The Story of the Therac-25 in LOTOS

Muftfy Thomas
Dept. of Computing Science
University of Glasgow
Glasgow, U.K

August 12, 1993

Abstract

We consider the use of formal specification and verification tech-
niques for proving the safety, or otherwise, of an abstraction of a safety-
critical medical application: the Therac-25 radiation machine. This
machine was responsible for several patient deaths in the late 1980s.
The specification is given in LOTOS and we consider trace analysis,
property testing, and temporal logic for reasoning about the safe and
unsafe behaviour of the specified machine. The testing tool LOLA is
used for rigorous verification; with LOLA, two significant design er-
rors are uncovered. The work reported herein 1s part of a case study
on the practical use of formal methods in safety-critical software; the
specification is based only on an informal description of part of the ma-
chine’s behaviour, and does not constitute a specification of the entire
machine.

1 Introduction

The Therac-25 is a computer-controlled radiation machine, or linear accel-
erator, used for radiation therapy. It was manufactured by Atomic Energy
of Canada Ltd. (AECL) during the 1980s and was used at hospitals and
clinics in the U.S.A. and Canada.

As a result of software errors, several patients were killed or injured
by radiation overdoses delivered by the machine. The events leading up to
these deaths and the actions taken as a result, are recounted in a paper by
J. Jacky [7] and more recently, a detailed technical account of the accidents
is given by N. Leveson and C. Turner in [8].

In this paper, we will use the Therac-25 as the basis of a case-study in the
formal specification and verification of a safety-critical medical application.
The specification language is LOTOS (Language of Temporal Ordering Spec-
ification) [6]. LOTOS is an ISO standardised specification language which
allows for both the specification of concurrent, nondeterministic processes
and algebraic data types.

The actual source(s) of errors in the Therac-25 is a complex issue, as
shown in [8]. In another paper in this volume (see [12]) we have taken
one particular aspect of the code for the machine, namely the editing of
the treatment parameters, and have used an automated theorem prover
to show that it does not behave as intended. It is not our intention here
to suggest that there are only a few isolated ‘bugs’ in the Therac-25, or
that one formal specification alone can capture all the potential behaviours
and interactions. However, formal specification and verification techniques
are part of a wider discipline of designing and implementing safety-critical
software, and by referring to a recent, relevant example, we hope to illustrate
the contribution of formal methods. To the author’s knowledge, no aspect
of the Therac-25 machine has been formally specified before.

The overall aim of this paper is to specify the high-level behaviour of the
Therac-25, complete with design errors, and to try to use formal methods
to uncover these errors. More specifically, our aims are to

develop a specification of the behaviour of the Therac-25,

e formalise some safety properties for the specification,

attempt to formally prove/disprove that these safety properties hold,

use the specification and verification to ‘tell the story’ of the Therac-25
tragedy.

The paper is organised as follows. In the next section, we give an informal
description of the Therac-25 and an overview of the LOTOS specification
language. We briefly present the syntax and semantics of the language,
and the notion of testing in LOTOS. In Section 3 we give the first formal
specification of the machine; we formalise the safety property and prove,
using testing, that the specification permits unsafe behaviour. In Section 4
we develop another, safer, specification and discuss the use of testing for
verification. In Section 5 we add interaction with the user and show how,
combined with the specification of the previous section, the specification
becomes unsafe.

In Section 6 we consider how testing and temporal logic might be used
to verify the safety properties. In the final section we discuss our results
and plans for future work.

2 Background

2.1 Therac-25

The Therac-25 delivers two kinds of radiation beams for radiation therapy:
electron and X-ray. The electron beam is used to irradiate the patient
directly, using scanning, or bending magnets to spread the beam to a safe
and therapeutic concentration. The X-ray beam is created by bombarding
a metal shield, or beam flattener; the electrons are absorbed by the shield
and X-rays emerge from the other side. Since the efficiency of producing
X-rays in this way is very poor, the current of the electron beam has to be
increased to over 100 times the intensity when used directly for irradiation.

The greatest danger posed by the machine is the possibility of irradiating
a patient directly with the high intensity electron beam, i.e. without the X-
ray shield in place. This is a well-known danger, particularly since 1966 when
a control failed on a traditional, electromechanical radiation machine at
Hammersmith Hospital [2], and several patients were overdosed in this way.
The Therac-25 differs from its predecessor the Therac-20 in an important
aspect. Whereas the Therac-20 is also computer-controlled, it still has an
independent set of electromechanical interlocks for ensuring safe operation;
in the Therac-25, all monitoring is carried out by the software.

Of course another danger could be posed by underdosing, as then the
underlying disease would not be treated as prescribed. However, we will not
consider this as a major safety concern in this case study.

The software controlling the Therac-25 was written in assembler. The
specifications developed here are based mainly on the informal, high-level
description given in [7]; they include concurrent and nondeterministic as-
pects of the machine’s behaviour, but they do not include any real-time
aspects.

2.2 LOTOS

The reader is referred to the LOTOS standard [6] and [1] for an introduction
to LOTOS. LOTOS consists of two parts: so-called basic LOTOS and ACT

ONE for abstract data types. Basic LOTOS is very similar to CCS [10],
with multi-way synchronisation and some aspects from CSP [5].

An overview of the language, the semantics, some congruences between
processes and the notion of testing in LOTOS are given in the following
three subsections.

