the initial value of the vari-
ables in Xg is given by the tuple init(Xg) then a model over G is an MDP,
Mg = (D(Xg),nit(Xg), Stepsg, Actg, Lg) such that Lg labels states with the
set of propositions AP where AP is defined over Xg. Given a topology, I, let
Mr = {Mgl|G € T'} denote a set of models over T

3.8  Mappings Induced by the Permutation of a Communication Graph

Given graph G and a permutation of G, o, let Mg be a model over G and M, g) be a
model over o(G). For adversaries A of Mg and A’ of Mgy we define the index map
on A induced by o, p: Pathﬁn(sg) — Pathﬁ‘é(sg(g)) that maps the process indices
associated with any indexed variables and any actions, according to . Similarly, we
can define the propositional index map induced by o, X, between the propositions
AP over variable set Xg and AP’ over Xo(g)- Since X respects p, from Lemma 2.9
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we can show that, for an unindexed LTL property ¢ with propositions in AP, if p
is an isomorphism then, Pmb’;) (¥) = Probé: (¥).

3.4 Degenerative Families of Models

We now turn to our main definition that gives conditions for a family of models
(over a topology) to be degenerative. The key condition is that the communication
graphs of the topology are reduced such that every adversary of a model over some
graph is stuttering equivalent to an adversary of a model over a reduced graph.

Definition 3.5 Let I' be a topology that is reducible to ® under a family of sets
of reductions, Or = {Qg|G € I'}. Suppose Mp = {Mg|G € I'} is a set of models
over I'. For each G € I let Xg be a set of variables over G and let APg be the
propositions over Xg. For each R € (Jg, define a set of variables Xéz(g) C Xgr(g)
(with AP%(Q) C APg(g), the set of propositions over X;z(g))- Mrp is degenerative
with base ® under QO iff,

(i) (Reduced Variables and Actions:) For G € I and R = (W, 0) € Qg,
Xo(g)\ Cg = Xg \ Cg, D(Xo(g)) = D(Xg), Acty(g) = Actg,
XRr(g) € Xo(g): D(XR(g)) € D(X,(g)), Actr(g) € Acto(g),
(ii) (Matching Adversaries:) For G € I' \ ®, there exists R = (W,0) € Qg
such that, for every adversary A of Mg, there exists an adversary A’ of M, g

that is isomorphic to A under the index map induced by o, with A’ stuttering
equivalent to some adversary A" of Mg gy with respect to AP;Q(Q).

The establishment of a set of models, parameterised by a topology, that is de-
generative provides an inductive basis (over the topology) with which to establish
properties of the models.

Theorem 3.6 Let I' be a topology that is reducible to ® under the family of sets of
reductions, Qr and let Mr be a set of models over I'. Suppose, for each G €', R €
Qg there is a set of variables Xéz(g) C Xr(g) (with APfR(g) C APRg), the set of
propositions over Xéz(g) ) such that My is degenerative with base ® under Qr. Then
for any unindexed QLT L\ x property ¢ with propositions in ﬂger\@ ﬂRng AP’R(Q),
if Mg = ¢ forall F € &, Mg = ¢ for allG eT.

Proof. Let G € I" and suppose ¢ is an unindexed QLTL, , property with propo-
sitions in (req, AP%(Q). Assume Mpg) F ¢, for every R € Qg. We can show
Mg [ ¢, as follows. Let A € Advpg,. Choose R = (W,0) € Qg such that A is
isomorphic to some A’ € Adv Mg, under p, the index map on A induced by o,
with A’ stuttering equivalent to some A” € Advpryy ) W.r-t. AP;Q(Q). Property ¢
has the form P, [¢)]. Let ¥ be the proposition index map induced by o. For every
adversary B of Mg (g, Probng(w) > p. If Mg, My (g) and My g) have initial states
S0, Si, and s{ respectively then,

Prob‘;‘o(dj) = Pmbgg(w) from Section 3.3 since A = A" under p

_ A" : Il AN /
= Probn (1) since A"~ A" wr.t. APg g
> p by the above.
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Since the above is true for every adversary of Mg, Mg = ¢.

