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Tightly coupled verification of pervasive systems

Muffy Calder, Phil Gray and Chris Unsworth
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Abstract: We consider the problem of verifying context-aware, pervasive, inter-
active systems when the interaction involves both system configuration and system
use. Verification of configurable systems is more tightly coupled to design when the
verification process involves reasoning about configurable formal models. The ap-
proach is illustrated with a case study: using the model checker SPIN [Hol03] and a
SAT solver [ES03] to reason about a configurable model of an activity monitor from
the MATCH homecare infrastructure [MG09]. Parts of the models are generated
automatically from actual log files.
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1 Introduction

Effective verification of interactive systems has been a significant challenge for both the verifi-
cation and user interface communities for at least the last two decades [CH97, CRB07]. More
recently, the advent of context-aware, pervasive, interactive systems raises the stakes: can we
formulate effective verification techniques and strategies to bring reasoning into the design pro-
cesses of these volatile systems? In particular, we are concerned with systems where the interac-
tion involves both system configuration and system use.

Pervasive systems are characterised by their ability to sense their physical environment and a
use of data so gathered both as part of the core application functionality and as a way of mod-
ifying system behaviour to reflect changes in the context of use. Amongst the challenges of
designing, building and operating such systems is the volatility that this sensor-based context
dependency introduces. The set of sensors may themselves come and go and change their be-
haviour depending upon environmental conditions. Context changes may be difficult to model
and predict. In addition, pervasive applications often operate in situations that require practi-
cally unpredictable changes to the application functionality itself. For example, a home care
system, providing sensor-based monitoring of the cared person’s activities and state, may have
to be reconfigured to take into account changes in the person’s medical condition and their home
situation, and consequent changes to the services and sensors needed. For these reasons, system
configuration must be treated as an ongoing process throughout the lifetime of a system. It must
be modelled and reasoned about in the same way that one would model and reason about normal
user interaction with the system.

At a high level of abstraction these context-aware, interactive systems may be regarded as a
number of concurrent processes:

Agents||Sensors||Out puts||Monitors||Con f iguration||System
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where

• Agents are (usually, but not exclusively human) users, there may be several types and
(possibly overlapping) instances of user, e.g. patient, carer, social worker, etc.

• Sensors and Out puts quantify physical world data (e.g. thermometer, pressure pad, web-
cam), or are outputs devices (e.g. speaker, television screen),

• Monitors are high level abstractions of a physical state (e.g. encapsulating predicates about
who is in a room, whether or not is it cold),

• Con f igurations are sets of rules, or actual parameters, determining how the system varies
according to user preferences and needs,

• the System is the underlying computational infrastructure.

While we might traditionally consider the composition (Agents||Sensors||Out puts||Monitors) as
the context, i.e. together they reflect a temporal physical context, the Con f iguration is also a
context, in that it is also temporal and affects system behaviour.

In this paper we consider the modelling and verification process for configurable, interactive,
context-aware systems in general, and a case study of an event driven system. We begin with
a general purpose model of functional behaviour and for this we propose that a (concurrent)
process based specification language, temporal logics and reasoning by model checking is a
good paradigm, especially when context changes are non-deterministic. In the case study here
we develop a general purpose model in Promela, for checking with the SPIN model checker
[Hol03]. We then refine the verification problem and develop a specialised model for checking
redundacies, using a SAT solver [ES03]. A distinctive feature of this work is parts of the models
are generated automatically from actual log files.

In the next section we outline our overall vision for the modelling and verification process.
The remainder of the paper is an exploration of one iteration of that process, for a case study.
Section 3 introduces the MATCH case study and in section 4 we give an outline of our Promela
model. Properties for verification are given in Section 5, where we give an overview of checking
for redundant rules in the Promela model. In Section 6 we give an outline of the SAT model
for redundancy checking and results of online verification. In Section 7 we consider the more
general problem of overlapping left and/or right hand sides of rules, and when these should be
interpreted as undesirable. Discussion follows in Section 8 and an overview of related work
follows. Conclusions and future work are in Section 10.

