A Proof of Incorrectness using the LP Theorem
Prover:

The Editing Problem in the Therac-25

Muftfy Thomas
Dept. of Computing Science
University of Glasgow
Glasgow, U.K.

August 11, 1993

Abstract

The Therac-25 is a computer-controlled radiation machine which
delivered several accidental radiation overdoses, some of which resulted
in the loss of life. As reported in [4], the source of the unsafe behaviour
of the machine is a complex array of factors, one of which is an error
in the set of editing routines for entering the treatment data. In this
paper we formalise some of this code as a set of first-order axioms and
show, using the automated theorem prover LP [1], that the code does
not behave as intended, i.e. it 1s incorrect.

We do so by attempting to prove that the code does behave as
intended, and then hope to learn about the nature of the error by
examining how the proof fails. In order to gain confidence in our lack
of proof, we begin by proving that some of the expected properties do
indeed hold.

We conclude by using LP to guide us to a solution to the error and
after correcting the code, we prove that the resulting code is indeed
correct.

1 Introduction

Formal specification and verification techniques are part of a wider disci-
pline of designing and implementing safety-critical software; by referring to
a recent, relevant example, we hope to illustrate the contribution of formal

methods. The example which we consider is the Therac-25: a computer-
controlled radiation machine, or linear accelerator, used for radiation ther-
apy. It was manufactured by Atomic Energy of Canada Ltd. (AECL) during
the 1980s and was used at hospitals and clinics in the U.S.A. and Canada.

As a result of software errors, several patients were killed or injured
by radiation overdoses delivered by the machine. The events leading up to
these deaths and the actions taken as a result, are recounted in [3] and
in a more detailed investigation of the accidents undertaken by N. Leveson
and C. Turner in [4]. In another paper in this volume, [5], the machine is
described in more detail.

Here, we consider only one small aspect of the Therac-25 software. It is
not our intention to suggest that there are only a few isolated “bugs” in the
Therac-25, or that formal specifications alone can capture all the potential
behaviours and interactions of a safety-critical system; the sources of errors
are usually very complex and influenced by a variety of factors, not all of
which are quantifiable. However, we do feel that formal methods have an
important role to play and the Therac-25 is a good application to study.
No aspects of the Therac-25 machine have, to the author’s knowledge, been
formally specified (except in [5]).

Here, we consider one specific error, or “bug”, as described in [4]. The
problem concerns one particular aspect of the code for the machine: the
editing of the treatment parameters. In [4], the relevant pseudocode (the
actual code was written in assembler) is given. Our aim is to show, formally,
using the automated theorem prover/proof assistant LP [1], that this code
does not behave as intended, i.e. it is incorrect. We do so by attempting
to prove that it is correct, and then hope to learn about the nature of the
error by examining how the proof fails. In order to gain confidence in our
proof, or lack of proof, we first ensure that we can prove that some of the
properties that we expect to hold for the code do indeed hold.

The paper is organised as follows. In the next section, we give the
background to the problem, the pseudocode for the relevant editing routines,
and some correctness properties. Section 3 contains an overview of the LP
theorem prover and in Section 4 we give the axiomatisation, in LP, of the
editing routines. In Section 5 we prove some theorems about the correctness
of the code and through the process of trying to prove further correctness
conjectures, we are led to some theorems which illustrate how the code is
incorrect.

These incorrectness results are discussed in Section 6 and then in Section
7 we use LP to direct our search for a correction to the error, concluding with

a proof that the resulting code is correct. The results of our investigation are
discussed in Section 8 and some conclusions are given in the final Section.

2 The Editing Problem

The Therac-25 delivers two kinds of radiation beams for radiation therapy:
electron and X-ray. The electron beam is used to irradiate the patient
directly, using scanning, or bending magnets to spread the beam to a safe
and therapeutic concentration. The X-ray beam is created by bombarding
a metal shield, or “beam flattener”; the electrons are absorbed by the shield
and X-rays emerge from the other side. Since the efficiency of producing
X-rays in this way is very poor, the current of the electron beam has to be
increased to over 100 times the intensity when used directly for irradiation.

The greatest danger posed by the machine is the possibility of irradiating
a patient directly with the high energy electron beam, i.e. without the X-ray
shield in place. This situation could arise, for example, if both a high energy
beam and an electron mode are specified as treatment parameters. Since
such a combination is usually undesirable, we might expect the machine to
recognise and block such a potentially dangerous situation. We now proceed
to describe how this situation could, and did, arise in the Therac-25.

The machine operator enters the treatment data: treatment mode, en-
ergy level, position, etc., at the console before commencing treatment. If the
operator wishes to alter the treatment data, for example, to rectify a mis-
take, then the data can be edited, using the cursor, without recommencing
the data entry procedure from the beginning.

A problem uncovered in [4] can occur when the editing is carried out very
quickly, i.e.whenthe operator moves the cursor, types in the new data, and
returns the cursor, all within 8 seconds. It is possible, in this scenario, for
the results of the edit to appear on the console screen but with the internal
treatment parameters remaining unchanged.

In order to uncover exactly how this situation can arise, we will examine
the high-level description of the various routines and tasks involved, as given
in [4].