Let ¢ be an unindexed QLTL,, formula with propositions in
Nger Nreg, AP;Q(Q). Let G € @ then, by the statement of the theorem,
Mg = ¢. Assume G € '\ @. ¢ is defined over (pcq, AP g) and is unindexed,
so by the above, Mg | ¢ if Mg | ¢ for all R € Qg. For each R € Qg,
either R(G) € ® or it can be reduced further. Since I' is reducible to ® under Qr,
continuing in this way, we can construct a tree of graphs in which every terminal
node is a graph in ®. Finally, by statement of the theorem, each of the models
associated with the graphs at these terminal nodes satisfy ¢ and, by propagation
up the tree of graphs, it follows that Mg E ¢. ]

4 Model Checking the IEEE 1394 (Firewire) Tree Iden-
tify Protocol

We illustrate our technique with a case study. The IEEE 1394 (Firewire) Tree
Identify Protocol (TIP) [11], is designed to elect a leader from a set of processes
arranged in an acyclic topology. A process may send one of three messages to
a neighbouring process: be_my_parent (bmp), be_my_child (bmc) or acknowledge
(ack). Any process that has received bmp messages from all or all but one of
its neighbours responds with bmc messages and, if necessary, sends a bmp to the
remaining neighbour. The neighbouring processes will send an ack upon receiving
a bmec, from which point the processes play no further part in the protocol (and
hence the protocol is degenerative). In this manner the protocol builds a spanning
tree with the root process elected as leader.

It is possible for two neighbouring processes to attempt to become leader by
sending bmp requests to each other simultaneously. In order to resolve this con-
tention, each process probabilistically chooses to wait for a long or short amount of
time, before attempting to send a request again. If a process then receives a request
before it has sent one, it will be elected leader. Otherwise, another contention situ-
ation ensues and the “back-off” procedure must be repeated. Much work has been
done on proving correctness of root contention in the TIP [21]. Appealing to these
results, in earlier work [6] we modelled the TIP with non-deterministic contention
resolution. Here we consider a family of MDP models for the TIP in which con-
tention is resolved probabilistically. We model contention with a contending process
(the one with the smallest index) making a simple probabilistic choice: with prob-
ability %, the process loses and the other process sends its bmp; with probability %,
the process wins and transmits its request to the other process; or with probability
% contention is not resolved and the process must choose again.

We have modelled the TIP and verified a suite of properties for all configurations
of systems with three, four and five processes, using PRISM. For reasons of space we
do not give our PRISM specifications or all of our properties here. We concentrate
on one property which we refer to throughout the rest of the paper. Here elected is
a global variable (see the subsequent section) that is initially equal to L and is set
to the value of the index of any process that is elected leader.

Property 1. A leader will almost surely be elected: P> [true U —(elected = L1)].

9
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(conten, liy, . .., ik, 0, ..., 0], k iy, k)

(winner, iz, ..., ik, 0,...,0], ki1, k

(loser, iy, ... ,in, 0,... 0] ki,
toss; = 1 2

toss; = 2

k)

Fig. 3. Transition in Mg corresponding to contention resolution between processes j and i1 (j < i1).

Table 1
Transitions in Mg made by process j when it receives requests from all of its neighbours
1. Process j receives (start,[L,..., 1]k, L,0), [bmp]zlJ7 oy [ompls, 5
bmp from all its al
neighbours. (child, [i1,%2,. ..k, L,..., 1], k, J_ k) liggs oo ligy
2. Process j responds (child, [ix,d2, - i, Ly ooy LRy L) iy 50+ (i ,d
to its neighbours 1 l b7
with bme requests. (parent, [i1,12, . .., i, J_, ,J_], k, L, k),[bmcliy 4,. .., [bmc] 4
3. Process j receives (parent, i1, 42, ... 4%, L, ..., LIk, L, k) ,Jackls, 5, . .., [ack]s, 5
ack from all its 1] ¢l
neighbours and (finish, [L,..., L], k, L,0),[]1,0,-- -, [In=1,0
becomes leader. elect ed =7

