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Abstract. Pervasive systems are often context-dependent, component
based systems in which components expose interfaces and offer one or
more services. These systems may evolve in unpredictable ways, of-
ten through component replacement. We present pervasive interface au-
tomata as a formalism for modelling components and their composi-
tion. Pervasive interface automata are based on the interface automata
of Henzinger et al [3], with several significant differences. We expand
their notion of input and output actions to combinations of input, out-
put actions, and callable methods and method calls. Whereas interface
automata have a refinement relation, we argue the crucial relation in
pervasive systems is component replacement, which must include consid-
eration of the services offered by a component and assumptions about
the environment. We illustrate pervasive interface automata and compo-
nent replacement with a small case study of a pervasive application for
sports predictions.

1 Introduction

Pervasive systems are often context-dependent, component based systems that
can evolve in unpredictable ways, through component addition (composition)
and replacement. But unpredictability can have detrimental consequences for
usability and for wide-spread adoption of systems: how can we make component
based evolution more predictable?

The question is difficult because components are often designed and imple-
mented incrementally by different development teams, or via end-user configura-
tions, or they are mashups (e.g. make your own Android application mashup[7]).
A traditional approach involving modelling and reasoning about full behavioural
specifications is unlikely to be plausible. Consequently, we focus on the interfaces
exposed by components and the services they offer. We define pervasive inter-
face automata as a formalism for modelling the interfaces exposed by components
and their composition. These automata are based on the interface automata of
Henzinger et al [3], but there are several significant differences.

First, we expand their notion of input and output actions to combinations
of input/output and calling and callable methods. We refer to the latter two
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as master and slave actions, respectively. When components are composed, they
synchronise on shared actions so that input/output and calling/called behaviour
assumptions are met. Informally, this means that input/output and master/slave
behaviours are (two-way) synchronised. We relax the synchronisation of compo-
nents to allow a component offering a master action to wait until the appropriate
slave action is offered. This allows both busy send and busy receive, where the
original interface automata only allows a component to wait to receive, and not
wait to send.

Second, we argue the crucial relation in pervasive systems is component re-
placement, which must include consideration of both services offered by a com-
ponent and assumptions about the environment, where the environment is a
composition of components. We include the environment because it may include
actions that affect the interface of the component under consideration; specifi-
cally, it can cause some actions to become hidden (internal) or some choices to
be removed.

As an example, consider a server component within a sports prediction ap-
plication. The application keeps track of fixtures and results (e.g. a football
league, or a tennis tournament) and allows users to make and share predictions
in advance of actual events. The standard server component offers a service to
add predictions and to get predictions. An online betting company might offer
an alternative component that offers a service to place a bet, in addition to the
previously mentioned services, the delivery of which relies on the availability of
services get data and add data supplied by the betting company’s online server
component. Under what circumstances can we replace the standard component
by the betting company’s component? The latter relies on services from the
company’s online server component, which we call environmental assumptions;
informally, we will allow replacement when environmental assumptions are met.

We introduce a linear temporal action logic to define service behaviour and
define the satisfaction of the formulae by a pervasive interface automaton under
assumptions about the environment. For a given environment, we can replace
one component by another, with respect to a service, when both components
satisfy the service in the environment. We judge the quality of a replacement
of one component by another by the number of services that it preserves and
any new services it may offer. We illustrate pervasive interface automata and
component replacement with a small case study of an application for sports
predictions, based on a real application.

In summary, the contributions of the paper are the following:

— definition of pervasive interface automata

— definition of action matching and algorithm for
composition of pervasive interface automata

— logical specification of services

— satisfaction relation of pervasive interaction automaton
and a service under environmental assumptions

— replacement relation between components, services
and environment assumptions



— application of pervasive interaction automata and replacement
relation to a case study involving sports predictions.