2 Modelling and verification process

Traditionally, modelling is a manual process with the starting point of a system specification, or
a set of requirements, or, when the system is operational, observations and data. One notable
exception is [HS99], where the Promela model is extracted mechanically from call processing
software code: a control-flow skeleton is created using a simple parser, and this skeleton is
then populated with all message-passing operations from the original code. Our vision for the
modelling and verification process is similar in that we aim to more tightly couple the model
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and the system, and indeed the results of the verification. Crucial to the process is the notion
of configuration and the extraction from the system of configuration details, often stored as log
files.

Our vision is illustrated in Figure 1, where ellipses denote agents and rectangles objects. The
key feature of our vision is that modelling is tightly coupled with system development and con-
figuration. This is not a waterfall model: activities are concurrent and moreover, while four agent
roles are indicated, they may be overlapping or conflated. Briefly, activities are as follows. The
end users configure the system, and when configured, (possibly different) users interact with the
system, as system and users require, according to the context. The configuration is not static, but
may be changed repeatedly. Log files are a representation of the configuration process and are
generated by a live system. The formal model depends upon what kind of analysis is required
(e.g. functional behaviour, security, performance, etc.) and it is also configured, according to the
log files. The model is analysed; the verification results may inform understandings of the end
user, the configurer, the designer, and the modeller, though in different ways. For example, the
user develops a better cognitive model, the configurer understands how to improve his/her rules,
the designer develops a better interface, and the modeller gains insight in to how to modify the
model so that verification is more efficient. Note, this is just an example. There may be multiple
models and a single agent may have multiple roles as configurer/modeller/user/designer. Verifi-
cation may be performed off-line or on-line, each of which has its merits. On-line verification
can inform users in real-time. On the other hand, off-line verification allows more general results
e.g. for all configurations with a certain property, a system proprety holds. This kind of veri-
fication can then be used by the designer to constrain allowable interactions or configurations.
Finally, recall that agents may not be human at all, for example, the system might autonomously
configure itself, or the modeller may be another software process.

Properties may support, for example,

• end user configurations, e.g. what will happen if I add this rule? or how can I notify/detect
x in the event of y?

• modalities, e.g. are there multiple speech outputs? or are there multiple speech inputs only
when there are multiple users?

• hypotheses about resources, e.g. what happens if a webcam doesn’t work?

In this paper we report on one iteration of the modelling and verification cycle, starting with
log files extracted from actual system trials of a prototype system (deployed in the UK and in
France).

3 MATCH System

Activity awareness systems constitute an increasingly popular category of pervasive application
[MRM09]. Such systems allow groups of users to share information about their current status or
recent activities. They have a variety of purposes, ranging from supporting collaborative work
through informal social relationships. We have chosen to investigate our approach to verification
using one such activity awareness system, the MATCH Activity Monitor (hereafter, MAM), an

3 / 16 Volume 22 (2009)



Tightly coupled verification of pervasive systems

Figure 1: Tightly coupled verification: configurable systems and configurable models

Figure 2: MAM System Architecture

experimental platform designed to explore the challenges of the configuration of activity aware-
ness use to support of home-care [MG09].

A MAM system consists of one or more hubs (UMPC-based subsystems supporting a rich set
of inputs and message types) each of which is connected to a set of satellites (web-based clients
offering a limited set of inputs and message types) and other hubs, illustrated via the architecture
diagram in Figure 2. Typically, a hub will reside in the home of a person requiring care while the
satellites are used by carers, clinicians, family and friends.

Each hub, placed in the home of a cared person, can communicate with a set of web-based
clients and with other hubs. A MAM hub supports a set of up to eight monitoring tasks, each
of which involves the generation of messages based on user-generated or sensor-generated input
indicating an event or activity. Monitoring tasks are defined by rules that specify an event or
activity to be reported plus the destination and form of the reporting message. For example, a
rule might state that use of Tony’s coffee cup (captured via an appropriate sensor1) should be
reported to me (i.e., the hub in my home) via a speech message. Currently, MAM supports a
variety of data sources, message destinations and message modalities (e.g., speech, graphics,

1 MAM uses a JAKE sensor pack for simple movement sensing, while the JAKEs more powerful sibling, the
SHAKE, provides richer sensing capabilities and tactile feedback [JAK, SHA].
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touch, etc.). A full list is given in Figure 3.
Each MAM hub can support up to eight monitoring tasks, each of which is specified explicitly

as a monitoring rule2. In addition to simple <input source> <destination, modality> rules,
it is also possible to specify combinations of inputs (e.g., a button press or an appointment) or
message modalities (e.g., speech and graphics). Rules may also have a guard condition; currently
MAM only supports a location condition such that the message is sent if someone is sensed near
a specified location.