4.1 A Family of Models of the TIP over Acyclic Communication Graphs

Using the PRISM specifications for small configurations of the TIP as a basis, we
have defined a script for automatically generating PRISM specifications of the TIP
for any topology. We can view this script as specifying a family of models for the
TIP system, Mp = {Mg|G € I'} over the topology I', the set of communication
graphs that are acyclic. Given G € I', with |G| = N, model Mg over G has variable
set Xg over G with, for i € {0,..., N — 1},

Gg = {elected, tossg, tossi, ... ,tossn—1},Cg = {cq.n,ch4l(9,h) € E},
X = {state;, child; o, child; 1, ..., child; n—1, adj;,
remaining _partner;, no_of _requests, },

The variable domains are, for 4, j € {0,1,...,N —1},¢,n € Cg,

D(state;) = {start, child, parent, conten, response, complete, winner, loser,
b_child, finish}, D(no_of _requests;) = D(adj,;) = {0,1,..., N—1},
D(remaining_partner;) = D(child; ;) = D(elected) = {L1,0,1,...,N — 1},
D(cq p) = {empty, bmp, bme, ack}, D(toss;) = {0, 1,2}.

The set of actions over G is given by Actg = U Actg A sample of the non-
probabilistic actions in Actg are shown in Tables l and 2 (for reasons of space we
do not provide them all). The sole probabilistic action that a process can make,
that of resolving contention, is shown in Figure 3. The conditions for an action
to occur and the result of that action are given in each as the value of the local
variables of process j along with some of the channel and global variables. The
local variables are presented as a tuple, (s, [chg, ...,chn_1],a,r,n), representing the
values of statej, childjo, ..., childj N1, adj;, remaining_partner;, no_of -requests,
respectively. The value of a channel variable ¢ ; is represented by [msgls; (where
msg is bmp, bme, ack) or [n; if cp; = empty. If a variable is not presented then
its value is not considered for that action. We assume process j has k neighbours,

10
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Table 2

Transitions in Mg made by process j when it receives requests from all but one of its neighbours (i1).
4. Process j receives (start,[L,..., L, k, L,0),[liy,j, 0MPlig 5, - - - [OMPl4y 5
bmp from all its 1] a’
neighbours except 4;. (child, [ig, ... ig, L, .., L]k, 1, k), Jay 5, Qag,go - oo Hinog
10. Process j receives (response, Jiz, ... ik, L,..., L],k i1, k),[bmpli ;
bmp from i1 and 1]el
enters contention. (conten, iz, ... ik, L, ..., L], k,i1,k),[]iq,5
11. 43 < j and (conten, [iz, ... ik, L,..., L], k,11,k),toss; =1
process j has 1]g7
won contention. (winner, [i2, ..., ik, L,..., L], k,i1,k),toss; =0
15. Process j has lost (parent, i1, L,..., L], 1, L,1),[ack]s ;
contention, receives ack 1]
from ¢; and (finish,[L,..., 1],1,1,0),[s,5,elected = j
becomes leader.

i1,%9,...,1; and for Table 2 and Figure 3, that iy is the neighbour that does not
initially send a bmp to j.

5 Parameterised Model Checking of the TIP

We demonstrate our proof technique for tackling the PMCP for probabilistic de-
generative systems, describing how it can be applied to the TIP and showing that,

Theorem 5.1 Let ¢ be Property 1. Then Mg = ¢ for all G € T.

We tackle Theorem 5.1 by showing that Mg is degenerative with base ® C T,
the set of stars, under some family of sets of reductions. We do so by considering
each of the conditions given in Definition 3.5 in turn, having defined an appropriate
set of reductions and corresponding ‘reduced’ set of variables for each model in
Myp. First, however, we show that Property 1 is satisfied by all models in Mg.
Note that in order to show all models in Mg satisfy Property 1, we have to tackle
another instance of the PMCP. However, the topology ® is regular, making the
problem easier. We prove Lemma 5.2 by showing that Mg is degenerative with
base {Mg2)} where G(2) is the star with two vertices. The proof, omitted, is a
simpler version of that for Theorem 5.1.