In the next section we give a brief overview of our case study, as motivation
for pervasive interface automata, which we define formally in Sect. 3. In Sect.
4 we discuss action matching and we define automata composition by way of
an algorithm. In Sect. 5 we introduce the concept of a service and define an
action based logic for defining service behaviour; in the following section, Sect.
6 we define the replacement of one component for another, with respect to an
environment and a set of services. Comparison of pervasive interface automata
with interface automata and other related work is in Sect. 7. Our conclusions
and directions for future work are in Sect. 8.

2 Case Study

We now present a case study which we use both as motivation and for expla-
nation. The case study is a pervasive application for sports prediction, written
within the Domino framework [2]. This application is mobile phone based and
allows a user to see a list of upcoming sports fixtures and make predictions about
the results. These predictions are then uploaded and stored on a remote server. A
prediction league graphical interface allows a user to download predictions from
multiple users (stored on a remote sever component) to compare them with the
actual results in a league table. The architecture of this system is shown in Fig
1. Brief descriptions of the components follow.
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Prediction Fixture
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Fig. 1. Architecture of the sports prediction application.



Prediction Interface This component is a graphical user interface that allows a
user to pull information about upcoming sporting fixtures from a fixture server.
A user can input a prediction for one or more of the fixtures. The predictions
are then sent to a prediction server for storage.

Fizture Server This is a passive component that responds to requests for fixture
information. The data returned is a list of forthcoming sporting events, including
information about times, dates, locations and the teams involved in the fixture.

Prediction Server This component accepts predictions from a prediction inter-
face component and stores them in an external storage server component. The
information sent to the server includes the fixture, the prediction and the user
that made the prediction. Predictions are also retrieved from the storage server
upon request.

Storage Server This is a web based generic data storage server component. It
allows the storage of data and allows any user to retrieve any stored information.

Prediction League This component is a graphical user interface that allows a
user to pull historical predictions from a prediction server along with the actual
results to evaluate the predictions. The prediction league component can also
retrieve and display the predictions from other users, allowing a user to compare
their performance against that of their friends.

In this system most components are held on a local device (such as a mobile
phone) only the storage server component is external. A user may wish to up-
grade or replace any of the individual components to increase the overall systems
functionality or to improve the user experience. However, any new component
must be capable of providing all the services provided by the component it is
replacing.

3 Pervasive Interface Automata

Pervasive Interface Automata are an extension of interface automata [3] with
pervasive systems in mind. The main difference is the addition of annotations to
actions. These annotations include ! and ? to indicate output and input respec-
tively, and o and x to represent slave and master actions respectively. Master
actions are instigated by the component and slave actions are instigated by the
environment (i.e. some other component). We have distinguished master/slave
behaviour from input/output behaviour to ensure that we capture the notion
of when a component requires external resources to function, i.e. to deliver a
service. This is essentially the difference between calling a method and offering
a method that can be called. For example, consider the four combinations of be-
haviour. If automaton P offers action foo?°, then P is offering a callable method
foo, which will receive data; if P offers action foo?*, then data is returned to
P, from a method instigated by P. If automaton P offers action foo!°, then P



is offering a callable method foo, which delivers data; if P offers action foo!*,
then data is sent by P, from a method instigated by P.

Masters synchronise with slaves, and inputs synchronise with outputs. How-
ever, there is an asymmetry between masters and slaves. Whereas components
with master actions (i.e. method calls) require slave actions (i.e. callable meth-
ods) in order to function properly, the converse is not true. More precisely, if a
component reaches a state in which a master action is offered, a synchronising
slave action is required at that point. On the other hand, if a component reaches
a state in which a slave action is offered, and there is no corresponding synchro-
nising master action, that slave action can be considered spare capacity; that is
the action is on offer, but no other component requires it. In these circumstances,
it can be ignored.