2.2.1 Syntax

Basic LOTOS

LOTOS processes are built up from constant processes, events, and process
operators. Events are atomic, indivisible actions. In the following, P and Q
are processes.

operator syntax description

constant exit successful termination

prefix a;P prefix P by event a

choice P Q choice between P and Q

enable P> Q become Q after P terminates
disable P [>Q P may be interrupted at any time;

after interruption, become Q

parallel PIlIlQ P in parallel with Q

(unconstrained)

parallel P I[1]1 Q P in parallel with Q, synchronising on
(synchronised) events in list [1]

guarded process [exp] -> P if exp holds then become P
internal event i unobservable, internal event

event hiding hide E in P hide events E in P

ACT ONE

ACT ONE is the LOTOS sublanguage for specifying abstract data types:
values and operations. Types are specified using many-sorted equational
logic and the semantics are given by initial algebras. In this paper we give
only ‘flat” ACT ONE specifications and do not use any of the specification
combining operators of the language.

Full LOTOS

Values and processes are combined in LOTOS in two important ways: values
may be associated with events and processes (and process functionality) may
be parameterised by values.

We shall use only one form of value association with events: the event
offer a!v offers value v at event a. Events with values can only synchro-
nise with equivalent values i.e. a'true can synchronise with a!true, or
a'not(false), but not with a!false, given the usual theory of Booleans.
In the specifications which follow we will use indentation for disambiguation,
instead of a proliferation of brackets, when possible.

2.2.2 Semantics

The semantics of a LOTOS specification is given by a structured labelled
transition system. Various equivalences and congruences may be defined
over such transition systems, and the behaviour expressions which they de-
note. In this case study, since we are concerned with the observable be-
haviour of a machine, we will use an observational congruence, bisumulation
[10], which relates processes that are interchangable in any context. More
specifically, we use strong bisimulation because it is used in the LOLA tool
(see below); this bisimulation is very similar to the weak bisimulation defined
in [6], except that the internal event i is treated like other events. We do
not define this congruence here, but note some of the significant properties
of the congruence, as appropriate.

2.2.3 Verification by Testing in LOTOS

Verification in this case study involves proving temporal properties. One
approach to proving temporal properties of LOTOS specifications is property
testing [3] using the LITE tool LOLA (LOTOS Laboratory) [11] from the
Esprit project LOTOSPHERE.

process Slevl,ev2,ev3,evd]:exit :=
(evl; ev2; ev3; exit) [1 (evl; ev2; evd; exit)
endproc

Figure 1: Specification Process S

process T[ev2,ev4,testok] :exit :=
ev2; ev4; testok; exit
endproc

Figure 2: Test Process T

Testing, in LOTOS, is a form of state reachability analysis and it is done
in LOLA by expanding a behaviour expression (which may be a parame-
terised expression), using the appropriate equivalence, to check whether or
not a given event occurs on all, none, or some paths, or traces, from the
root of the underlying labelled transition system. Property testing is done
by specifying the given property as a LOTOS test process, concluding with
a special test success event(s), and then composing the test process in par-
allel with the given specification, synchronising on the observable events in
the test process (excepting the special test success event(s)). We illustrate
this approach with a simple example. Consider the example specification
for process S given in Figure 1.

Process S may perform either evl; ev2; ev3; exit orevl; ev2; ev4;
exit. Suppose, we wish to ask whether or not the event ev2 may be followed
by the event ev4 in S. We express this property by the LOTOS process T
given in Figure 2. Process T has only one possible behaviour: ev2; ev4;
testok; exit. The last event to occur is the test event testok.

For property testing, the two processes, that is, the specification process
S and the test process T, are combined together in parallel, synchronising
over the events of interest, ev2 and ev4. Then, all possible traces of the
combined process are examined to see if the test event occurs; this usually
involves algebraic manipulation of the combined process using the laws of
the bisimulation. If the test event can be found, then we say that the test
has been passed and we can conclude that the behaviour of the test process
is a possible behaviour of the specification process

In this example, the combined process is given in LOTOS by:
S |[ev2, ev4]| T.

When we expand this process, using the expansion theorem from the
bisimulation, one possible trace is evl; ev2; evé4; testok; exit (recall
that sychronisation is only required on events ev2 and ev4). Thus the test
is passed (for at least one trace), and therefore our specification does have the
desired property. Obviously, more complex properties are possible; indeed,
we can specify any context-free language of traces this way. Moreover, both
safety and liveness properties (see Section 3.1) can be tested in this way.

3 Specification I

In this section we proceed to formally specify the high-level behaviour of the
Therac-25 in LOTOS. Events are described first, followed by the processes.
There are events for altering the beam intensity and the shield position:

e event hb - high beam
e event 1b - low beam

e event hs - high shield
e event 1s - low shield

and there are events for choosing X-ray or electron mode, and for firing the
electron beam:

e event xr - X-ray mode
e event el - electron mode
e event fire - fire beam

The ‘default’ situation is that both the beam and the shield are low, i.e.
the machine is ready to irradiate directly with the electron beam. Therefore,
in order to operate in X-ray mode, the beam and shield are set to their
respective high intensity and position; after firing in X-ray mode, the beam
and shield are set back to their respective low intensity and position.

At any point during a radiation treatment, the process may be inter-
rupted and another type of treatment may be chosen or the treatment
restarted.