Lemma 5.2 For all G € ®, Mg = ¢, where ¢ is Property 1.

5.1 Clipping Reductions

The main decision in defining a set of reductions is how vertices are removed from
communication graphs. In the TIP example we define clipping reductions where we
remove sets of leaf vertices that are connected to a particular kind of non-leaf vertex.
These non-leaf vertices, termed level-1 vertices, are the set of vertices for which all
but one of the neighbouring vertices are leaves (the non-leaf neighbour is the inner
vertez of j). They are guaranteed to exist in acyclic communication graphs that are
not stars [16]. Given a level-1 vertex j of a graph G, clip?(G) is the set of vertices of
G excluding leaf vertices of j. We also have to identify a permutation of the vertex
labels that ensures the reduced graph is labelled correctly. In the sequel, we let a;j
be a permutation (for G € I' and level-1 vertex j) on the vertex labels of G, which

11
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O

(clipi(1), 0})
® o -

Fig. 4. An example of graph G (left) and the graph ag(g)[clipz(g)] (right) obtained under a clipping
reduction, with respect to level-1 vertex, vertex 2.

permutes the indices such that the leaves of j have the largest indices and the order
of the indices of the remaining vertices is preserved (see [16] for a formal definition).
We now define a set of reductions on a graph G € T'.

Definition 5.3 For G € ', let Jg = {j1, j2,...,jm} be the set of all level-1 vertices
in G. Let Clipjg = (clip’ (g),af) and define the set of clipping reductions of G

as Clipg = {Clipé| j € JY9). Furthermore, define the family of sets of clipping
reductions, Clipp = {Clipg|G € I'}.

An example of a graph obtained under a clipping reduction for the level-1 vertex,
vertex 2, is shown in Figure 4. We now show that we can reduce any communication
graph in I" to a star under a sequence of clipping reductions. The proof, by induction
over the number of level-1 vertices, is omitted.

Lemma 5.4 The topology, T, is reducible to the set of stars, ® under Clipy.

5.2  Reduced variable Sets

We define a subset of the variable set of a model of a clipping reduced graph. Let
G € I" and let j be a level-1 vertex. For variable set, X¢g and a clipping reduction,
Clipl, = (clip? (g),af) (with j = a]g(j)) we remove variables associated with the

. . Y4 . .
leaf processes of j. Specifically, we define X Cliv’, (@) to be equivalent to X Clip?, (G) but
excluding the variables childj o, childj 1, ..., childj n_1, adj;, no_of requests; .
7/ . . 3
In the sequel AP Cliv’, () is the set of propositions over X Cliv’, (G)

5.8 Matching Adversaries

To show that Mrp, with clipping reductions, is degenerative we demonstrate that
the conditions of Definition 3.5 are fulfilled. Here we establish condition (ii).

We partition the adversaries of a model Mg over G € I' according to their
behaviour in terms of the level-1 vertices. Specifically, we classify them according
to which level-1 vertex receives bmp requests from all its leaf vertices, but not its
inner vertex, first. If, under A € Adv g, j is such a vertex then A is first-full with
respect to j. The leaf neighbours of j are then guaranteed to terminate without
being elected leader and their effect under the adversary can be ignored (this is
key to showing that Mr is degenerative). In the sequel, Advivtg C Advpq, denotes
the set of adversaries that are first-full with respect to j. The proof of Lemma 5.5
is as for the proof given in [16] for the non-probabilistic case. Intuitively, at the
initialisation of the protocol only leaf processes can progress beyond their starting
state. Thus a state must be reached where a level-1 process receives bmp requests
from all of its leaf neighbours but not its inner vertex. The adversary corresponding

12
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Table 3
Result of applying Ejg to a proposition, a, for 0 < h,k < N and 0 < i < N — 1 (o abbreviates O'Jg)‘
a Z?(a) ‘
position;, = x POSULON 5 () = X
childy ; = x child 5 (py,s = o(z) + 1
adj, =x adj o (py =
remaining -partner, = x | remaining-partner 5y = o(x)
no_of _requests;, = x no-of _requests ;) = x
electedp, = x elected 5 (p) = o(x)
tossp, = tossy(p)y =@
Chk =T Co(h)o(k) =%

to this scheduling must therefore be first-full with respect to a level-1 process.