A user may also choose a system-generated recommendation of the input, destination or
modality. The recommendation can be used in an automatic or semi-automatic mode. In the
former case, the system will choose the input, destination or modality most commonly associ-
ated with the other parameters, based on a history of logged configurations. In the latter case, the
system will offer a ranked list of choices, based again on frequency of association, from which
the user must select one.

A user interface is supplied for specifying monitoring task rules. If a user is not interacting
with the MAM Hub, it operates a digital photo frame application that displays the user’s photos
in order to make it a non-intrusive part of the user’s home. To configure the hub, a user touches
the screen and the photo application fades away, replaced by the MAM application, from which
the configuration screen is accessible. Figure 4 shows a typical rule configuration. Note the eight
tabs to the left, one for each rule; rule 1 is selected. The rule configuration view is divided into a
left-hand panel for specifying input and a right-hand panel for destination and modality. In this
case the blue and red buttons on my hub (left-hand panel) have been selected to create messages
to be sent to Lucy’s machine(s) (right-hand panel). The large vertical green button on the right
of the panel is the on-off toggle switch for the rule; when green, the rule is active and when red
the rule is inactive.

Even with the rather limited set of inputs, destinations and message types, the configuration
space (i.e., number of different possible rules) is rather large (1.07E+301). In addition, not all
configurations are desirable. It is possible to create redundant rules, which can be a problem
given the restriction on the number of rules allowed. Also, some configurations may cause
difficulties for the user: two speech messages delivered at the same time will be impossible to
understand. These configuration challenges provide a motivation for verification that can be
used both to guide a designer (in exploring the design of the configuration options offered to
a user) and to help an end user (in creating a set of rules that both meet their needs and are
understandable and maintainable).

4 General model

From a modelling perspective, the MAM system is an event driven rule-based pervasive system.
Events include (but are not restricted to) direct user interaction with the hub, such as pushing
buttons, and indirect user interaction such as movement captured by a webcam or external actions
such as messages received from other users. Rules dictate how the system will react to events.
We note that from a modelling perspective, there is no distinction between a user interaction and

2 This limitation, amongst others, is intentional and based on empirical evidence, to limit the complexity of the
application.
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Input Sources
Calendar An online calendar scheduling system reports upcoming appointments
Accelerometer Small custom-built Bluetooth accelerometers can be placed around the

home (e.g., on a phone, teacup, or door) or on a person, in order to
detect movement-signalled activity of the instrumented thing/person.
This is performed using JAKE and SHAKE devices [WMH07].

Webcam movement Fixed and wireless webcams can be used to provide motion detection.
events This allows for room occupancy to be detected and reported.
User-generated text Users can key in their current activity, mood or needs explicitly using

an on-screen keyboard.
Abstract Buttons A user may select an abstract button to which no particular meaning

has been assigned in advance by the developers of the system (i.e. the
red square). The user may negotiate with other people to assign a
particular meaning to these buttons. This concept is derived from
MarkerClock [RM07] that uses a similar abstract marker feature.

Message Destinations
Local Hub Messages are directed to one of the output devices associated with the

local machine.
Registered Users Messages are directed to specified users; the message will be sent to

their hub, if they have one, or to their registered web-based client(s).
Modalities
Graphical Notice of an activity is briefly overlaid on top of the hub photoframe;

an icon indicates that there is an unread message waiting. Additionally,
the message will be added to a scrollable list of messages that is
permanently available.

Speech The content of the message is rendered into VoiceXML and played
through any of the devices speakers.

Non-speech audio A selection of auditory alerts is provided, such as nature sounds as
well as more familiar alert noises. Each set of sounds contains multiple
.wav files, each of which is mapped to a particular type of alert.
As with speech, this can be directed to any distinct speaker.

Tactile The SHAKE device (but not the JAKE) is equipped with an inbuilt
vibrotactile actuator that can be activated. Vibration profiles (i.e.
vibrate fast-slow-fast. slow-fast-slow) can be used to distinguish
between different types of activity.