The formal specification is given in Figure 3. The top-level process is
STARTUP which calls the parameterised process SETUP to initialise the ma-
chine and set the beam and shield to low, before calling the main pro-
cess TREATMENT. The process TREATMENT offers a choice between the X-ray
mode, the electron mode, or termination by exit. The processes XRAY and
ELECTRON specify the X-ray and electron mode behaviour (respectivel); both
processes call the process TREATMENT at the end of the ‘normal’ behaviour,
and they may be interrupted, or disabled, by the process TREATMENT at any
point during the ‘normal’ behaviour.

In this specification, all events are externally visible (i.e. there are no
hidden events). Thus, each process is parameterised by the events occurring
within it.

3.1 Verification

Now, we consider the safety of the specification Theracl. We note that with
respect to verification, the word safety is overloaded. Here, we specifically
mean that life is not endangered. However, we shall only be considering
safety properties, in the other sense, i.e. properties which state that some-
thing bad should not happen, as opposed to liveness properties which state
that something good should happen.

The behaviour which concerns us is the delivery of a radiation overdose
and the safety property is given by:

Safety Property I

The machine is unsafe when the electron beam is fired at high intensity
and the shield is in the low position.

In order to verify that the specification is safe/unsafe, we must show
that Safety Property I does not/does hold. This requires a formalisation of
the property with respect to the specified traces, or process prefixes, which
would satisfy Safety Property I. We need not consider all traces over all
events, but only those traces which are specified behaviours of the machine.
Such a trace begins with the initialisation events (i.e. 1b and 1s occurring
in any order), and an occurrence of hb is neither preceded by a hs nor
succeeded by a 1b or hs. Thus, when the fire event occurs, the beam is high
and the shield is low. Formally, these are traces prefixed by traces of the
form:

specification Theraci[fire,lb,hb,ls,hs,xr,el] : exit

behaviour
STARTUP[fire,1b,hb,1ls,hs,xr,el]
where

process STARTUP[fire,lb,hb,ls,hs,xr,el] :exit :=
SETUP[1b,1s] >> TREATMENT[fire,1lb,hb,ls,hs,xr,el]
endproc

process SETUP[evl,ev2] :exit :=
(evl; exit) ||| (ev2; exit)
endproc

process TREATMENT[fire,lb,hb,ls,hs,xr,el] :exit :=
(xr; XRAY[fire,lb,hb,ls,hs,xr,el])
[l (el;ELECTRON[fire,1lb,hb,ls,hs,xr,el])
[1 exit
endproc

process ELECTRON[fire,lb,hb,1ls,hs,xr,el] :exit :=
(fire; TREATMENT[fire,1lb,hb,ls,hs,xr,el])
[> TREATMENT[fire,lb,hb,1ls,hs,xr,el]
endproc

process XRAY[fire,1lb,hb,ls,hs,xr,el] :exit :=
(SETUP [hb,hs] >> (fire; SETUP[1lb,ls])
>> TREATMENT[fire,lb,hb,ls,hs,xr,el])
[> TREATMENT[fire,lb,hb,1ls,hs,xr,el]
endproc

endspec

Figure 3: Specification 1

((1b;1s)1(1s;1b)); (not(hblhs))*; hb; (not(lblhs|fire))*; fire

where we use the notation * for zero or more occurrences, | for choice,
and not(x|y) to denote the choice of all events, excluding events x and y.

For example, one such trace is: 1b;1ls;xr;xr;hb;xr;hb;el;fire.

Since the traces are described by a regular expression, we can specify
them by LOTOS processes and we do so in Figure 4. Process Nothbhs corre-
sponds to (not(hblhs))* and process Notlbhs corresponds to
(not(1lblhs))*. The process TEST corresponds to (not(hblhs))*; hb;
(not(1blhs))*; fire and 1lb;1s;TEST [] 1s;1b;TEST corresponds to the
entire trace expression. The event testok is the test event.

We used the first of the alternatives as a test process for the specification
process STARTUP. This process, UNSAFETEST, is given as Test Process I in
Figure 4. Clearly, if the event testok can be reached, then according to
Safety Property I, the machine is unsafe.

The presentation of the specification in Figure 3 can be deceptive: al-
though it neatly fits on to one page, the use of the disabling operator allows
for many possible behaviours. The state explosion is quite dramatic and
testing by hand is simply not feasible.

LOLA [11] was used to perform the testing, with Test Process I. Since
the specification specifies nonterminating processes, an expansion depth is
required when performing the tests. A judicious choice of depth proved to be
very important: too small and the test was rejected because insufficient pro-
cess behaviour had been explored; too large and the heap was exhausted. In
our case, on a Sun Sparc workstation, the test was rejected when depth<12
and memory was exhausted when depth>13! This experience confirms the
experimental and possibly inconclusive nature of testing; fortunately, the
test passed with depth=12. Thus, we may conclude that the specification
Theracl is not safe.

It is easy to see that one unsafe trace:

1b;1s;xr;hb;el;fire

is possible by choosing X-ray mode initially, and then interrupting to
switch to electron mode before the completion of process SETUP [hb,hs],
i.e. after event hb but before event hs.