Lemma 5.5 For G € I'\ @, let JY9 = {j1,72, ..., x}, be the set of level-1 vertices.
Then, Ujejg Advivtg = Advpmg-

Let G € T'\ ® and for level-1 vertex j let (clip? (G), ajg) be a clipping reduction.
E?, the proposition index map induced by ajg is shown in Figure 3 (by abuse of
notation we let ajg(J_) = 1). In Lemma 5.6 we show every adversary A; of Mg

(first-full with respect to 7) is isomorphic to an adversary of M 9 (g) under the index
J

map induced by aé. The proof (omitted) is by considering transitions under A;.

Lemma 5.6 Let G € I'\ . Let j be a level-1 vertez and let Clz’pé = (clip’ (Q),aé)
be the clipping reduction for j. For every adversary A; of Mg that is first-full w.r.t.

J, there exists an adversary Ay of M _; ©) that is first-full w.r.t. j' = a?(j) such
g

that pg, the index map induced by Ué, is an isomorphism between A; and Aj .

In Lemma 5.7 we show that, for every adversary of the model of a permuted
graph, first full with respect to j, say, there exists a stuttering equivalent adversary
of the model of the clipping reduced graph.

Lemma 5.7 Let G € I'\ @, j a level-1 vertex and Clipé = (clipj(g),aé) be the
clipping reduction for j. For every adversary A of Mag(g) that is first-full w.r.t. j
J

there exists an adversary A’ of M st. A~ A wrt AP’

Clipy(9) clipl,(G)”
Proof. (Sketch) Let Ma;?(g) = (S, s0, Steps, Act,L) and Molipg(g)
(S', 54, Steps’, Act’, L'). Let A be an adversary of Mag(g), APx = APJg(g) [clip? (G)]
J 05

and H C Pathyin(so) X Pathpin(sp) be the relation given by Vo € Path fin(so),
o € Pathyin(sh), H(a,a!) iff trA7*(a) ~ trAP*(o/). We define an adversary, A’ of
MClipé(g) and sets, Do, D1, Da, ... s.t. Vn >0, D,, C Pathyin(sg), by induction
over the cuts of A at depth i. We show ¥Vn > 0,

IH1 For every a € cuty, o/ € Dy, if H(a, /) then for every m < n there exists

prefixes f < o and # < o such that 3 € cut(m), 8’ € D,, and H(B, ).

IH2 If p,, ), are the distributions over cut™(A) and D, respectively, defined by,
for a € cut(n), o/ € Dy, pn(a) = P(a) and p,(o/) = P(/) then py, Cp .
TH3 For every a € cutl, o/ € Dy, if H(a, ') then for every 3 € cut;%, B € D,

S0’

such that 8 # « and ' # o/, (3,0/) ¢ H and (o, 3') ¢ H.
13
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Base case: Clearly cut?(0) = {so}. Let Do = {sh}. Immediately, IH1 and TH3
hold. By definition P(so) = P(sf,) = 1. Therefore, o Cg pg and so IH2 holds.

Induction step: Assume IHI1, TH2 and ITH3 hold for some n > 0. Suppose
a € cut*(n +1). Then for v € Pathflﬁ‘in(so), (a, ) € Steps(last(y)), o = v 25 s.
Since |y| = n, v € cutd(n) and since p, Cg u!, by TH2, there exists v/ € D,, such
that H(v,~") and by IH3 no other path is related to 7/ or v. We now define D,, 1
by considering transition last(7) L, 5. We need to consider four cases (we consider
just one here).

Case (i): Let leaf(j) denote the leaf vertices of level-1 vertex j. Suppose a €
Uicteaf (j)Acti- Notice that for process j to send a bmp request to one of its leaves (k
say) it must have received a bmp request from its inner vertex and all its other leaves.
This would imply, however, that A is not first-full with respect to j. Therefore,
process j cannot send a bmp request to any of its leaves and so none of the leaves
can reach a contention state with j. Thus, we only need consider non-probabilistic
stutter actions w.r.t. APx i.e. for which pu(s) =1 and L(last(y)) N APx = L(s) N
APx. Thus, since we also have that v is stuttering equivalent to v w.r.t. AP*, o
and ~/ are stuttering equivalent w.r.t. APx. Let o/ = a.