Email Activity messages can be delivered to one or more email addresses
that the user can specify.

Figure 3: MAM Activity Monitoring Task Parameters
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Figure 4: Sample task configuration screen

change of context. While there is intent associated with the former, from a modelling point of
view both are simply aspects of state that may be captured by propositions (whose validity may
be temporal).

Promela [Hol03] is a high-level, state-based, language for modelling communicating, concur-
rent processes. It is an imperative, C-like language with additional constructs for non-determinism,
asynchronous and rendezvous (synchronizing) communication, dynamic process creation, and
mobile connections, i.e. communication channels can be passed along other communication
channels. The language is very expressive, and has intuitive Kripke structure semantics.

Our model is centred around a single hub that can take input from one or more satellites or
additional hubs. As a result we have a single rule set, which in this case is static. However, it
would be a simple matter to extend the model to include multiple hubs and rule sets and dynamic
rule sets.

As we are considering a configurable system, the model is designed to reflect this. The system
behaviour is separated from the system configuration. System behaviour refers to the actions of
the available input and output devices. System configuration refers to the current active rule set.

4.1 System

Each input device is represented by a global variable and a process. For example, a button press
is represented by a single bit variable and a process that can arbitrarily assign the values 0 or 1.

Movement sensors such as a jake, shake or webcam, are represented as an integer variable.
The movement process will arbitrarily assign a values 0-3, where 0 represents no movement and
1,2 and 3 represent low, medium and high levels of movement respectively. Text based inputs,
such as messages from other hubs, are represented as an mtype variable. The associated process
will arbitrarily assign values representing one of the users in the system or a null value. These
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processes act as sources of events for the system.
Output devices act as sinks within the system. In the model they are represented as global

variables or channels, upon which messages are placed. The associated process for an output
device is called when a value is assigned to the variable/posted in the channel. The process then
resets the variable or reads the message off the channel.

In future versions of the model it may be useful to include users and/or multiple hubs and rule
sets in the system. In this case, the input variables will be directly modified by output processes
from other hubs and/or as a direct result of a user action.

4.2 Rules

Rules are taken directly from a MAM system via the log. An excerpt from a log file can be seen
in Figure 5, included as an illustration of the content of a log file (and not to be read in detail!).

uk.org.match_proj.osgi.EvalFunc.ManualEachComponentInputSelectionEvaluationFunction(selected=["Personal Messages"]){}
uk.org.match_proj.osgi.EvalFunc.UnionOutputApprovalEvaluationFunction()
{uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["GUI","Twitter"])
{}uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Doms","Lionel","Anne"]){}}
uk.org.match_proj.osgi.EvalFunc.ManualGroupedPersonSelectionEvaluationFunction(selected=["Everyone"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["GUI"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Caroline","Lionel","Anne"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["Speech"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentInputSelectionEvaluationFunction(selected=["Jake Movement"]){}
uk.org.match_proj.osgi.EvalFunc.UnionOutputApprovalEvaluationFunction()
{uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Caroline","Lionel","Anne"])
{}uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["GUI","Twitter"]){}}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentInputSelectionEvaluationFunction(selected=["Work Messages"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Caroline","Anne"]){}

Figure 5: Excerpt from a MAM log file.

In the MAM system, rules are defined as evaluation functions that return input or output de-
vices. Each rule consists of an input and an output evaluation function. The combination of
function name and the list of parameters determine how they are to act. Both input and output
functions can be composed. The input composition operator acts as a disjunction, meaning that
an event will be triggered if either evaluation function is true. However, the output composition
function acts as a conjunction, meaning that if the union output function is triggered then the
result of both evaluation functions will be used.

The evaluation function rule set is then expressed as an informal natural language rule set. An
example is shown in Figure 6. While this step is not strictly necessary, it can be helpful to have
the rules expressed in a more readable format.