Definition 1. A Pervasive Interface Automaton P = (Vp, Vit Ap, Tp) where

— Vp = {v1,v9,... ,v‘vp‘} s a finite set of states
— Vli"it C Vp is the set of initial states
— Ap ={ai1,az,...,a4,} is the finite set of actions,

e where an action a = name[?*|7°|1*|1°]
— Tp CVp x Ap x Vp is the set of steps (state transitions)

Action annotations indicate the following. Annotations ! and 7 denote input
and output, respectively, and x and o denote master and slave, respectively. An
action that has no annotation is a hidden (internal) action. A% is defined to be
the set of all slave actions, i.e. actions with a o annotation, and A% is defined
to be the set of all master actions. We often use graphical representations of
example automata.

To aid later description, a number of functions are now defined.

— Ap(v) is the set of actions enabled at state v
e an action a is enabled in state v if there exists (v,a,v’") € Tp
o A% (v) is the set of slave actions enabled at state v
o Ar(v) is the set of master actions enabled at state v
source(t) returns the state v, where transition t = (v, a,v’)
act(t) returns the action a, where transition ¢t = (v, a,v’)
— target(t) returns the state v’, where transition ¢ = (v, a,v’)
— p={t1,ta,...} is a path, defined as an ordered multiset of transitions

e p; the i*" transition in p
o Vt;, tit1 € p,target(t;) = source(t;y1)
e p € P means that Vp, € p = p;, € Tp

An automaton P is said to be closed if it does not require any external re-
sources to function. Input/output actions require external resources to function.
However, slave actions (annotated with o) are assumed to be spare capacity,
thus they will not be performed unless synchronised with some other compo-
nent. Therefore, only master actions need be considered when determining if an



automaton is open or closed. However, it may be the case that some master ac-
tions are only enabled in states that require a transition involving a slave action
to be taken to be reached from the initial state. Such unreachable actions will
not be considered. The set of input/output requirements for an automaton is
now defined.

Definition 2. The set of input/output requirements for automaton P is

req(P) = {a € Ap|3p € P,3t; € p,act(t;) = a,Vj < i,act(t;) ¢ Ap}

If req(P) = () then P is closed and P is open otherwise.

4 Composition

Before two automata can be composed, it needs to be established how they are
to interact. This is a non-trivial problem, which will need a domain specific
solution. For the purposes of this document, it will be assumed that automata
will synchronise on action names. For example, if automaton P has an action
foo?° and automaton @ has the action foo!*, the composition P®Q) will have both
actions combined into a single hidden action foo. The set match(P, P®Q) is used
to show how actions in the automaton P are mapped to the actions in the product
automaton P ® Q. For example in the case mentioned above, (foo?°, foo) €
match(P, P ® @), meaning the slave input action foo in P is mapped to the
hidden action foo in P ® Q. Similarly, (foo?*, foo) € match(Q, P ® Q). For each
action a € Ap we assume there is a corresponding pair (a,a’) € match(P, PRQ),
such that neither a nor a’ appear in any other pair in match(P, P ® Q). In other
words, a matches, or synchronises uniquely with a’ in P ® Q). Note, our notion
of 2-way synchronisation is similar to CCS [10], where action a matches action
a. But, whereas in CCS a and @ synchronise to become hidden 7, we assume the
name of the hidden action is retained. Note that, match(P, P ® Q) is used to
map all actions from P to P ® Q) not just the synchronised actions.

For the default case of matching actions, if ap € Ap and ag € Ag are to
be synchronised in P ® @ then ap and ag must be compatible. Meaning that
master output actions match slave input actions and master input actions match
slave output actions. Both ap and ag are matched to the same hidden action in
P ® Q. Alternately, if an action ap € Ap is not to be synchronised then it will
be unchanged in P ® Q.

Pervasive interface automata P and ) are composable if each automaton
can perform its shared actions as required. That is, whenever P has an enabled
shared master action either @) is also capable of performing the corresponding
slave action, or P is able to wait until @) is ready to perform the slave action. In
practice this means that if a shared master action a is enabled in a state v € Vp
but not enabled in a product state (v,u) € Vpgg then all paths originating in
(v,u) must include a state in which a is enabled. When allowing an automaton
to wait we do not distinguish between input and output actions, therefore, we



allow both busy send and busy receive. Note that while P is waiting () may need
to interact with one or more other components, in which case the availability
of these components will be a factor in the assessment of the composability of
P and @. Such requirements can be modelled as environmental assumptions,
meaning that for P and @) to be composable the environment must meet these
assumptions.