2.1 The Code

The overall behaviour of the machine is controlled by the TREAT task,
which runs concurrently with the keyboard handler task. One of the first
routines called by TREAT is DATENT (data entry) which communicates

{L1:}IF mode/energy in MEOS specified THEN
BEGIN
calculate table index
REPEAT
fetch parameter
output parameter
point to next parameter
UNTIL all parameters set
CALL MAGNET
{L2:}1F mode/energy in MEOS changed THEN RETURN {goto L1}
END
IF data entry is complete THEN set TPHASE to 3
IF data entry is not complete THEN
IF reset command entered THEN set TPHASE to 0
RETURN

Figure 1: DATENT ROUTINE

with the keyboard handler task via a shared variable to determine if the
treatment data has been entered. When the data entry is complete, then
the TREAT task begins another phase, namely to set up the machine and
deliver the treatment. The variable TPHASE (treatment phas indicator)
determines the next subroutine to be called: 0 for routine DATENT, and 3
for a routine called SET-UP TEST (a routine which is not relevant here).

The keyboard handler parses the mode and energy level specified by
the operator and places the encoded result in the shared variable MEOS
(mode/energy offset variable). Initially, the data entry process forces the
operator to enter the mode and energy parameters, but the operator can
later edit both of these parameters separately. If an edit to these parameters
is detected during the rest of the data entry procedure, then the procedure
should start over again.

When the energy and mode parameters are set, a table of preset oper-
ating parameters is consulted and fetched, according to the given mode and
energy parameters. Once these operating parameters are set, the routine
MAGNET is called which sets the bending magnets.

It takes a certain amount of time to set each magnet (about 8 seconds to

Set bending magnet flag
REPEAT
Set next magnet
Call PTIME
{L3:}IF mode/energy in MEOS has changed THEN exit {goto L2}
UNTIL all magnets are set
RETURN {goto L2}

Figure 2: MAGNET ROUTINE

REPEAT
IF bending magnet flag is set THEN
IF editing taking place THEN
IF mode/energy in MEOS has changed THEN exit {goto L/}
UNTIL hysteresis delay has expired
{L4:}Clear bending magnet flag
RETURN {goto L3}

Figure 3: PTIME ROUTINE

set all of them) and so the routine MAGNET calls another routine PTIME
to introduce a time delay. A flag to indicate that magnet bending activity is
taking place is set and cleared at the beginning and end (resp.) of PTIME.
Since there are several magnets, PTIME is entered and exited several times.
During both MAGNET and PTIME, the shared MEQOS variable, which can
be set by the keyboard handler, is consulted to determine whether or not
the energy/mode parameters have been edited. There are numerous exit
points, corresponding to detection of such edits.

The pseudocode for these routines: DATENT, MAGNET, and PTIME,
is given in figures 1, 2 and 3, respectively. The code is taken from [4], with
the some minor additions, for readability.

2.2 The Intended Behaviour

Our primary concern is that when edits to the energy/mode parameters
occur, as reflected in the MEOS variable, they are detected within the
DATENT routine and the routine should start again. That is, if the en-
ergy/mode parameter has changed, then control should return to {L1}. If
no edits are detected, then after completing DATENT, control should return
to TREAT, with a new TPHASE setting.

In essence, we are interested in two outcomes: return to the start of
the DATENT routine again, or finish the DATENT routine. This outcome
should depend on whether or not there are edits to the energy/mode param-
eters, as reflected in the MEOS variable, at any time during the execution
of DATENT. More specifically, we are concerned with the edits which may
occur during the magnet setting period. If the routines are correct, then

e if there are edits to the energy/mode parameters during the magnet
setting period, then control should return to the start of the DATENT
routine,

e if there are no edits to the energy/mode parameters during the magnet
setting period, then the DATENT routine should finish and return
control to TREAT.

In the next section, we give a formalisation of the code which will allow
us to check, formally, whether or not the code behaves correctly, with respect
to these properties.

3 The LP Theorem Prover

LP [1] (the Larch Prover) is an interactive proof assistant for a subset of
multisorted first-order logic. The interested reader is directed to [2] for a
more comprehensive introduction to LP. Here, we review how LP was used
in this case study.

The underlying language is defined in LP by declarations. Sorts, vari-
ables, and operators (with functionality) are declared by commands of the
form:

declare sort Elem
declare variables x,y: Elem
declare operators

c: -> Elem

f: Elem -> Elem

Multi-line commands in LP are always terminated by “..”.

Axioms are defined in LP by assertions. In our formalisation, we use
three forms of axiom: equations, which are then oriented as rewrite rules,
rewrite rules, and induction rules. Axioms are defined in LP by commands
of the form:

assert
f(c) == ¢
f(c) > ¢

for equations and rewrite rules, respectively, and by:

assert
Elem generated by c,f

for induction rules.

Much of LP’s deductive system is based on the rewrite rules which result
from orienting the equations. In general, not all equations are orientable;
however, in this example they may be oriented using the built-in (simplifica-
tion) termination ordering noeg-dsmpos. This is a registered ordering based
on the partial ordering between operators given by the user, and the one
deduced by LP according to the rewrite rules seen so far. In our axiomatisa-
tion, we give equations when we are certain that there is enough information

in the registry to deduce the orientation we intend. This is the preferred
approach. Otherwise, we give the axiom as a rewrite rule.

There are numerous inference methods in LP and several methods of
backward inference. In this example, the proofs of theorems are carried out
using a combination of prove by case and prove by implication methods,
along with rewrite rule instantiation and normalisation.

4 The Axiomatisation

There are two obvious ways in which to formalise the editing code: formalise
an abstract machine for the code and then consider the behaviour of this
machine when “running” the code, or formalise the code directly, as an
operation on abstract machine states. Since the editing code is the only
example program to be considered, we choose the latter approach.