The rules are then expressed as Promela statements. Each rule is expressed as a conditional
statement, consisting of a guard and a compound statement. Therefore, in Promela we represent
a rule as a single statement C→ A, where C is a guard statement made up of a disjunction of
statements representing the condition of the rule and A is compound statement consisting of a
sequence of statements representing the action. For example, the rule “when the red console
button is pressed play the doorbell earcon3 on the hub speaker” maps to the Promela statement
“(this.red > 0)→ this.speaker!earcon doorbell”. Rules can also be context sensitive. For ex-
ample, “If the red button is pressed then, if the webcam has recently detected movement inform

3 An earcon is a short meaningful audio segment.
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If the red or blue buttons are pressed then play the rocket earcon
If my webcam detects movement then display a pop-up message on my screen

and display a message on the screen list
If I receive a message from Bill or then inform me using synthesised speech
Bill presses his red button
If I receive a message from Bill then send a vibration message via the shake
If the red button is pressed then send a message to Bill

and inform me using synthesised speech
If the shake senses movement then send a vibration message via the shake
If Bill presses his red button then inform me using synthesised speech
If the yellow button is pressed then send a vibration message via the shake

Figure 6: Example rule set.

me with synthesised speech else send me an e-mail”. In this case the definition of “recently” is a
system parameter.

An example of a Promela representation of a rule set can be seen in Figure 7. In this example
there are 2 hubs, one that belongs to the user and one that belongs to Bill. In the rule set the
user’s hub is referred to as this and Bill’s hub is Billh. This is because in the model a hub is
represented by a bespoke variable type.

proctype rules()
{
do

:: (this.red == 1) || (this.blue == 1) -> this.audio_out!ec_rocket;
:: (this.webcam > 2) -> this.screen_popup = me; this.screen_list = me;
:: (this.text_in == Bill || Billh.red == 1) -> this.audio_out!speech;
:: (this.text_in == Bill) -> this.shake_out = 1;
:: (this.red > 0) -> Billh.text_in = me; this.audio_out!speech;
:: (this.shake_in_m > 1) -> this.shake_out = 1;
:: (Billh.red > 0) -> this.audio_out = speech;
:: (this.yellow > 0) -> this.shake_out = 1;

od
}

Figure 7: Promela representation of example rule set.

5 Properties

We now explore a number of issues in the MAM system that may benefit from formal verifica-
tion.

5.1 Redundant rule detection

As the rules may be added by non-expert users, some may have overlapping or repeated def-
initions. It would be advantageous if the system could detect such redundant rules to be able
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to streamline the system. This could provide feedback to the user and/or allow the system to
remove redundant rules from the active rule set.

5.2 Modalities

The input and output devices can be classified by their modalities. For example, earcons and
speech are sound, screen pop-ups and text messages are visual and vibration alerts are tactile.
The acceptability of a system for a user may depend on the correct use of the different modalities.
For example, multiple simultaneous audio outputs may confuse a user and result in the loss of
messages. Visual output devices should be avoided for severely visually impaired users, however,
it may still be appropriate to use them to notify carers. Overuse of tactile devices may result in
the user being unable to differentiate between different types of messages.

5.3 Priorities

Currently MAM does not hold information on the relative priorities of rules/messages. However,
a user is likely to be more concerned with certain messages than others. It would therefore be
useful to check that the output from a given rule has a greater chance of being received by the
appropriate target. For example, high priority messages should be distinct from lower priority
messages. If a high priority message uses an earcon, then no other message should use a similar
sounding earcon.

5.4 Verification results

We now expand on the redundant rule detection problem using the model checker SPIN, which
verifies (or not) properties expressed in the logic LTL (linear temporal logic).

An LTL property can be derived easily from the Promela representation of a rule. In the
general form, for a rule r of form C→ A, where C is a guard and A is a sequence of statements,
the associated property is informally described by: the action will always eventually occur after
the condition becomes true (recall, conditions are disjunctions and actions are conjunctions.
More formally, we define the mapping as f (r) = �( f (C)→ ♦ f (A)), where f () maps guards
and assignments to propositions in the obvious way.

For example, the rule (this.yellow > 0)−> this.shake out = 1 would map to the LTL property
�((this.yellow > 0)→ ♦(this.shake out = 1)).

We define f (r) as the property that the action associated with rule r will always eventually
occur after the condition of r becomes true. A rule r in the rule set R is redundant if for model
M (R|r), which represents R without r, f (r) |= M (R|r). A rule set R contains no redundant rules
if ∀r f (r) 6|= M (R|r).