4.1 Composition

The composition of automata has two stages. The first is to generate the product
of the two automata. The second attempts to validate the product as a valid
composition.

We first define shared(P, @) as the set of shared actions in the product of
P®Q:

shared(P, Q) := {a|(ap,a) € match(P,P®Q)}N{al(ag,a) € match(Q, PRQ)}

Product We now define the product of automata P ® @ as:

Vznzt Vinit % Vinit
PRQ — 'P Q
Apsg = {d/|(a,a’) € match(P,P © Q)} U{d'|(a,a’) € match(Q, P ® Q)}

pPT OV
TP®Q -

{((Ula u)’ ala (UQ’U))l u € VQ’ ((Ul)a a, (UQ)) eTp,
(a,a’) € match(P,P ® Q),a’ ¢ shared(P,Q)}U
{((Uvul)v a’/a (’U, UQ))| veVp, ((ul)a a, (u2)) € TQ’
(a,a’) € match(Q, P ® Q),d’ ¢ shared(P,Q)}U
{((v1,u1),d’, (v2,u2))| ((v1), a1, (v2)) € Tp, ((u1), a2, (u2)) € Tq,
(a1,a") € match(P, P ® Q),
(az,a") € match(Q,P® Q)}
s€Vpgg < 3p={p1,...,Pn,s ..} source(pr) € Mgég
A target(pp) =s
A Vpi€p. pi € Thyy
teTpgg < t€ Tpmé A source(t) € Vpgo

The set of initial states of P ® Q, V, ””t is the product of the two sets of
initial states V" and V{*"*. The action set A Pw@ 1s the union of the action sets
of P and @, respecting the matchings match(P, P ® Q) and match(Q,P ® Q)
and T is the provisional set of transitions for P ® @, which is used only as
a construct to aid the definition of the product. A set of transitions is added
to Tpmv for each non-shared transition in Tp; for a transition (v1,a,vs) this
set consmts of a transition ((v1,u),d’, (v2,u)) for each u € Vg, where (a,d’) €
match(P, P ® Q). Similarly, a set of transitions is added to Tpy, for each non-
shared transition in Ty. For every pair of transitions ¢, € Tp and t, € Ty,



where ¢, and t, involve matching shared actions, a transition ¢ is added to T,
where source(t) = (source(ty), source(ty)), target(t) = (target(t,), target(ty))
and act(t) = a, where (act(t,),a) € match(P,P ® Q). The set of states Vpgg
contains all states reachable via a path constructed of transitions from Tp, and
originating from a state in VA4g,. Finally, the set of transitions Tpggq consists

of all transitions ¢ € Th 5, where source(t) € Vpgq.

Composition validation Informally, a product is a valid composition if the
following two properties hold for master transitions in P (and @, respectively).
First, for every transition in P that involves a master action, there is a corre-
sponding transition in P ® ). Second, if v is a state of P ® @ at which master
action a is enabled, and a corresponds to a master action of P, then there is a
path prefix in P ® @ that contains a, all actions occurring prior to a are hidden,
and they do not involve a state change for P.
The product P ® @ is a valid composition iff:

Vit € Tp. act(t) € Ay =
3t € Tpaq. (t' = ((source(t), -), a, (target(t), )
A (act(t),a) € match(P, P ® Q))
A Yv € Vpgq. (v= (source(t),u)) =
Ipathp ={p1,--,pn,---+- (P EPRQ
A source(pr) = (source(t),u)
A act(pn) =a
AVi:1<i<n.
(source(p;) = (source(t), -)
A act(p;) is hidden))
and
Vt € Tq. act(t) € Ay =
' € Tpgg. (t' = ((source(t), ), a, (target(t), -))
A (act(t),a) € match(Q, P ® Q))
A Yv € Vpgq. (v= (source(t),u)) =
Jpathp ={p1,...,pn,---}- (pEPRQ
A source(pr) = (source(t),u)
A act(pn) =a
AVi:1<i<n.
(source(p;) = (source(t), -)
A act(p;) is hidden))
where _ is any state in the relevant component automaton.