The main components of the formalisation are (machine) states and edit-
ing histories. The former reflect the state of the (abstract) machine; thus,
the routines are operations on states. The latter reflect the behaviour of the
operator at the console. Essentially, we must model the editing behaviour,
at the console, over the time taken to set the magnets. Namely, for each
magnet, for each moment of the delay required for setting that magnet,
we need to specify whether or not the energy/mode parameters have been
edited.

The remaining two components of the formalisation are numbers and
the magnets and delay, which we model using numbers. Without loss of
generality, we fix the number of magnets to 3 and the unit of time delay to
1.

In the formalisation, we have abstracted away from the details of the
actual data concerned; eg. the values of the mode and energy parameters and
other parameters which may be set by the operator, and details concerning
how the magnets are bent. Rather, we are only concerned with whether or
not the values have changed. Thus, the relevant parameters are modelled
by boolean variables.

In the following subsections, we give the LP axiomatisations of machine
states, numbers, magnets and delay, editing histories, and finally, the code.

Comments are given on a line beginning with % and the current name
used to prefix rules and conjectures is defined by the command set name
name.

4.1 State

For our purposes, an abstract state (the sort state) of the machine need
contain only three pieces of information: whether or not the mode/energy
parameters in the MEQOS variable have changed, whether or not the state of
the magnet bending flag is set, and whether or not editing is taking place.
These are each represented by variables of the (built-in) boolean type and
named MEOS, MF (for magnet flag) , and EF (for editing flag), respectively.
MEOQOS is true only when the mode/energy parameters have changed; MF is
true only when the magnet bending flag is set; and EF is true only when
editing is taking place (that is, editing to any data field and not just to the
MEOS variable).

There is one generator operation to make a state; in addition, there are
operations to set and clear the MEOS and MF components of a state, and
several predicates to check the states of the components MEOS, MF and
EF. Note that there is no operation to set the edit flag, EF, since this is not
a program operation but an operation of the keyboard handler.

set name basicstate
declare sort state
declare variables MEOS,MF,EF: bool, st,stl,st2: state

declare operators
% a state is a triple: <MEOS, MF, EF>
% MEOS- mode/energy offset variable (true when editing mode or energy)
h MF - magnet flag (true when bending magnets)
h EF - edit flag (true when editing any data entry)

stat: bool, bool, bool -> state
setMF : state -> state

setMEQOS : state -> state

clrMF : state -> state

clrMEQOS : state -> state
issetMF : state -> bool
issetMEOS : state -> bool
issetEF : state -> bool
issetEFMEOS : state -> bool

assert state generated by stat

assert

setMF (stat(MEOS,MF,EF)) == stat(MEOS,true,EF)
setMEOS(stat (MEOS,MF,EF)) == stat(true,MF,EF)
clrMF (stat(MEOS,MF,EF)) == stat(MEOS,false,EF)
clrMEOS(stat (MEOS,MF,EF)) == stat(false,MF,EF)
issetMF(stat (MEOS,MF,EF)) = MF
issetMEOS (stat (MEOS,MF,EF)) == MEOS
issetEF(stat (MEOS,MF,EF)) == EF
issetEFMEOS(st) == issetEF(st) & issetMEOS(st)

4.2 Numbers

The formalisation of numbers is fairly uninteresting. We use the standard
LP file “nat.lp” and add two comparison operators and the constant “3”.
The interested reader can find the script for nat.lp in the Appendix.

execute nat.lp

declare operators
> :nat, nat -> bool
<=: nat, nat -> bool
3 :-> nat

assert
s(x) > 0 => true
0 > s(x) -> false
0 > 0 -> false
sx) >s(y) >x >y
xX<=y->y>x | x=y
3 -> s5(2)

4.3 Magnets and Delay
As we stated above, magnets and delays are modelled by numbers.

set name magnets
declare operators

magnets: -> nat
assert

10

magnets == 3

set name delay
declare operators
delay :-> nat
assert
delay == 1

4.4 Editing Histories

An editing history (the sort edithistory) models the (relevant) history of
the editing behaviour at the console, during the setting of the magnets.

An editing state, at any moment, is represented by the sort editpr,
pairs of booleans representing whether or not the mode/energy parameters
have been changed, as reflected in the variable MEOS, and whether or not
an editing is taking place. These components are called MEOS and EF, as
before. A state in which the mode/energy parameters are being edited is
represented by both MEQOS and EF being true; if only EF is true, then some
other part of the treatment data is being edited.

An editing history, sort edithistory, is essentially a list of editpr: the
positions in a list determining the corresponding magnet and delay. Since,
in this case, the delay is 1, the positions in the list correspond directly to
the magnet numbers. Moreover, since we are restricted to lists of length
3, we can model editing histories by triples. Thus, there in one generator
operation to make an editpr, pr, and one generator operation to make an
edithistory, edit. There is one selector operation select which returns an
edit pair, from an edit history, given a magnet number and delay. Since the
delay is 1 in this example, an auxiliary operation selectx is used to define
select. The constants editl, edit2, and edit3 are used for example edit
histories. The particular examples are described in the comments in the
axioms where they defined.

There are four predicates on edit histories: iseditmeos and noeditmeos
denoting (resp.) whether or not there is an edit to the energy/mode param-
eters at any time in the history, and mag3editmeos and nomag3editmeos
denoting (resp.) whether or not there is an edit to the energy/mode pa-
rameters during the setting of magnet 3. The motivation for these last two
predicates will be revealed when we try to prove the correctness properties.

Finally, there are two predicates on edit pairs: issetMEQS, and issetEF,

11

which are similar to the predicates on state with the same name.

set name editing
declare sort edithistory, editpr
declare operators

hedit - make an edit history

heditl, edit2, edit3 - constants for example edits
hselect: magnet,delay, edithistory -> state

hiseditmeos - any edit to mode/energy?
/inoeditmeos - no edit to mode/energy?