Redundancy checking was implemented with a realistic rule set (shown in Figure 8) taken from
an actual log file from the MAM system. Each rule was tested in-turn for redundancy. Rule r7
was found to be redundant. Verification times varied from around 12 minutes to 34 minutes. The
search depth was between 4 and 6 million, and the number of states explored was between 65 and
100 million. Clearly if this is to be used for real-time verification then significant improvements
need to be made in the model efficiency and/or the verification techniques employed. However,
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these results do serve as a proof of concept.

r1 ((this.red == 1)||(this.blue == 1) → this.audio out = ec rocket
||(this.yellow == 1))

r2 (this.webcam > 2) → this.screen popup = me;
this.screen list = me

r3 (this.text in == Bill)||(Billh.red == 1) → this.audio out = speech;
||(Billh.blue == 1)||(Billh.yellow == 1) this.screen list = me

r4 (this.text in == Bill) → this.shake out = 1
r5 (this.red > 0) → Billh.text in = me
r6 (this.shake in m > 1) → this.shake out = 1
r7 (Billh.red > 0) → this.audio out = speech
r8 (this.yellow > 0) → this.shake out = 1

Figure 8: Rule set used in experiments.

6 Specialised model

From Section 5.4 it can be seen that our current general Promela model of the MAM system is not
sufficiently efficient to detect redundancy fast enough to provide feedback to a system configurer
in real-time. In this section we show how redundancy can be modelled and solved efficiently
with a specialised SAT solver [ES03]. SAT solvers check satisfiability of propositional formulae
(usually written in disjunctive normal form). Though in general NP-complete, SAT solvers are
highly efficient for many practical applications. The SAT model developed here uses literals to
represent input devices, output devices and the rules.

6.1 Literals - inputs and outputs

Each simple input type is represented by a single literal. For example, a literal represents a
button press or receiving a message from someone. Similarly, simple output types are also
represented as literals. More complex input functions such as movement, which has low, medium
and high inputs, can be represented as one literal per input value. A clause then needs to be
added to ensure the input values are consistent. For example, if the literal for a movement
level high is true, then both medium and low should also be true. To ensure this, the clauses
low∨¬medium and medium∨¬high are added, which will need to be done for each movement
detection device. However, if only one rule takes input from a movement detection device,
then the input can be treated as a simple input device and the clause can be omitted. Classes
of output, such as the MAM auditory icon class “nature”, which consists of the auditory icons
{wave, forest, wind}, can be modelled in one of two ways. If none of the individual auditory
icons from this group are used as output for other rules, then the group can be represented as a
single literal. Otherwise, each of the class members will be represented as a single literal and
there is an additional literal for the class. For example, the class “nature” will be represented by
wave∨ f orest ∨wind∨¬nature
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1. ∀r ∈ R ∀c ∈ r ri∨¬c
2. ∀r ∈ R 1 c1∨ c2∨·· ·∨ cn∨¬ri

3. ∀r ∈ R ∀a ∈ r ¬ri∨a
4. ∀a ∈ R 1 r1∨ r2∨·· ·∨ rn∨¬ai

Figure 9: Clauses required to represent a given rule set R

6.2 Clauses - rules

Each rule is represented by a literal ri and a set of clauses as described in Figure 9. There are
four types of clauses associated with a rule, as follows. The literal ri being assigned the value
true indicates that rule i has been triggered. A clause ri ∨¬c is added for each condition c that
triggers rule i. To ensure ri is not true if none of its conditions are met, the following clause is
added c1∨c2∨·· ·∨cn∨¬ri. If rule i is triggered then the appropriate outputs must be set to true,
thus the clause ¬ri ∨ a is added for each action a associated with rule i. Finally, to ensure that
actions are only taken if triggered by a rule, the clause r1∨ r2∨ ·· ·∨ rn∨¬ai is added, where r1
to rn are all the rules that can trigger action ai.

6.3 Rule redundancy

To use the above model to detect redundant rules, we need to solve the model once for each
atomic condition in the rule, to check if atomic condition c from rule ri is redundant. We add
a clause for each input literal, setting the literal related to c to true and all the rest to false.
All literals that represent the actions from rule ri are set to true. All clauses related to the rule
being checked are removed. If the resultant model is satisfiable then condition c from rule ri is
redundant, if all conditions associated with rule ri are redundant, then ri is redundant.