This is in fact a behaviour which caused the radiation overdoses in at
least two cases, although an element of real-time was involved: the overdose

10

process UNSAFETEST[fire,1lb,hb,ls,hs,xr,el,testok] :exit :=
STARTUP [fire,1lb,hb,ls,hs,xr,el]
| [fire,1b,hb,1s,hs,xr,el] |
((1b;1s; TEST[fire,1lb,hb,ls,hs,xr,el]) >> testok;exit)
endproc

process TEST[fire,lb,hb,ls,hs,xr,el] :exit :=
Nothbhs[fire,1lb,ls,xr,ell
>> (hb; Notlbhs[fire,hb,ls,xr,el])
>> (fire; exit)

endproc

process Nothbhs[fire,lb,ls,xr,el] :exit
fire;Nothbhs[fire,lb,ls,xr,el]
[1 1b;Nothbhs[fire,lb,ls,xr,el]
[1 1s;Nothbhs[fire,lb,ls,xr,el]
[1 xr;Nothbhs[fire,lb,ls,xr,el]
[1 el;Nothbhs[fire,lb,ls,xr,el]
[Jexit
endproc

process Notlbhs[fire,hb,ls,xr,el] :exit
1s;Notlbhs[fire,hb,ls,xr,el]
[1 hb;Notlbhs[fire,hb,ls,xr,el]
[1 xr;Notlbhs[fire,hb,ls,xr,el]
[1 el;Notlbhs[fire,hb,ls,xr,el]
[1 exit
endproc

Figure 4: Test Process I

11

occurred only if the operator had switched to electron mode within 8 seconds
of starting the X-ray mode. (We note that in [8], the actual sources of error,
in these cases, are to be found in the editing routine used by the operator
to switch from electron to X-ray mode. See [8] and [12] for descriptions of
this fault.)

A simple solution in our specification would be to remove the parallelism
in the process SETUP, i.e. to replace it by the process:

process SETUP[evl,ev2] :exit :=
evl; ev2; exit
endproc

When we substituted this process for the original SETUP in the specifica-
tion, and reversed the order of events in the call of SETUP from within XRAY
to SETUP [hs,hb], we found that the test given in Test Process I was rejected
(using LOLA) for all expansion depths, until the heap was exhausted. Thus,
we have a good idea that this specification is safe. Of course, our tests have
not proven that is so. We will return to this problem of proving safety in
Section 6.

Another solution, the solution proposed by AECL, was to make it ‘dif-
ficult’ for the operator to interrupt the mode from X-ray to electron beam.
This was achieved by removing the key cap from the ‘up-arrow’ key (used
to edit the mode data) and covering it with electrical tape!

A further approach to preventing the unsafe behaviour in the Therac-
25, besides the use of electrical tape, would be to check the status of the
beam and shield before firing. LOTOS is ideally suited to modelling this:
processes may be parameterised by the status of the beam and the shield.
For verification, then, instead of reasoning about the traces leading up to
an event, we will ‘remember’ the current status of the beam and the shield
and reason about their state before firing.

We now proceed to parameterise the processes by the status of the beam
and shield and to extend the specification to include another aspect of the
machine: the reporting of errors. This, in turn, will allow us to uncover a
further design feature which can lead to unsafe behaviour.

4 Specification I1

Three datatypes, in addition to the usual (library) type boolean, are required
in this specification: the type SHIELD, the type BEAM, and the type ERROR.

12

The specifications of these types are given in Figure 5 and Figure 6.

The type SHIELD includes two constants: up and down, and a test for
equality.

The type BEAM includes three constants: high, mid, and low, and a test
for equality. Three values are included because whilst in operation, the beam
intensity was often ‘slightly less’ than expected, due to the machine being
‘out of tune’: such a fall in beam intensity could occur up to 40 times a day
[7]. A more realistic specification would include many more discrete values
for this type (perhaps it should be countably infinite), but for our purposes,
one value which is neither high nor low will suffice.

Finally, we include a type of errors. In the Therac-25, errors are reported
by number. We do not know exactly how many different errors were possible,
but at least two errors (numbers 53 and 54) are relevant to our specification.
Error number 53 denotes that the beam is ‘slightly less’ than expected, and
error number 54 denotes that the beam has high intensity when the shield
is in the low position.

The processes are similar to those in the previous specification, with the
addition of parameterisation over beam and shield values, and they are given
in Figures 7 and 8. But there are a few differences.

The first is that since we are no longer be concerned with traces, but
rather with the status of the beam and shield when a fire event occurs, the
other events (i.e. those which alter the status of the beam and shield, and
the choice of xray and electron mode) will be hidden.

The second difference is that for simplicity, we have dispensed with the
process SETUP and now perform the relevant events sequentially.

The third difference is a rather subtle one. While LOTOS does permit
value passing over process enabling (e.g. P >> accept x:X in Q), it does
not permit value passing over process disabling. This is most unfortunate for
us, but perhaps understandable because the semantics of such a construct
would be quite complex: the values being passed would have to depend on
the point at which the disable occurs. The immediate solution to this prob-
lem is to expand processes ELECTRON and XRAY, using the bisimulation ex-
pansion laws. The transformations should remove the disable operators and
disabling process TREATMENT, and replace them by the appropriate choice of
processes which call the disabling process with the appropriate values. But,
we cannot get rid of the disable operator altogether, just using the laws of
bisimulation. To illustrate the problem, consider the body of the ELECTRON
process, without any values, and hiding the unobservable events:

13

specification Therac2[fire,lb,hb,ls,hs,xr,el] :exit(beam,shield)
library boolean endlib

type SHIELD is boolean
sorts shield

opns up, down : -> shield
—eq_ : shield, shield -> bool
eqns
ofsort bool

up eq down = false;

up eq up = true;

down eq down = true;

down eq up = false;

endtype

type BEAM is boolean
sorts beam

opns high, mid, low : -> beam
eq : beam, beam -> bool
eqns
ofsort bool
high eq low = false;
high eq high = true;
low eq low = true;
low eq high = false;
high eq mid = false;
low eq mid = false;
mid eq low = false;
mid eq mid = true;
mid eq high = false;
endtype

Figure 5: Beam and Shield Datatypes

14

type ERROR is boolean

sorts errnum

opns errb53, errb4 : -> errnum
endtype

Figure 6: Error Datatype

(fire; TREATMENT[fire]) [> TREATMENT[fire]
This process is expanded to:

TREATMENT [fire]
[l (fire; (TREATMENT[fire])[> TREATMENT[fire])

Because TREATMENT is recursive and disabled by itself, each expansion of
TREATMENT [fire] introduces a further [> TREATMENT[fire]. We do not
have a law P [> P = P because, in general, P [> P is not bisimular to P.
Certainly it does not hold for finite processes; consider, for example, the
process process P := a;bj;exit. However, in our specification, because
TREATMENT is recursive and it is disabled by itself in the appropriate way, we
do have an equivalence between TREATMENT[fire] [> TREATMENT[fire]
and TREATMENT [fire]. Thus we are able to transform Specification I into
Specification II which includes parameterised processes.

The final difference concerns the event fire. In processes ELECTRON and
XRAY, the event fire is replaced by a process FIRE. This process is also
parameterised by a beam and shield value and ‘traps’ the unsafe situations
by calling the process ERROR, with an error number; this process terminates
after reporting the error. The ERROR process may also be called when the
machine is ‘out of tune’. Note that there is an element of nondeterminism
in the reporting of this error.

4.1 Verification

Again, the behaviour which concerns us is the delivery of a radiation over-
dose. This is formalised very concisely by the event fire'high!down. If
there are traces which include this event, then according to Safety Property
I, the machine is unsafe.

15

behaviour
STARTUP [fire]
where

process STARTUP[fire] :exit(beam,shield) :=
hide 1b,1s in
1b; 1s; TREATMENT[fire] (low,down)
endproc

process TREATMENT [fire] (b:beam,s:shield):exit(beam,shield):=
hide xr,el in
(xr; XRAY[fire](b,s))
[1 (el;ELECTRON[fire](b,s))
[1 exit(b,s)
endproc

process ELECTRON[fire] (b:beam,s:shield) :exit(beam,shield) :=
(Fire[fire](b,s) >> TREATMENT[fire]l(b,s))
[1 TREATMENT[fire](b,s)
endproc

process XRAY[fire](b:beam,s:shield) :exit(beam,shield) :=
hide 1b,hb,ls,hs,xr,el in
TREATMENT [fire] (b,s)
[1 hb; (TREATMENT[fire] (high,s)
[] hs; (TREATMENT[fire] (high,up)
[1 (Firel[fire](high,up) >>
(TREATMENT[fire] (high,up)
[1 1b; (TREATMENT[fire](low,up)
[1 1s; TREATMENT[fire] (low,down)
)

endproc

Figure 7: Specification 11
16

process FIRE[fire](b:beam,s:shield) :exit :=
hide err in
[(b eq high) and (s eq down)] -> ERROR[err] (err54)
[1 [not(b eq high)] -> ZAP[fire](b,s)
[1 [not(b eq high) and not(b eq low)] -> ERROR[err] (err53)
endproc

process ZAP[fire] (b:beam,s:shield) :exit:=
fire!b!s; exit

endproc

process ERROR[err] (e:errnum) :exit:=
errle; exit

endproc

endspec

Figure 8: Specification 11

17

process UNSAFETEST[fire,testok](b:beam,s:shield):exit(beam,shield):=
TREATMENT [fire] (low,down)
| [fire] |
UNSAFETEST [fire,testok] (low,down)
endproc

process UNSAFETEST[fire,testok](b:beam,s:shield):exit(beam,shield) :=
fire'high'down; testok; exit(any beam, any shield)
endproc

Figure 9: Test Process II

The LOTOS test process which tests for this event, Test Process 11, is
given in Figure 9. When we used LOLA with Test Process I, all (finite)
tests were rejected. Thus, we have some confidence that this is, at least, a
safer specification.

However, the story does not end here. So far, we have neglected to
specify the machine operator - a key player in the story. In the next section
we add the specification of the operator.

5 Specification III

In this specification, the operator is specified by the process CONSOLE. The
overall behaviour of the system is given by machine initialisation followed
by the process CONSOLE combined in parallel with the process TREATMENT,
synchronising over events err, xr, el and P. These are the only observable
events which the operator may engage in, i.e. the operator selects the X-ray
or electron mode, or takes action after acknowledging an error message on
the screen.

18

TREATMENT

err Xr el P

We do not attempt to specify the complete behaviour of the operator,
but only that part which is relevant here. As mentioned above, the operator
has the choice of choosing the X-ray or electron modes, or of finishing the
treatment (i.e. exit). However, in addition, the operator can press the ‘P’
(for ‘pause’) key, after an error occurs, to resume the treatment. This is
modelled in the LOTOS process by the event P.