Jmag3editmeos - an edit to mode/energy during magnet 37

/inomag3editmeos - no edit to mode/energy during magnet 37
%issetMEQOS,issetEF, issetEFMEOS - edits to EF and/or MEQOS?

edit : editpr, editpr, editpr -> edithistory

pr : bool, bool -> editpr
select : nat, nat, edithistory -> editpr
selectx : nat, edithistory -> editpr

iseditmeos, noeditmeos : edithistory -> bool

nomag3editmeos : edithistory -> bool
mag3editmeos : edithistory -> bool
issetMEOS : editpr -> bool

issetEF : editpr -> bool

issetEFMEOS : editpr -> bool

hordering information

register height (edit3,edit2, editl) > edit
register height edit > (stat,true,false,1,2)
register height noeditmeos > iseditmeos

declare variables m,n : nat, est : edithistory, el,e2,e3 :
declare variables MEOS1,ME0OS2, MEOS3:bool, MF1,MF2,MF3

declare variables EF1,EF2,EF3 : bool

assert edithistory generated by edit

assert
select(s(x),y,est) == selectx(s(x),est)
selectx(1,edit(el,e2,e3)) == el
selectx(2,edit(el,e2,e3)) == &2
selectx(3,edit(el,e2,e3)) == &3

editpr

: bool

hassume that y=1

iseditmeos(edit(el,e2,e3))
== issetEFME0S(el) | issetEFMEOS(e2) | issetEFME0S(e3)

noeditmeos(est) == not(iseditmeos(est))

nomag3editmeos(edit(el,e2,e3)) == not(issetEFMEOS(e3))
mag3editmeos(edit(el,e2,e3)) == issetEFMEOS(e3)

issetMEOS(pr(MEOS,EF)) == MEOS
issetEF (pr(MECS,EF)) == EF
issetEFMEOS(el1) == issetME0S(el) & issetEF(el)

% define some editing behaviours as a constants
% define edits in order, eg, edit(lst pr,2nd pr,3rd pr)

assert
heditl: 3 magnets, 1 delay, no edits

editl == edit(pr(false,false),pr(false,false),pr(false,false))

hedit2: 3 magnets, 1 delay, edit to MEOS during magnet 3
edit2 == edit(pr(false,false),pr(false,false),pr(true,true))

hedit3: 2 magnets, 1 delay, edit to MEOS during magnet 1 and
% magnet 2, but no edit during magnet 3
edit3 == edit(pr(true,true),pr(true,true),pr(false,false))

4.5 Code

Now we are able to formalise the code. The operations are essentially oper-
ations from state to state, with the additional argument of a current edit
history, and, in some cases, loop counters and indices for selection on the
edit history. The operations correspond quite closely to the program state-
ments and routines, with two exceptions. The first is that in order to detect
a return to the start of DATENT, i.e. to { L1}, we introduce a constant state
STARTAGAIN and replace the RETURN in {L2}, i.e. goto {L1}, by the state

13

STARTAGAIN. The second is that in order to represent a return of control
to TREAT, after completing DATENT, we introduce a state FINISH(.).
FINISH(.) depends on the current state, so that we can observe the state
in which the program finishes. We replace the commands after the main
loop of DATENT, by FINISH(st), and so the statement {L2} involves a
branching between STARTAGAIN and FINISH(st). We explicitly assert that
STARTAGAIN and FINISH(st) are not equivalent.

We note that the magnets are processed in the order magnet down to 1;
i.e. in this example, magnet 3 is processed first.

Although we have included the operations Fetchparams and Tableindex
for completeness, these operations are not relevant here and they have no
observable effect on the state.

set name code

declare operators
L1 : edthistory ->state
L2 : state -> state
L3 : edthistory, nat, state -> state ¥ nat is for loop counter
L4 : edthistory, nat, state -> state % ono

% subroutines
MAGNET : edthistory, state -> state
PTIME : edthistory, nat, nat, state -> state) nats for loop counters

% others
MAGLOOP : edthistory, nat, state -> state % nat for loop counter
BExpl : edthistory, nat, nat,state -> state J nats indices for history
BExp2 : edthistory, nat, nat,state -> state ¥ "
Fetchparams : state -> state
Tableindex : state -> state

% state constants
INITIAL :-> state
STARTAGAIN :-> state
FINISH : state -> state

assert
INITIAL -> stat(false,false,false)

14

L1(est) -> MAGNET(est,Fetchparams(Tableindex(INITIAL)))

Fetchparams(st) -> st
Tableindex(st) -> st

MAGNET (est,st) —->MAGLOOP(est,magnets,setMF(st))

MAGLOOP(est,0,st) == L2(st)
MAGLOOP (est,s(x),st) == PTIME(est,s(x),delay,st)

PTIME(est,x,0,st) -> L4(est,x,st)
PTIME (est,x,s(y),st)
-> if(issetMF(st) ,BExpl(est,x,s(y),st) ,PTIME(est,x,y,st))
BExpi(est,x,s(y),st)
-> if(issetEF(select(x,s(y),est)), BExp2(est,x,s(y),st),
PTIME (est,x,y,st))
BExp2(est,x,s(y),st)
-> if(issetMEOS(select(x,s(y),est)), L4(est,x,setMEOS(st)),
PTIME (est,x,y,st))