6.4 Implementation and complexity

The above model was implemented and solved with the same rule set used in Section 5.4. A
Java program was written to read the rules from a file in the MAM evaluation function format
and generate the SAT model. The SAT model was then solved using the open-source SAT solver
miniSAT [ES03]. The problem had 23 literals and around 45 clauses4, each instance of the
problem required less than a thousandth of a second to solve. All instances were solved with
propagation alone, no search was required.

This model was then used in conjunction with a Java program, which reads a rule set directly
from a MAM system log file, generates the models and checks the rule set for redundancy. Using
the actual hardware that MAM runs on, reading in and checking a rule set required approximately
5 seconds. The majority of this time was taken to read and parse the log file. Each individual SAT
model required approximately 15 thousandths of a second to solve. It is clear that the specialised
SAT model offers improvement of 5−6 orders of magnitude for redundancy checking over the
general Promela model.

4 The number of clauses is dependant on the rule being checked.
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7 Overlapping rules

We have defined a rule to be redundant if it can be removed from a system without affecting how
the system operates. However, a rule may also be redundant if it serves no useful purpose. For
example, a rule set may include the two rules “If I receive a message from Bill then play a bird
noise earcon” and “If I receive a message from Bill then play a doorbell earcon”. At a system
level these rules are different. However, they both play a sound when a message is received from
Bill.

One could interpret this as a lack of confluence, i.e. we have overlapping left hand sides of
rules and divergent right hand sides. Rules can also overlap in more subtle ways (e.g. a form of
superposition). For example, a rule set may include the two rules “If the red or yellow buttons are
pressed play the doorbell earcon and send a text message to Bill” and “If the red or blue buttons
are pressed play the doorbell earcon and inform me using synthesised speech”. Both rules cause
the doorbell earcon to be played, when one condition is satisfied.

While these are only simple examples, they raise the question of what exactly we should be
looking for when detecting redundant rules and what is the underlying theory of modalities?
Moreover, to answer these question we need to know why we are interested in this problem. For
example, is it a significant issue in practice?

The answer to the latter appears to be positive. While conducting user evaluation studies, the
developers of the MAM system have found that many test subjects indicated they have trouble
understanding complex rules and only want to define simple rules. This means there is significant
scope for overlapping conditions and actions. Therefore, it would be advantageous for the system
to offer assistance. This could be in the form of a message informing the user that a rule they
entered is redundant, or makes some other rule redundant, or is overlapping with another rule.
Alternately, the system may simply detect such rules and only partially implement them. In
any case, further study is need to understand user intentions and their relation to modalities and
context, and also how best to feedback information from any analysis.

8 Discussion

A distinctive feature of this work is we are trying to more tightly couple design with modelling,
closing the loop between design, use, configuration, modelling and verification. Further, we deal
with systems as actually deployed, rather than an ideal yet to be implemented.

A long term goal is to automate many of these processes and so in this case study, where
possible, we have developed scripts to process inputs automatically e.g. log files.

The general model is based around the central concept of event – the MAM system is after
all event-driven. It captures a wide range of functional, temporal behaviour. However, in the
context of checking for redundancy within rules, complexity of the model became a concern,
especially if we aim for real-time model-checking in a live MAM. Furthermore, it is not clear
that given the form of rules in this application, analysis of the rules requires a temporal logic. To
a great extent, in this application, one could argue that the state of a sensor encapsulates a set of
computational paths (or at least what is required to know them) and so we do not need to study
the paths themselves. So, a SAT model is appropriate for this type of verification. Furthermore,
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the verification then became so efficient it could be applied directly within the MAM, running in
real time on the same computational hardware.

While we have only investigated one of the properties we mentioned Section 5, redundancy,
how we detect and resolve redundancy depends also on our understanding of modalities, prior-
ities, and more generally, context. For example, a user may not care about overlapping earcons
unless one of them has been generated by a certain condition. For example, delivering messages
via the television and the beeper simultaneously may be acceptable, unless one of the messages
is considered significantly more urgent than the other, or has arisen because of an unsafe context.
The area of semantics and ontologies for modalities/context requires further investigation. Ac-
ceptability and usability of modalities may be regarded as an example of crossing the “semantic
rubicon”5 [KA02]. A contribution of our formal modelling and analysis to MAM design has
been to expose this crossing.