In the new specification of the process ERROR, treatment, i.e. the beam
is fired, is continued only after the P event. But since the combined overall
process must synchronise, or agree, on both this event and the error event, if
the operator does not also offer the same error event and value (i.e. acknowl-
edgement of the error - this is equivalent, here, to displaying the error on
the screen) and the event P, then the process will be stopped, or deadlocked.

Errors in the Therac-25 are reported by number, eg. as ‘Malfunction 54’,
or ‘Malfunction 53’. Thus, the error message does not reflect the nature,
nor the relative importance or priority of the message; the nondeterministic
choice between error offers in process CONSOLE relects this aspect.

The processes TREATMENT, ELECTRON, XRAY, FIRE, and ZAP remain un-
changed. Specifications for the processes STARTUP, ERROR, and CONSOLE are
given in Figure 10.

5.1 Verification

Again, the behaviour which concerns us is the delivery of a radiation over-
dose, i.e the event fire'high'down. If there are traces which include this
event, then according to Safety Property I, the system is unsafe.

We used the same LOTOS test process again, i.e. Test Process II given in
Figure 9, but with the new specifications of STARTUP, ERROR, and CONSOLE
given in Figure 10. When we used LOLA to check whether or not event
testok could be reached, tests with expansion depths up to 8 were rejected,

19

process STARTUP[err,fire,xr,el,P] :exit(beam,shield) :=
hide 1b,1s in
1b; 1s;
(TREATMENT [err,fire,xr,el,P] (low,down)
| [xr,el,err,P]|
CONSOLE[err,fire,xr,el,P])
endproc

(*firing proceeds after agreement on the error followed*)

(* by agreement on P key *)

process ERROR[err,fire,P](e:errnum,b:beam,s:shield) :exit :=
err'e; P; ZAP[fire](b,s)

endproc

process CONSOLE[err,fire,xr,el,P] :exit(beam,shield) :=
xr; CONSOLE[err,fire,xr,ell
[1 el; CONSOLE[err,fire,xr,el]
[1 err'errb53; P; CONSOLE[err,fire,xr,el]
[1 err'errb4; P; CONSOLE[err,fire,xr,el]
[1 exit(any beam, any shield)
endproc

Figure 10: Specification III

20

but the test did pass with depth=9. Thus the specification of the machine,
in parallel with the operator, is unsafe.

The source of the problem of course lies with the operator, and more
specifically, with the user interface. Since some ‘trivial’ errors could occur
up to 40 times a day, operators quickly became used to overriding all errors
with the ‘P’ key, regardless of the error number. Indeed, in [7], it is reported
that one patient was fatally overdosed three times in this way.

A final twist to this tragic story concerns yet another equipment failure.
The clinic (where the first fatality occurred) kept the operator and patient in
separate, heavily shielded rooms, in order to protect the operator from the
radiation. Communication between the two rooms was possible via an inter-
com and closed-circuit television. However, on the day of the overdose(s),
the intercom and television were not working.

6 On Proving Safety

Testing proved to be an adequate verification technique for Specifications I
and III because the specifications were unsafe, i.e. they passed the unsafe
test. However, testing only provides a semi-decision procedure when the
processes under investigation are infinite: in these cases, test rejection proves
nothing conclusive as we can only try a finite number of test depths. Test
rejection suggests that the specifications are safe, but how could we prove
this to be so?

One way is to prove that the test is never passed. This may be done
by transforming the combined specification and test process into a set of
recursive equations and then examining the non-recursive parts to ensure
that the test event does not occur.

6.1 An Example: Proving the test is never passed

As an example of a specification we believe to be safe, consider the specifica-
tion discussed in Section 3.1; namely, a transformed version of Specification
I, modified to exclude the parallelism in SETUP. This specification is given
as Specification 1V in figure 11.

Now consider testing Specification IV with Test Process I, namely
UNSAFETEST[1b,1ls,hb,hs,xr,el,fire].

We expand this process using the bisimulation laws which distribute
parallelism through choice, and represent deadlock by the internal event i

21

behaviour
STARTUP[1b,1ls,hb,hs,xr,el,fire]
where

process STARTUP[1b,ls,hb,hs,xr,el,fire] :exit
1b; 1s; TREATMENT[1b,ls,hb,hs,xr,el,fire]
endproc

process TREATMENT[1b,ls,hb,hs,xr,el,fire]:exit:
(xr; XRAY[1lb,ls,hb,hs,xr,el,fire])
[1 (el;ELECTRON[1b,ls,hb,hs,xr,el,fire])
[1 exit
endproc

process ELECTRON[1b,ls,hb,hs,xr,el,fire]fire]:exit :=
(fire; TREATMENT[1b,ls,hb,hs,xr,el,fire])
[TREATMENT[1b,ls,hb,hs,xr,el,fire]
endproc

process XRAY[1b,ls,hb,hs,xr,el,fire]:exit :=
TREATMENT[1b,1s,hb,hs,xr,el,fire]
[1 hs; (TREATMENT[1b,1ls,hb,hs,xr,el,fire]
[0 hb; (TREATMENT[1b,ls,hb,hs,xr,el,fire]
[1 (fire; TREATMENT[1b,ls,hb,hs,xr,el,fire]
[0 1b; (TREATMENT[1lb,ls,hb,hs,xr,el,fire]
[1 1s; TREATMENT[1b,ls,hb,hs,xr,el,fire]
)

endproc

Figure 11: Specification IV

22

followed by stop (eg. a:P |[a,b]| b:Q = i;stop). We use ellipsis nota-
tion to abbreviate a process whose form is not relevant to the rest of the
transformation, and the process TESTPROC to abbreviate part of the test
process, namely TEST[1b,1s,hb,hs,xr,el,fire] >> testok; exit.