L2(st)-> if(issetMEOS(st), STARTAGAIN, FINISH(st))
L3(est,s(x),st) -> if(issetMEOS(st), L2(st), MAGLOOP(est,x,st))

L4(est,x,st)-> L3(est,x,clrMF(st))

4.6 Ordering Register

The partial ordering on operators is given by:

register height magnets > (2,s)

register height delay > 1

register height (edit3,edit2, editl,edit) > (stat,true,false,1,2)
register height noeditmeos > iseditmeos

register height BExpl > PTIME

register height PTIME > L3

15

register height L4 > L3 > (STARTAGAIN, MAGLOOP)
register height MAGLOOP > L2
register height L1 > FINISH

Given this register information, the equations and rewrite rules can be
ordered, as desired, according to the termination ordering. When the equa-
tions are oriented as rewrite rules, and internormalised, some of the rules
are very large indeed, eg. they can only be displayed over several screens on
the terminal. It is quite clear that it is not feasible to carry out proofs in
this rewriting system by hand; some machine assistance is obligatory.

5 Theorems and Proofs

Now consider some of the desirable properties of the code. The properties
which interest us are of the form “if there are no edits (to the mode/energy
parameters in the MEOS) during the magnet setting period then the pro-
gram finishes”.

In our formalisation, we represent an edit by the open formula
edit(pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(MEOS3,EF3)), where MEOS1, EF1
... MEDS3, EF3 are boolean variables representing the variables of the same
name during the setting of each magnet. We represent “there are no edits”,
for a given edit history, by the (open) formula
noeditmeos(edit (pr(MEOS1,EF1) ,pr (MEOS2,EF2) ,pr(MEOS3,EF3))).

Since the program depends on an edit history and begins with the state-
ment {L1}, the program is represented by the (open) formula
L1(edit (pr(MEOS1,EF1),pr (MEOS2,EF2) ,pr(MEOS3,EF3))). This is the
general form of the program with an edit history.

The program with an example history, eg. with example edits edit1i,
edit, or tt edit3, is given more simply by a formula of the form L1(edit1).

In the following subsections, we give some example conjectures and
proofs. Some proofs require no user assistance, whereas others require guid-
ance. In each case, the guidance is fairly minimal. The descriptions which
follow are sequences of LP commands, with only minimal discussion of how
the proofs are carried out. The reader is again directed to [2] for a detailed
introduction to theorem proving in LP.

The resume by case z command causes LP to resume the proof (of the
current (sub) goal) under the assumptions of the case hypotheses. Namely,
resume the proof first under assumption z true, and then under assumption
not z true. The ged command causes LP to check whether there are any

16

outstanding conjectures; if so, then an error message appears. If not, there
is no response (except to expect the next command) and we may interpret
this as a “mathematical” ged.

In the proofs, the lines beginning with [1 (box) and <> (diamond) are
LP annotations. Diamonds indicate the introduction of subgoals and boxes
indicate the discharging of subgoals. When replaying a proof, these anno-
tations behave like the ged command: they cause an error to be reported if
the proof does not follow the indicated format.

5.1 Correctness Properties

We begin by checking that some simple properties hold; for example, we
prove that edit3 contains some edits to MEQOS, but they do not take place
during the setting of magnet 3. These properties are given in LP by the
following conjectures, or theorems, C'l and C'2, which are proved by nor-
malisation:

C1:

prove nomag3editmeos(edit3) = true
[1 conjecture
gqed

C2:

prove iseditmeos(edit3) = true
[1 conjecture
gqed

We can also prove that there are no edits to MEOS in edit history
editl, and that the program, with editi, finishes in a state of the form
FINISH(st). In fact, it finishes in a state with all three variables false. This
is given in LP by the theorems:

C3:

prove noeditmeos(editl) = true
[1 conjecture
gqed

4 :

17

prove Li(editl) = FINISH(stat(false,false,false))
[1 conjecture
gqed

Now we try to generalise theorem (C'4 to the first of the correctness prop-
erties mentioned above: if there are no edits in the edit history then the
program finishes, i.e. it ends in a state of form
FINISH(stat(false,false,false)). This is given in LP by the implica-
tion:

C5:

prove
(noeditmeos(edit (pr(MEOS1,EF1),pr(ME0S2,EF2) ,pr(MEOS3,EF3))))
=>
L1(edit(pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(ME0S3,EF3)))
= FINISH(stat(false,false,false))
by =>

We discover that we cannot prove this conjecture directly from the axioms,
we must first prove the following two lemmata. The first is proved by impli-
cation and normalisation and the second is proved by case and normalisation:

C6:

prove
noeditmeos(edit(pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(MEOS3,EF3)))
=>
not (MEOS3 & EF3)
by =>

<> 1 subgoal for proof of =>
[1 => subgoal
[1 conjecture
gqed

C7:

prove not(bl & b2) => if(bl,if(b2,stl,st2),st2) = st2
resume by case b2

18

<> 2 subgoals for proof by cases
resume by case bl
<> 2 subgoals for proof by cases
[1 case blc
[l case not (blc)
[1 case b2c
[l case not(b2c)
[1 conjecture
gqed

Now the main conjecture, C'5, is proved by instantiation, referring to
lemma C'7 which is named code.17 in LP. This instantiation is necessary
as during the course of proving C5, its variables are replaced by constants.

prove
(noeditmeos(edit (pr(MEOS1,EF1),pr(ME0S2,EF2) ,pr(MEOS3,EF3))))
=>
L1(edit(pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(ME0S3,EF3)))
= FINISH(stat(false,false,false))
by =>