We let D, ;1 be the set of finite paths, {a/|a € cut(n), and o is derived from
a as described above} and extend A’ by these paths. By the definition of this set,
IH1, TH2 and ITH3 are satisfied. We can show that the conditions of Lemma 2.5 are

satisfied by A and A’ and it follows that A ~ A’ w.r.t. AP) P O
Clip;(G)

5.4 Proof of Theorem 5.1

Proof. From Lemma 5.4, I" is reducible to ® under the clipping reductions. Con-
dition (i) of Definition 3.5 follows by definition of the action sets, variable sets and
variable domains for Mp. From Lemmas 5.5, 5.6 and 5.7, it follows that condition
(ii) of Definition 3.5 is satisfied for Mp. Thus, Mr is deterministically degenerative
with base ® under Clipy. By Lemma 5.2, Property 1 holds for all models over stars.
Since Property 1 is unindexed with appropriately defined propositions, by Theorem
3.6, it is satisfied by Mg for all G € I a

6 Related Work

Certain classes of probabilistic systems have been verified for arbitrary number of
processes [17] e.g. Arons et al. [3] present two methods for verifying liveness prop-
erties with probability 1 over parameterised probabilistic systems by converting the
probabilistic system to an ‘equivalent’ non-deterministic one. Duflot et. al. [10]
consider the convergence of self-stabilising randomised protocols for a ring topology.
They show that given a non-increasing measure on the state space of the model,
if there exists a ‘distance’ measure between states and an ordering relation on the
distance metric that satisfies certain conditions then it can be deduced that the pro-
tocol will converge to some legitimate set of states with probability 1. The methods
described above have only been applied to verification of qualitative properties i.e.
properties that hold with probability 0 or 1. Parameterised model checking of quan-
titative properties has not been widely addressed, although some manual proofs of
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quantitative properties have been devised. For example, Aspnes and Herlihy [4], by
appealing to results from random walk theory, give a lower bound for the probability
of all processes returning heads in a weak shared coin protocol.

Much work has been carried out on analysing the TIP (see for example, [15]).
We mention [1] since it describes an inductive proof for a protocol that is similar to
the TIP. The authors observe that only a leaf can initially transmit an “up” (bmp)
message and it will then move to a “dead” state after which the protocol behaves
as if started in the graph with that leaf deleted. They note that, continuing in
this manner, eventually a graph with only one or two vertices will be reached. The
protocol is not specified formally, whereas we use state-based verification. Our work
extends that described above as it allows us to formally reason about quantitative
properties over parameterised systems.

7 Conclusion and Future Work

We have described an inductive proof technique for a class of randomised distributed
systems (modelled as MDPs) described as degenerative. The technique is an induc-
tion schema over the underlying communication topology, represented by a set of
graphs. The key idea is that topologies are reduced such that every adversary of
a model of a system over some graph is stuttering equivalent to an adversary of a
model of a system over a reduced graph. Reduction involves the removal of one or
more vertices from the communication graph. The base case(s) are those graphs
that are not reduced. We applied this technique to the IEEE 1394 (Firewire) tree
identify protocol showing that a class of QLTL, y properties that are true of the
systems with a star topology will hold for a system with any acyclic topology. In
this case, reduction is by removal of the leaf vertices of level-1 vertices.

Our technique is only applicable to degenerative protocols. These are, however,
widespread in distributed systems e.g gossip-style multicast protocols such as [8], the
weak shared coin protocol of Aspnes and Herlihy [4], the Itai Rodeh leader election
protocol for rings [12]. These systems present further challenges because the pro-
tocols degenerate probabilistically (whereas the TIP degenerates deterministically).
This necessitates extending our induction schema. This is work in progress.