UNSAFETEST[1b,1s,hb,hs,xr,el,fire]
=1b; 1s;
TREATMENT[1b,1s,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC

where

TREATMENT[1b,1s,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
= (i; stop)
[0 (xr;
XRAY[1b,1s,hb,hs,xr,el,firel
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC)
[1 (el;
ELECTRON[1b,1s,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC) .

Expanding the second choice gives:

XRAY[1b,1s,hb,hs,xr,el,firel
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
= TREATMENT[1b,1ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
(] hs; (...)
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
= TREATMENT[1b,1ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
1 i; stop

23

and expanding the third choice gives:

ELECTRON[1b,1s,hb,hs,xr,el,firel
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC)
= TREATMENT[1b,1ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
[1 fire; TREATMENT[1lb,ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
= TREATMENT[1b,1ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
[TREATMENT[1b,ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
= TREATMENT[1b,1ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC.

And so we are left with:

UNSAFETEST[1b,1s,hb,hs,xr,el,fire,testok]
=1b; 1s;
TREATMENT[1b,1s,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC

and

TREATMENT[1b,1s,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC
= (i; stop)
[TREATMENT[1b,ls,hb,hs,xr,el,fire]
| [1b,1s,hb,hs,xr,el,fire] |
TESTPROC.

24

Now we have a set of recursive equations in which the test event testok
cannot not occur and so we conclude that the test cannot be passed.

This approach is dependent upon finding the right set of recursive equa-
tions (in this case it was necessary to eliminate the [> operators). An
alternative approach to proving safety involves the use of temporal logic.

6.2 Temporal Logic

Since the properties which interest us are essentially temporal properties,
another verification technique involves expressing the properties in tempo-
ral logic [9]. When the property is specified in temporal logic, then the
verification problem becomes that of showing that the temporal formula for
the property is satisfied by the LOTOS specification. Temporal formulae
include the usual first order connectives, as well as temporal operators. The
temporal operators which we use are:

e o - nert

o O - sometime
o O - always

o W - until

Informally, oP means that the formula P is true in the next state; OGP
means that the formula P is true in one of the subsequent states; OF means
that the formula P is true in all of the subsequent states; and PW(@ means
that the formula P is true in all subsequent states, or it is true in all sub-
squent a states until a state is reached in which @ is true.

For example, the verification property for Specification 1 given in Sec-
tion 3.1 is specified by: =<C(P1Aoo P2), or equivalently, by O=(P1Aoco P2),

where

Pl = (lbAnols)V (IsAolb)
P2 = (=(hbV hs)) W P3
P3 = hbnoP4

P4 = (=(IbVv hs)) W fire

The verification property for Specifcation III is more concisely given by:
= o firelhighldown.

25

One way to prove satisfaction is to give a temporal logic semantics to
LOTOS: then the problem is reduced to showing that the temporal formula
for the LOTOS specification implies the temporal formula for the given
property.

In [4], a temporal logic semantics for basic LOTOS is given. The seman-
tics is denotational in style and respects trace equivalence; this is adequate
for proving our safety properties, athough it is too weak for proving live-
ness properties. Given this semantic function, £, in order to show that a
safety property P, expressed as a temporal formula, holds for a LOTOS
specification S, we need to show £(S) = P.

The semantic function £ is relatively straightforward for event prefixing
and choice, but becomes quite complicated for the other operators. Be-
cause of this complexity, we do not give the semantics of our specifications
here, but we give just a flavour of the semantics by giving an expression
for the semantics of the body of the TREATMENT process. Processes are not
assumed to be closed and so the event e is used to denote interaction with
an environment. The semantics is given by the disjunction:

eW(zr A oL(XRAY)) V eW(el A oL(ELECTRON)) V eW(d A o(eW false))

The full semantics for the TREATMENT process is given by a maximal fixed
point of a recursive equation, i.e. the equation for L{(TRFATMENT) has
the form

ve.eW(azrA...ox)VeW(elAN...ox)VeW(dNo(eW false))

where v is the maximal fixpoint operator.

There are three difficulties with this approach. The first is that the
formulae are very large and unwieldy; rigorous proofs by hand are unman-
ageable. There is hope though, as the authors of [4] do state that an au-
tomated tool for temporal logic proof is under construction. The second
difficulty concerns the fact that validity in the logic is not decidable, and
so a decision procedure for the entire logic will never be possible. Finally,
the third difficulty is that the current semantics does not cover full LOTOS
and so specifications such as Specification III are excluded from consider-
ation, until such time as the semantics is extended to include data types.
Another possibility, yet to be explored, is to carry out model-checking in a
branching-time temporal logic.

26

7 Discussion

From an informal description of the Therac-25 radiation machine, a formal
specification in LOTOS was defined (Specification I). This specification was
concise enough to fit onto one page, yet still captured the essential behaviour
of the machine, including a fatal design flaw.