<> 1 subgoal for proof of =>
instantiate b2 by ME0OS3c,bl by EF3c in code.17
[] => subgoal
[1 conjecture
gqed

Another property to check is that when there is an edit to the en-
ergy/mode parameters in MEOS;, as in edit2, then the program starts again,
i.e. it ends in a state of form STARTAGAIN. These properties are given in LP
by the following theorems which are all proved by normalisation:

C8:

prove iseditmeos(edit2) = true
[1 conjecture
gqed

C9:

prove mag3editmeos(edit2) = true

19

[1 conjecture
gqed

C10:

prove Li(edit2) = STARTAGAIN
[1 conjecture
gqed

Now consider generalising this last theorem to any edit history. As a
first step in generalisation, consider the case where there is an edit during
magnet 3; i.e. if there is an edit to MEOS, then the program starts. This is
given in LP by:

C11:

prove
mag3editmeos (edit (pr(MEOS1,EF1),pr (MEOS2,EF2) ,pr(MEOS3,EF3)))
=>
L1(edit (pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(MEOS3,EF3)))
= STARTAGAIN

Again, this conjecture does not follow from the axioms, but when we first
prove the subgoals:

12

prove
mag3editmeos (edit (pr(MEOS1,EF1),pr (MEOS2,EF2) ,pr(MEOS3,EF3)))
=>
(MEOS3 & EF3)
by =>

<> 1 subgoal for proof of =>

[1 => subgoal
[1 conjecture

20

prove
mag3editmeos (edit (pr(MEOS1,EF1),pr (MEOS2,EF2) ,pr(MEOS3,EF3)))
=>
L1(edit (pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(MEOS3,EF3)))
= STARTAGAIN

<> 1 subgoal for proof of =>
[] => subgoal
[1 conjecture
gqed

then theorem C11 is proved by:

prove
mag3editmeos (edit (pr(MEOS1,EF1),pr (MEOS2,EF2) ,pr(MEOS3,EF3)))
=>
L1(edit (pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(MEOS3,EF3)))
= STARTAGAIN

<> 1 subgoal for proof of =>
instantiate b2 by ME0OS3c,bl by EF3c in code.17
[] => subgoal
[1 conjecture
gqed

We can generalise this theorem further to the main conjecture for the
correctness property, i.e. if there are any edits to MEOS then the program
starts again by:

(14 :

prove
(iseditmeos(edit(bl, b2, b3, b4, b5, b6, b7, b8, b))
=>
L1(edit(b1l, b2, b3, b4, b5, b6, b7, b8, b9I))
= STARTAGAIN

We find that we are unable to prove this theorem; and from the subgoals
generated by LP, we are led to think of the following conjecture:

15

21

prove
(iseditmeos(edit (b1, b2, b3, b4, b5, b6, b7, b8, b9))
& nomag3editmeos(edit(bl, b2, b3, b4, b5, b6, b7, b8, b9)))
=>
Li(edit (b1, b2, b3, b4, b5, b6, b7, b8, b))
= STARTAGAIN

This conjecture says that if there is an edit to the MEOS, but it is not
during the setting of magnet 3, then the program starts again. This is just a
refinement of C'14 and so it is also a correctness property that should hold.
But, again, we cannot prove it.

5.2 Incorrect properties

We cannot prove the main correctness property (14, nor the conjecture
C'15, because we can prove that when there is an edit to the MEOS, but not
during the setting of magnet 3, then the program finishes. Surely, this is
not an intended behaviour as we wish the program to start again whenever
the MEOS has been edited. In LP, we prove it as follows:

€16 :

prove
(iseditmeos(edit (pr(MEOS1,EF1),pr(MEQS2,EF2) ,pr(MEOS3,EF3)))
&
nomag3editmeos(edit (pr(MEOS1,EF1) ,pr (MEOS2,EF2) ,pr (MEOS3,EF3))))
=>
L1(edit(pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(ME0S3,EF3)))
= FINISH(stat(false,false,false))

resume by case MEOS3 & EF3
<> 2 subgoals for proof by cases
[1 case EF3c & MEOS3c
instantiate b2 by MEOS3c, bl by EF3c in code.17
[1 case not(EF3c &MEOS3c)
[1 conjecture
gqed

A hint of what is going wrong in the program comes when we show the
normal form of the term

22

L1(edit(pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr (MEOS3,EF3))),
the general form of the program with an edit history.

C17:

show normal
L1(edit(pr(MEQS1,EF1),pr(MEOS2,EF2) ,pr(MEOS3,EF3)))

gives the term

if (EF3,
if (MEOS3, STARTAGAIN, FINISH(stat(false, false, false))),
FINISH(stat(false, false, false)))

This normalisation demonstrates that the behaviour of the program depends
only on the variables MEOS3 and EF3: the variables used to define the state
during the setting of magnet 3. The other variables representing the edit
history during the setting of the other magnets are ignored. This means
that the behaviour at the console, during the setting of the other magnets,
is ignored! Thus, for example, an edit to the MEOS during the setting of
magnet 2 will be ignored and the program could finish, instead of starting
again.

Indeed, this result leads us to try to prove the conjecture which says
that if there are no edits during the setting of magnet 3, then the program
finishes. In LP this is proved in two steps by:

C18:

prove
nomag3editmeos(edit (pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr (MEOS3,EF3)))
=> not(ME0OS3 & EF3)
by =>

<> 1 subgoal for proof of =>
[] => subgoal
[1 conjecture
gqed

19

23

prove
nomag3editmeos(edit (pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr (MEOS3,EF3)))
=> L1(edit (pr(MEOS1,EF1),pr(MEOS2,EF2) ,pr(MEOS3,EF3)))
= FINISH(stat(false,false,false))

[1 conjecture
gqed

We conclude from these theorems that the behaviour of the routines depends
solely on the editing behaviour at the console during the setting of magnet
3, i.e. the first magnet to be set.