4.2 Composition Examples

A simple example illustrates the role of master actions in composition. Consider
the automata given in Fig. 2, assume a and b are shared actions and z is hidden
(so not shared). In the composition, EX1 ® EX2, master action a!* waits for
a?° at (0,0) , i.e. they do not synchronise until (0,1). The slave b!° is never



synchronised. If however b!° is replaced by b!* in £ X1, then EX1 ® EX2 would
be nwvalid.

a!
- a?° a
pl° . /%
EX1 EX2 EX1 ® EX2

Fig. 2. Pervasive interface automata examples

As another example, consider the prediction server and storage server com-
ponents described in Sect. 2, represented as pervasive interface automata in Fig.
3.

addData!* o
getData?™  4ddData?°

90
addPred storeData

rtnPred!®

@ rtnData!® notify

rtnData?*

Prediction Server PS Storage Server SS

Fig. 3. Pervasive interface automata examples

The composition of these two automata will synchronise over the set of shared
actions {getData, rtnData, addData}. The composition is shown in Fig. 4. Note
the occurrence of a busy send in this example. From the product state (2,4), PS
needs to be able to perform the master action getData but in state 4 S.S is not
yet ready to provide the matching slave action. Therefore, P.S will then wait in
state 2 until S\S performs the storeData and notify actions before it returns to
state 0 in which it is ready to perform the matching get Data slave action. If S.S
was never enabled to receive the request, then the composition would be invalid.

5 Services

A service! is something that a component can do, such as respond to a data

request, distribute information, store and retrieve data, etc; internal detail is not

! Similar to a web service [1].
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getPred?° getPred?®

notify

tDat
’ addPred?°
9
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Fig. 4. The composition of PS and SS, PS ® SS.

relevant. For example, a fixture server component P may offer the getFixzture
service, a service that always responds to the method call get Fiz() by returning
a list of fixtures via a return method rtnFiz(). In component P, the service
is offered in a straightforward way because the fixture list is held internally.
Another component, P’ say, may also offer the same service, even though it
obtains the list of fixtures from a third component. For example, P/ may respond
to the get Fiz() call by calling a third component to obtain the fixture list, which
it then returns via the method rtnFiz(). In both cases, P and P’ offer the same
getFlixture service.

In terms of pervasive interface automata, a service can be described as a
property defined in our own simple custom logic, defined below.

5.1 Logic for Services

We now describe a linear temporal action logic for defining services (a simplifi-
cation of that in [6]). The logic is defined over paths p of a pervasive interface
automaton P. Here a and b are (annotated) actions.

Syntax:
p=tt|offerad|a~bo path formulae
YX=Vo|Tp| XN |XVE service formulae

Semantics:
pEtt always
pEoferad iff In>1.p={...  ts,...}
and  act(t,) =a
and V<, act(t;) are hidden actions

and  {tpy1,...}E @
pEa~be ffIn>1,Im>n.p={ . tn,. .. tm,...}



and  act(ty,) =a
and  act(ty)=0b
and  V;<p act(t;) are hidden actions
and  Vy<icm act(t;) are hidden actions
and  {tmi1,.---+E
or An>1.p{... tn,...}
and  act(ty,) =a
PEVo iff VoeP. plo
P3¢ iff IpeP. pko
PESIAS, iff PESIAPE D,
PESVE, iff PEXIVPE Y,

Note that the actions preceding a are hidden in both offer a ¢ and a ~~ b ¢.
This expresses the requirement that the initiating action a of a service is available
(e.g. cannot be blocked by waiting on another component), and if a service is
initiated, then it is completed, e.g. a service is not abandoned.