A safety property was formulated (Safety Property I) and the verification
of the property explored by considering the traces which could lead to the
delivery of a radiation overdose. These traces, or behaviours, were specified
as LOTOS processes and using the LOLA tool, we showed that the specified
machine could deliver a radiation overdose. We did not prove that this
specification was a most general set of unsafe traces because we did show
that the machine was unsafe. When the converse is the case, then we must
be careful to show that we are considering the most general specification
of unsafe processes. Furthermore, we considered only traces which were
specified as valid machine behaviours. A more comprehensive approach to
safety would be to consider all traces leading to unsafe behaviour and then
relate them to the specified behaviour in order to construct a fault-tolerant
specification.

Further specifications (Specifications I and III) allowed a much simpler
formalisation of Safety Property I because additional, redundant informa-
tion was added to the specification in the form of values representing the
state of the beam and the shield. The behaviour of Specification 11 changed
dramatically when it was combined with the CONSOLE process in Specifica-
tion 1I, demonstrating the importance of considering the behaviour of the
environment of the machine (or, indeed, any process) when proving safety
properties.

Several important aspects of the disable operator [> were uncovered in
this case-study. This very powerful operator prevented a seemingly simple
transformation from a specification without values to one with values. This
does suggest that it should be introduced into a specification with great
care, and that further properties of [>, w.r.t. the various congruences and
equivalences, should be studied (eg. under what conditions doesP [> P = P
hold?).

The testing tool LOLA was used extensively, and successfully, but the
need for a full temporal logic semantics and an automated theorem prover
or model checker was identified.

27

7.1 Conclusions

We have achieved our goals in this small case study: to consider the formal
specification and verification of a safety-critical medical application. LO-
TOS has proved to be an appropriate specification language and property
testing, using LOLA, was a valuable verification tool. Since our specifica-
tions are of potentially infinite processes, testing was only conclusive when
the test is passed, i.e. the specification is unsafe, as was the case for the
main specifications (Specifications I and III). As an experiment, we pre-
sented these specifications to several Computing Scientists for informal veri-
fication; in nearly all cases, the unsafe behaviour was not detected. Thus, we
are convinced that (some) formal verification is necessary when considering
applications and problems of this nature.

The problem of proving safety is more difficult, but we also showed how
testing and temporal logic may be used in a proof of safety.

We are aware that this case study has not delved deeply into safety
issues of a realistic application and presents a rather simplistic view. A
more realistic view would at least involve safety requirements at different
levels, for different components of the system. For example, there might be
some modes of behaviour for which a state with a high intensity beam and
low shield is required.

Finally, the interested reader is encourage to read the detailed report by
Leveson and Turner [8] (which appeared after this specification experiment
had been carried out).

7.2 Future Work

The fundamental question is could formal methods have helped to prevent
the Therac-25 tragedy, and how can they be used in future the development
of reliable safety-critical software? Formal methods are not a panacea, but
they must have an important role to play. Future work is planned and will
concentrate on the development of further tools and techniques as discussed
above, and also on a coherent approach to the application of formal meth-
ods within the established framework for building safety-critical systems in
engineering and science.

Acknowledgements

Carron Kirkwood repeated some of the verification tasks using the PAM
(Process Algebra Manipulator) tool and in the course of her work she un-

28

covered some of the problems with the disable operator as well as several

typos in an earlier draft. An anonymous reviewer also made several useful
suggestions for improvement.

References

[1]

[2]

[10]

T. Bolognesi, E. Brinksma, Introduction to the ISO Specification Lan-
guage LOTOS, Computer Networks ISDN Systems 14, pp. 25-59,1987.

Radiation Accident at Hammersmith, British Medical Journal, number
5507, 23 July, pg. 233, 1966.

F.J. Carrasco, J.J. Gil, A Method for Specifying and Validating Com-
munication Protocols in LOTOS, in Formal Description Techniques V,
M. Diaz, R. Groz (eds.), North-Holland, 1993.

A. Fantechi, S. Gnesi, C. Laneve, An Expressive Temporal Logic for
Basic LOTOS, in Formal Description Techniques I, S. Vuong (ed.),
North-Holland, 1990, pp. 261-276.

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall In-
ternational, 1985.

ISO [1SO:8807] Information Processing Systems — Open Systems In-
terconnection — LOTOS — A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour, 1988.

J. Jacky, Safety-Critical computing: Hazards, Practices, Standards and
Regulation, in Computerization and Controversy, Dunlop and Kling
(eds.), Academic Press, 1991.

N. Leveson, C. Turner, An Investigation of the Therac-25 Accidents,
IEEE COMPUTER, pp. 18-41, July 1993.

7. Manna, A. Pnueli, Verification of Concurrent Programs: The Tem-
poral Framework, in R.S. Boyer, J.S. Moore (eds.) Correctness Problem
in Computer Science, Academic Press, 1981, pp. 215-273.

R. Milner, Communication and Concurrency, Prentice-Hall Interna-
tional, 1989.

29

[11] J. Quemada, S. Pavén, A. Fernandez, Transforming LOTOS specifica-
tions with LOLA - The Parameterised Expansion, in Formal Descrip-
tion Techniques I, K. Turner (ed.), North-Holland, 1988.

[12] M. Thomas, A Proof of Incorrectness using LP: The Editing Problem
in the Therac-25, High Integrity Systems Journal, Volume 1, Issue 1,
OUP, 1993.

30