9 Related Work

Much formal analysis of pervasive systems is focussed on techniques for requirements involv-
ing location and resources, within a waterfall framework. For example, [CD09] employs the
Ambient calculus for requirements and [CE07] employs a constraint-based modelling style and
temporal logic properties. Some work has been done on better integration of formal analysis
techniques within the context of interactive system interfaces (e.g. [CH08]), but there is little
work on more tightly coupled models and analysis. One exception is [RBCB08], where a model
of salience and cognitive load is developed and a usability property is considered. The model is
expressed in a higher order logic, and the property is expressed in LTL. While our paradigm is
different, the authors recognise they are engaged in a cyclic process. In some cases, their veri-
fication revealed inconsistencies between experimental behaviour and the formal model, which
led them to suggest refinements to the rules and also new studies of behaviour. Finally, there
is ongoing work to use policy conflict handling mechanisms embedded in telecommunications
systems in homecare applications [WT08]. We believe our approach can provide a more generic
framework for such a conflict management service.

10 Conclusions and future work

We have considered the problem of verifying context-aware, pervasive, interactive systems.
These kinds of systems present numerous challenges for verification: context-changes may be
difficult to model and predict and in addition, such systems often operate in situations that re-
quire practically unpredictable changes to the application functionality itself. We have outlined
an approach to verification that makes explicit two different types of interaction: system configu-
ration and system use. Our long term goal is to more tightly couple reasoning about configurable
systems by configuring models, and closing the loop between design, use, configuration, mod-
elling and verification. In particular, we are concerned with feeding back results of verification
to users, designers, configurers, and modellers.

5 the division between system and user for high level decision-making or physical-world semantics processing.
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This paper reports on preliminary results from an example concerning an activity monitor from
the MATCH homecare system. We have developed an event based general model in Promela,
formulated and checked a number of properties in the model checker SPIN. We have concen-
trated on supporting end user configuration by checking for rule redundancy. Results from the
general model led us to develop a specialised model for use with a SAT solver, and using that
model we were able to verify an example set (taken from an actual log file), on the actual MAM,
in real time.

The case study illustrates a number of engineering and foundational challenges for our ap-
proach: we have not modelled an idealised system, but one that has been designed and engi-
neered in the context of specific practices and personal conventions. This presents non-trivial
challenges for any modelling process. The work is still preliminary, but our results demonstrate
proof of concept. A distinctive feature of the work is we generate automatically parts of the
model from actual log files.

Longer term, our plans for further future work include generating more parts of models au-
tomatically from log files, for a class of context aware systems, and incorporating aspects of
stochastic behaviour, performance, and real-time in the model and properties. We also plan to
further investigate semantic models of modalities and context and the best way to present and
use verification results, expecially in the context of human and non-human agents.
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[ES03] N. Eén, N. Sörensson. An Extensible SAT-solver. In Giunchiglia and Tacchella
(eds.), SAT. Volume 2919, pp. 502–518. Springer, 2003.

[Hol03] G. J. Holzmann. The SPIN model checker: primer and reference manual. Addison
Wesley, Boston, 2003.

[HS99] G. Holzmann, M. H. Smith. Software model checking - Extracting verification mod-
els from source code. In Proc. FORTE/PSTV ’99. Pp. 481–497. Kluwer, 1999.

[JAK] Jake Project.
http://code.google.com/p/jake-drivers/

[KA02] T. Kindberg, F. A. System software for ubiquituous computing. Pervasive comput-
ing, pp. 70–81, 2002.

[MG09] T. McBryan, P. Gray. User Configuration of Activity Awareness. Lecture Notes In
Computer Science 5518:748–751, 2009.
doi:dx.doi.org/10.1007/978-3-642-02481-8 113

[MRM09] P. Markopoulos, B. de Ruyter, W. E. Mackay. Awareness Systems: Advances in The-
ory, Methology and Design. Springer, 2009.
doi:10.1007/978-1-84882-477-5
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