5.2 Typical services

A service often involves a response to a request (a liveness property). More
precisely, after possible hidden actions, it offers the request, which is a callable
method. After further possible hidden actions, it either sends a response, which
is a method call, or it offers to respond, which is a callable method. The ini-
tial request may be accompanied by data (an input); the response may also be
accompanied by data (an output).
Formally, assuming actions request (slave), send (master), and respond

(slave), these two service are expressed in our logic by:

1. request/send: V(request?® ~ send!* tt) A I(offer request?® tt)
2. request/respond: V(request?® ~ respond!® tt) A I(offer request?® tt)

The second conjunct: I(offer request?® tt), serves to ensure the service is not
trivially satisfied, i.e. the first action is offered by at least one path. As examples,
the first type of service is offered by the prediction server PS (Fig. 3): addPred?°
is always followed by addData!*, and the second is offered by the storage server
SS: getData?° is always followed by rtnData!®.

5.3 Components, environments and services

Our notion of a component automaton offering a service is not simply satisfaction
of a service formula, we also take into account the impact and requirements
placed upon the environment. We assume an environment is itself a composition
of components. How to quantify the impact is subtle; it is not sufficient to check
P = ¥ (does a component P offer the service X), nor is it appropriate to check
P ® E = ¥ (does the composition of P with environment E offer X ). In the



former, >’ may not be satisfied because there are non-hidden actions that do
not occur in X, but they will be hidden when the component is composed with
the environment and in the latter, after composition, the actions occurring in X7
may have become hidden. Instead we consider an abstraction of environments
that, if fulfilled, means that P offers the service X to F.

Specifically when checking if P offers the service X' to F, we consider the
availability of actions we require F to offer. We refer to the set of requirements
for the availability of actions as A. The availability set A contains (action,state)
pairs. A is split into two subsets AT and A~. If (a,s) € AT then the environment
must offer action a in state s, if (a,s) € A~ then the environment must not offer
action a in state s.

We define a set cpath of modified paths of a component automaton. There
are two cases to consider. First, if an action (slave or master) can always be
matched by the environment, then we assume the actions represent hidden ac-
tivity. Second, if a slave action can never be matched with the environment, and
it is offered from a component state that offers any other type of action (slave or
hidden), then the slave action represents spare capacity. Note, we assume angelic
non-determinism; this means that paths representing spare capacity will not be
taken.

In the following, we write f°, g* etc. to stand for any slave or master action
respectively, that is we ignore input and output annotations. We call these ab-
stract actions and when we say that abstract action f° matches f*, we assume
the underlying input and output annotations match as required. We refer to the
set of actions in a service formula by a(X); for example, a(Va ~~ b tt) = {a,b}.

Definition 3. The alphabet of a service formula, a(X), is the set of all actions
occurring in the path sub-formulas of X.

Definition 4. Given component automaton P, service X and environment as-
sumptions A, define the set cpath(P,X, AT, A7), as all the paths of P con-
structed in the usual way except, when constructing the paths

e for transition t, if act(t) = f*, f* & a(X), and (f°, source(t)) € AT, then
replace f* by f in t (hide master),

e for transition t, if act(t) = f°, f° & a(X), and (f*, source(t)) € AT, then
replace f© by f in t (hide slave),

e for transition t, if act(t) = f°,f° & a(X), and (f*, source(t)) € A~, then
any (sub)path beginning with t is excluded (remove spare capacity).

Note that, under the conditions given above, some slave actions can be safely
excluded from the set of paths. This is not the case for master actions as, by
definition, a component requires to be able to perform them in order to function
correctly.