References

[1] Angluin, D., Local and global properties in networks of processors (extended abstract), in: Proc. ToC’80
(1980), pp. 82-93.

[2] Apt, K. R. and D. C. Kozen, Limits for automatic verification of finite-state concurrent systems,
Information Processing Letters 22 (1986), pp. 307-309.

[3] Arons, T., A. Pnueli and L. D. Zuck, Parameterized verification by probabilistic abstraction., in:
FoSSaCS’03, LNCS 2620 (2003), pp. 87-102.

[4] Aspnes, J. and M. Herlihy, Fast randomized consensus using shared memory, Journal of Algorithms 11
(1990), pp. 441-461.

[5] Baier, M., C. Grosser and M. a. Ciesinski, Partial order reduction for probabilistic systems, in:
Proceedings of the 1st International Conference on quantitative and qualitative evaluation of systems
(QEST’04) (2004), pp. 230-239.

[6] Calder, M. and A. Miller, Using SPIN to analyse the tree identification phase of the IEEE 1894 high
performance serial bus (Fire Wire) protocol, in: Maharaj et al. [15], pp. 247-266.

15



GRAHAM, MILLER AND CALDER

[7] Clarke, E. M., O. Grumberg and D. Peled, “Model Checking,” The MIT Press, Cambridge,
Masachusetts, 1999.

[8] Demers, A., D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart and
D. Terry, Epidemic algorithms for replicated database maintenance, in: Proc. PoDC’87 (1987), pp.
1-12.

[9] Donaldson, A. F. and A. Miller, Symmetry reduction for probabilistic model checking using generic
representatives., in: ATVA 2006, 2006, pp. 9-23.

[10] Duflot, M., L. Fribourg and C. Picaronny, Randomized finite-state distributed algorithms as Markov
chains, in: J. L. Welch, editor, Distributed algorithms, LNCS 2180, 2001, pp. 240—254.

[11] IEEE 1394-1995, “IEEE Standard for a High Performance Serial Bus Std 1394-1995,” Institute of
Electrical and Electronic Engineers (1995).

[12] Ttai, A. and M. Rodeh, Symmetry breaking in distributed networks, Information and Computation 88
(1990), pp. 60-87.

[13] Kemeny, J. G., J. L. Snell and A. W. Knapp, “Denumerable Markov Chains,” Graduate Texts in
Mathematics 40, Springer-Verlag, New York, 1976, second edition.

[14] Kwiatkowska, M., G. Norman and D. Parker, Probabilistic symbolic model checking with PRISM: A
hybrid approach, International Journal on Software Tools for Technology Transfer (STTT) 6 (2004),
pp. 128-142.

[15] Maharaj, S., J. Romijn and C. Shankland, editors, “Formal specification of the IEEE 1394 Tree identify
protocol,” Formal Aspects of Computing 14(3), Springer-Verlag, 2003.

[16] Miller, A. and M. Calder, Two wverification results for networks of arbitrary size, Technical Report
TR2006-220, University of Glasgow,Department of Computing Science (2006).

[17] Norman, G., Analyzing randomized distributed algorithms, in: Validation of Stochastic Systems: A
Guide to Current Research, LNCS (Tutorial Volume) 2925 (2004), pp. 384-418.

[18] Puterman, M. L., “Markov Decision Processes: Discrete Stochastic Dynamic Programming,” John Wiley
and Sons, New York, 1994, first edition.

[19] Rutten, J., M. Kwiatkowska, G. Norman and D. Parker, “Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems,” CRM Monograph Series 23, American Mathematical Society,
Providence, Rhode Island, 2004.

[20] Segala, R., “Modeling and Verification of Randomized Distributed Real-Time Systems,” Ph.D. thesis,
MIT, Dept. of Electrical Engineering and Computer Science (1995).

[21] Stoelinga, M., Fun with firewire: A comparative study of formal verification methods applied to the
IEEE 1394 root contention protocol., Formal Asp. Comput. 14 (2003), pp. 328-337.

[22] Vardi, M. Y., Automatic verification of probabilistic concurrent finite-state programs, in: Proceedings
of FoCs’85, 1985, pp. 327-338.

16