6 Discussion of Incorrectness

Since the behaviour of the editing routines depends solely on the editing
behaviour during the setting of the first magnet (i.e. magnet 3), if an edit
occurs during the setting of the other magnets, then the edit will be ignored
in routine DATENT. In practice, since setting the magnets takes about 8
seconds (the precise time is not known by this author), this means that edits
performed within 8 seconds of initial data entry, but after the time to set one
magnet, although appearing on the console, are not reflected in DATENT by
the fetching of the relevant operating parameters. Thus, without hardware
interlocks (which were present in the predecessor Therac-20 machine but
not in the Therac-25), a radiation overdose is, and was, possible.

7 Corrections

We can pinpoint the problem in the program to the clearing of the bending
magnet flag at {L4} in PTIME. As discussed in [4], this flag is cleared after
the first magnet is set and so in futher calls of PTIME, the premise of the
first conditional: IF bending magnet flag is set THEN ..., will always be
false. Thus, edits during the remaining calls of PTIME cannot detected.

In this section we use LP to try to pinpoint the source of error in order to
correct it. We have shown, above, that the behaviour depends solely on the
editing state during the setting of the first magnet. In order to uncover the
error, we will work our way backwards through the behaviour and examine
the state of the machine at two points: before the first call of PTIME from
MAGNET and after one call of PTIME from MAGNET.

24

The first examination point is revealed by replacing the rule

MAGLOOP (est,s(x),st) == PTIME(est,s(x),delay,st)

by

MAGLOOP (est,s(x),st) -> st

and then showing the normal form of

L1(edit (pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(MEOS3,EF3)))
which gives:

stat(false,true,false).

This shows us that before PTIME is called (for the first time), regardless
of the editing history, the MF flag (the second parameter to stat) is true.
This is as we expect: the magnet bending flag should be true during the
setting of the magnets.

Now consider the second examination point: after the first call of PTIME.
This point is revealed by replacing the rule

L3(est,s(x),st) -> if(issetMEOS(st), L2(st), MAGLOOP(est,x,st))

by
L3(est,s(x),st) -> st

(the remaining rules are in their original form) and then showing the normal
form of

L1(edit (pr(MEOS1,EF1) ,pr(MEOS2,EF2) ,pr(MEOS3,EF3)))
which gives:

if (EF3,
if (ME0OS3,stat(true,false,false) ,stat(false,false,false)),
stat(false,false,false)).

This shows us that in each possible outcome, regardless of the values
of EF3 and MEOS3, the MF flag (the second parameter to stat) is false.
However, our intuition tells us that the magnet bending flag should only be

25

cleared after the bending of the magnets has finished. Thus, we conclude
that the magnet bending flag has been incorrectly cleared after one call of
PTIME.

Our proposed correction is to clear the flag within the MAGNET routine.
Thus, we replace the rule which clears the magnet bending flag:

L4(est,s,st) -> if(est,x,clrMF(st))

by
L3(est,x,st) -> if(est,x,st)

and replace the rule which calls 1.2 at the end of MAGNET with the cleared
magnet bending flag:

MAGLOOP(est,0,st) == L2(clrMF(st))

by

MAGLOOP(est,0,st) == st.

7.1 Proving the Corrections Correct

We now show that this code is correct by proving that the two correctness
properties hold; i.e. we show that conjectures C5 (if there are edits in the
edit history then the program finishes) and C14 (if there are edits in the
edit history then the program starts again) hold for the modified code.

In order to prove these conjectures, the following lemma is required.

C20:

prove (bl & b2) => if(b1,if(b2,stl,st2),st3) = stl
resume by case bl
<> 2 subgoals for proof by cases
resume by case b2
<> 2 subgoals for proof by cases
[1 case b2c
[l case not(b2c)
[1 case blc
[l case not(blc)
[1 conjecture

26

gqed

The proofs of the conjectures (renamed C21 and C22, respectively) are
carried out using case analysis and proof by implication.

21

prove
(iseditmeos(edit (pr(MEOS1,EF1),pr(MEOQS2,EF2) ,pr(MEOS3,EF3))))
=>
L1(edit (pr(MEOS1,EF1) ,pr (MEOS2,EF2) ,pr(MEOS3,EF3)))
= STARTAGAIN

resume by case EF3 & MEQOS3
<> 2 subgoals for proof by cases
[1 case EF3c & MEOS3c
resume by case EF2 & MEQDS2
<> 2 subgoals for proof by cases
[1 case EF2c & MEOS2c
resume by case EF1 & MEQOS1
<> 2 subgoals for proof by cases
[1 case EFic & MEOSic
[1 case not(EFic & MEOS1c)
[1 case not(EF2c & MEOS2c)
[1 case not(EF3c & MEOS3c)
[1 conjecture
gqed

22

prove
noeditmeos (edit (pr(MEOS1,EF1),pr(MEQS2,EF2) ,pr(MEOS3,EF3)))
=>
Li(edit(pr(MEOS1,EF1),pr(MEOS2,EF2) ,pr (MEOS3,EF3))) =
FINISH(stat(false,false,false)) by =>

<> 1 subgoal for proof of =>
instantiate bl by EF3c, b2 by MEOS3c in code.18
instantiate bl by EF2c, b2 by MEOS2c in code.18
instantiate bl by EFlc, b2 by MEOS1ic in code.18

27

[1 => subgoal
[1 conjecture
gqed

8 Discussion

We believe that this example illustrates one of the best applications of au-
tomated theorem proving: to uncover an error in a piece of software (or
hardware). Anecdotal evidence in support of this approach is that we did
try informally, along with a few colleagues, to locate the error before carrying
out the formal exercise, but without success. We note that it is reported in
[4] that the error was fixed in a similar way, after the accidents, by clearing
the MF flag after all the magnets have been set, in the routine MAGNET.