As illustration of spare capacity and hidden activity, consider the two au-
tomata in Fig. 5 and the service X' = V(g1° ~» ¢2° tt). The alphabet of X' is
{91°,92°}. Both P; and P» include one hidden action, I.
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Fig. 5. Component automata, with abstract actions

The paths in epath(Py, X, {(1*,2)}, {(f*,1)}) start with either prefix p; =
{h1°,k°, h2*} or po = g1°,1,1,¢92°}. As both p1 = X and py = X, P can offer
Y in an environment which offers {* whenever P; is in state 2 and does not offer
f* when P is in state 1. All the paths in epath(P2, X, {(1°,2)}, {(f*,1)}) start
with prefix po = {g1°,1,1,92°}. As p3 E X, P, can offer X in an environment
which offers [° whenever P; is in state 2 and does not offer f* when P, is in
state 1.

Note that in both cases the path prefix g1°, f° is excluded because the action
f° is forbidden in state 1 (the environment will never offer a matching master
action), whereas in component P;, the path prefix h1°, k° is included as spare
capacity. In both cases the action [° has become hidden in cpath, because it
matches an action offered by E.

In summary, the set cpath allows us to specify services that are offered by
a component, in the context of an environment that meets assumptions AT
and A~. Together, AT and A~ are an abstraction of a class of environments.
From here on we assume quantification over paths in cpath(P, X, AT, A~) and
we denote satisfaction with respect to AT and A~ by [=4, defined thus.

Definition 5. Given component automaton P, environment assumptions A,
and path formula ¢,

Pl Ve iff  Vpecpath(P, ¢, AT, A" )pE ¢
P43 if  3p € cpath(P, ¢, AT, A" )pE ¢
P|:AZ‘1/\H2 Zﬁ P):AZ‘1AP|:AZ‘2
Pl Xy VI iff PlEys X1 VP L Y,

By abuse of notation we extend satisfaction to sets of services S, and write

PEAS, whenVY € S.P 4 X.

Note that P offers X' to ' can mean either P offers a service that E needs,
or P offers a service that persists after P is composed with E. In the latter case
we have P® F = X, but in the former case this is not true because the actions
in 3 have become hidden.



5.4 Service Example

Consider again the getFirture service example. If we translate the offering of
method getFiz() as an action getFiz?° and the rtnFiz() method as action
rtnFix!°, we can express the get Fizture service as the property:

getFizture = V(getFix?® ~ rtnFiz!° tt) A Ioffer getFix?° tt)

getRefinedFix?°

getFiz?° @ getFixz?° @ getData!* et Fiz?° 0
—@ @ e o}
m@ ‘m@ rtnData?* m@

FS1 FS52 FS3

Fig. 6. Three example automata.

Figure 6 shows three example automata. The first, F'S1, represents a com-
ponent that can supply a fixture list without referring to any other component.
F'S2 represents a component that, upon request, requires a third party com-
ponent (i.e. a storage server) before the requested fixture list can be returned.
The third, F'S3, offers the same basic functionality as F'S1 (and thus offers the
getFix service), however, it also offers the addition option of requesting a refined
fixture list. More formally, we have:

— FS1 4 getFizture, where AT = () and A~ = {).

— FS2 a4 getFizture, where AT = {(getData?°,1), (rtnData!®,3)} and
A= =0.

— FS3 =4 getFixture, where AT = () and A~ = ().

6 Replacement

Pervasive systems are adaptive and evolutionary by definition, meaning that
components will be updated and replaced over time. Therefore, it is useful to
know what effects such replacements will have on the system. Will the new
component have the same functionality as the component it is replacing? To
this end, we now define the replacement relation, which allows us to check if one
component can be replaced by another in a given environment, with respect to
a given set of services.

Definition 6. For given component automata P, P’, service X and environ-
ment requirements A, if P |=a X, then P may be replaced by P’ if P' E=a X
and A’ C A.



Replacement of a component with respect to a set of services is the natural
extension of replacement with respect to a single service. This can be qualified:
the quality of a replacement depends upon which services are preserved in a
replacement, i.e.

Definition 7. Given component automata P, Py, P>, sets of services SS, Si,
and Sz, and environment assumptions A, if P =4 SS, P1 Ea S1, and Py =4 Sa,
we say that component Py is a better replacement than component Py for P when
(SenNSS)C (S1NSS)CSs.