However, we must be clear about what we have and have not proved.
Correctness is a relative property and we have only discovered the error
because we were considering a particular correctness property. Thus, veri-
fication should be seen as the search for evidence that certain incorrect (or
indeed unsafe) situations do no arise, rather than a search for the unobtain-
able - a proof of absolute correctness, or safety (the role of formal methods
in reasoning about complex systems is further discussed in [6]). Unfortu-
nately, poor software engineering methods were used in the development of
the Therac-25 code, and certainly no formal specification, or verification,
was carried out.

Moreover, we have to be very careful when proofs fail: do they fail
because the conjectures are really untrue, w.r.t. the real life object, or do
they fail because there is insufficient theory?

In this example, we were confident of our result of incorrectness, with
respect to the original code, for two reasons:

e we had enough theory to prove some of the expected properties,

e we were able to prove another result, C19 (the theorem which says that
if there are no edits during the setting of magnet 3, then the program
finishes), which shows why the proof of the correctness property C15
fails.

The experience with LP was a very positive one, and we have a high
degree of confidence in our results because there were achieved using this
theorem prover/checker. The axiomatisation described herein is not our first
attempt. In a previous axiomatisation, we used a different, more abstract

28

representation of editing histories. Whilst this representation was more ap-
pealing, as a specification, the work required to build up enough theory to
enable the proofs of the basic correctness properties was very discouraging.
As a result, that approach was abandoned and the current approach using
histories as lists was adopted. Once this more operational style of specifica-
tion was used, the theorem proving tasks were quite straightforward, given
a moderate knowledge of how to use LP.

9 Conclusions

We have formalised a pseudocode description of some (assembler) code
known to be a source of error in the computer-controlled Therac-25 ra-
diation machine, and used the theorem prover/proof assistant LP to reason
about the behaviour of the code. Our strategy was to try to prove enough of
the expected properties of the code so that we could learn about the nature
of the error when a proof of a desired, but untrue, property failed. The
strategy was successful and we were able to uncover exactly why the code
did not behave as expected. We then went on to correct the error and prove
that the corrected code was indeed correct.

This approach can only be considered successful when we a) consider a
useful set of desired properties and b) have confidence that the theory we
consider is rich enough with respect to the real life object. In this example,
we have demonstrated both these aspects.

The axiomatisation and proofs involved in the example could not be
managed by hand: the theorem prover LP was a very valuable and reliable
tool.

Finally, this application of formal methods is just one part of an approach
to dealing with safety-critical software and hardware systems. We agree
with Leveson and Turner that with respect to safety-critical systems, we
should not focus too much on a particular software error alone; we must
also consider the whole complex system of which the software is just one
component.

Acknowledgements

This work was carried out whilst the author was visiting Digital Equipment
Corporation Systems Research Centre (DEC SRC), Palo Alto, California.
Jim Horning, Jim Saxe and Steve Garland provided valuable assistance in

29

the use of LP. Financial support from DEC SRC and The Nuffield Founda-
tion is gratefully acknowledged.

References

[1]

A

S. Garland, J. Guttag, An Overview of LP, the Larch Prover, Proceed-
ings of the Third International Conference on Rewriting Techniques
and Applications, Chapel Hill, N.C., Lecture Notes in Computer Sci-
ence 355, Springer-Verlag, pp.137-151, 1989.

S. Garland, J. Guttag, A Guide to LP, The Larch Prover, Report no.
82, Digital Equipment Corporation Systems Research Center Research
Reports, 130 Lytton Avenue, Palo Alto, California, 1991.

J. Jacky, Safety-Critical computing: Hazards, Practices, Standards and
Regulation, in Computerization and Controversy, Dunlop and Kling
(eds.), Academic Press, 1991.

N. Leveson, C. Turner, An Investigation of the Therac-25 Accidents,
IEEE COMPUTER, pp. 18-41, July 1993.

M. Thomas, The Story of the Therac-25 in LOTOS, High Integrity
Systems Journal, Volume 1, Issue 1, OUP, 1993.

M. Thomas, Order, Disorder and Chaos in Complex Systems: The Role
of Formal Methods in Safety-Critical Computer Software, Computing
Science Research Report, Formal Methods Sub-Series, FM-1993-6, Uni-
versity of Glasgow, 1993.

Appendix

% Axioms for the natural numbers in nat.lp

set

name nat

declare sort Nat
declare variables x, y, z: Nat

declare operators

0,

s

1, 2 : -> Nat
: Nat -> Nat

30

b

: Nat, Nat -> Nat

% Ordering hints

register
register
register
register
register
register
register

% Axioms

height * >
polynomial
polynomial
polynomial
polynomial
polynomial
polynomial

assert ac +
assert ac *

1 >8>0

M oM 00 01NV

assert Nat generated by 0, s

asgsert
x+0
x + s(y)
x * 0
x * s(y)
x*(y+
1 == s(0)
2
0]
S

s(1)
= s(x)

(x) = s(

X

O

y)

s(x +y)

(x * y) + x

== (x * y) + (x * z)

31