Note, we consider intersections of services, since the new components may
offer additional services.

6.1 Replacement Example

Consider fixture server component F'S1 from Fig. 6 that offers the getFizture
service defined as V(getFix?° ~ rtnFiz!°) A I(offer get Fixz?° tt), with no envi-
ronment assumptions. Which components could replace F.S17

getRe fined Fix?° premium!*
getFix?° o
—_ I —(0) log"*
FS3 FS4 FS5

Fig. 7. Three potential replacement automata for FS1.

Component FS3 offers the getFizture service with no environmental as-
sumptions: FS3 =4 getFixzture where AT = () A~ = (. It also offers the
additional option of requesting a refined fixture list. Therefore F'S3 can re-
place F'S1 in any environment; as F'S3 offers additional functionality, this re-
placement would be referred to as an upgrade. Component F'S4 also offers the
getFizture service, however, it also logs each use of the service. Therefore,
FS4 =4 getFixture, where AT = {(log?°,1)}, A= = 0. That is, F'S4 offers
getFizture only if a logging service is available in the environment. So F'S4 can
only replace F'S1 in environments offering a logging service. A fifth component,
F'S5, may be offered by some commercial organisation that requires a subscrip-
tion to have access to some premium content. In which case, a get F'iz?° request
may result in an error message notifying the environment that the premium
content is inaccessible. As premium!* is a master action, it cannot be ignored.
Therefore, F'S5 would not be a viable replacement for F'S1, as F'S5 [~ 4 getFix,
for any A.



7 Comparison with Interface Automata and Session
Types

Pervasive Interface Automata are based on Interface automata [3-5]. However,
the addition classification of non-hidden actions as either master (*) or slave (°),
results in a richer action set. This combined with the more relaxed definition of
composability of pervasive interface automata make them more appropriate for
the context of pervasive systems.

A state s = (f, g) in the composition of two interface automata F' and G is
said to be an error state if there is a shared action a that is an output action
in F' and enabled in f, but the corresponding action is not enabled in g. This
disallows a component to wait for another to be ready before it performs an
output action. Such conditions are prevalent and desirable in pervasive systems.
Our notion of master and slave actions allow us to both define and embrace this
kind of behaviour.

A crucial aspect of pervasive interface automata is that they allow us to
formally define the notion of replacement of components, with respect to services.
This concept relies heavily on our categorisation of actions as either master or
slave, and so is not possible with interface automata.

The stated objectives in [11] are similar to our own, however the authors do
not differentiate between master and slave actions. They also have a less rich
definition of services.

Pervasive interface automata (and indeed interface automata) also bear a
superficial resemblance to session types [8,9]. A session represents possible se-
quences of communication events between processes. Communication events in-
clude synchronous message passing and the passing of channel names. Again
there is no notion of master/slave actions, and properties are restricted to the
matching of communication events.

8 Conclusion and Future Work

We have introduced pervasive interface automata as a formalism for modelling
interfaces offered by components. Our motivation is managing predictability in
component-based systems, especially in pervasive systems where components
are regularly composed and replaced. Distinctive features of our automata in-
clude the separation of actions according to input or output, and method call
or callable method. Composition of automata involves synchronisation on in-
put/output and calling/called actions.

We do not just model interfaces, but also reason about services, which we
define using a linear temporal action logic. We define the notion of a component
offering a service to an environment (a composition of components) by consider-
ing the assumptions we need to make about the environment. If an environment
meets those assumptions, then we can be assured that either the component
meets the (service) needs of the environment or the service will persist after
composition. In either case, we can proceed with composition. A key relation



is replacement, which may add new functionality, but ensures that services are
still offered, given environment assumptions. Key concepts are illustrated with
a mobile phone based application for sports predictions. Our long term goal is
to derive pervasive interface automata automatically from code; this is future
work.
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