
A Proof of Incorrectness using the LP Theorem

Prover�

The Editing Problem in the Therac���

Mu�y Thomas

Dept� of Computing Science

University of Glasgow

Glasgow� U�K�

August ��� ����

Abstract

The Therac��� is a computer�controlled radiation machine which
delivered several accidental radiation overdoses� some of which resulted
in the loss of life� As reported in ��	� the source of the unsafe behaviour
of the machine is a complex array of factors� one of which is an error
in the set of editing routines for entering the treatment data� In this
paper we formalise some of this code as a set of 
rst�order axioms and
show� using the automated theorem prover LP ��	� that the code does
not behave as intended� i�e� it is incorrect�

We do so by attempting to prove that the code does behave as
intended� and then hope to learn about the nature of the error by
examining how the proof fails� In order to gain con
dence in our lack

of proof� we begin by proving that some of the expected properties do
indeed hold�

We conclude by using LP to guide us to a solution to the error and
after correcting the code� we prove that the resulting code is indeed
correct�

� Introduction

Formal speci�cation and veri�cation techniques are part of a wider disci�
pline of designing and implementing safety�critical software� by referring to
a recent� relevant example� we hope to illustrate the contribution of formal

�



methods� The example which we consider is the Therac��	
 a computer�
controlled radiation machine� or linear accelerator� used for radiation ther�
apy� It was manufactured by Atomic Energy of Canada Ltd� �AECL� during
the �
��s and was used at hospitals and clinics in the U�S�A� and Canada�

As a result of software errors� several patients were killed or injured
by radiation overdoses delivered by the machine� The events leading up to
these deaths and the actions taken as a result� are recounted in ��� and
in a more detailed investigation of the accidents undertaken by N� Leveson
and C� Turner in ���� In another paper in this volume� �	�� the machine is
described in more detail�

Here� we consider only one small aspect of the Therac��	 software� It is
not our intention to suggest that there are only a few isolated �bugs� in the
Therac��	� or that formal speci�cations alone can capture all the potential
behaviours and interactions of a safety�critical system� the sources of errors
are usually very complex and in�uenced by a variety of factors� not all of
which are quanti�able� However� we do feel that formal methods have an
important role to play and the Therac��	 is a good application to study�
No aspects of the Therac��	 machine have� to the author�s knowledge� been
formally speci�ed �except in �	���

Here� we consider one speci�c error� or �bug�� as described in ���� The
problem concerns one particular aspect of the code for the machine
 the
editing of the treatment parameters� In ���� the relevant pseudocode �the
actual code was written in assembler� is given� Our aim is to show� formally�
using the automated theorem prover�proof assistant LP ���� that this code
does not behave as intended� i�e� it is incorrect� We do so by attempting
to prove that it is correct� and then hope to learn about the nature of the
error by examining how the proof fails� In order to gain con�dence in our
proof� or lack of proof� we �rst ensure that we can prove that some of the
properties that we expect to hold for the code do indeed hold�

The paper is organised as follows� In the next section� we give the
background to the problem� the pseudocode for the relevant editing routines�
and some correctness properties� Section � contains an overview of the LP
theorem prover and in Section � we give the axiomatisation� in LP� of the
editing routines� In Section 	 we prove some theorems about the correctness
of the code and through the process of trying to prove further correctness
conjectures� we are led to some theorems which illustrate how the code is
incorrect�

These incorrectness results are discussed in Section � and then in Section
� we use LP to direct our search for a correction to the error� concluding with

�



a proof that the resulting code is correct� The results of our investigation are
discussed in Section � and some conclusions are given in the �nal Section�

� The Editing Problem

The Therac��	 delivers two kinds of radiation beams for radiation therapy

electron and X�ray� The electron beam is used to irradiate the patient
directly� using scanning� or bending magnets to spread the beam to a safe
and therapeutic concentration� The X�ray beam is created by bombarding
a metal shield� or �beam �attener�� the electrons are absorbed by the shield
and X�rays emerge from the other side� Since the e�ciency of producing
X�rays in this way is very poor� the current of the electron beam has to be
increased to over ��� times the intensity when used directly for irradiation�

The greatest danger posed by the machine is the possibility of irradiating
a patient directly with the high energy electron beam� i�e� without the X�ray
shield in place� This situation could arise� for example� if both a high energy
beam and an electron mode are speci�ed as treatment parameters� Since
such a combination is usually undesirable� we might expect the machine to
recognise and block such a potentially dangerous situation� We now proceed
to describe how this situation could� and did� arise in the Therac��	�

The machine operator enters the treatment data
 treatment mode� en�
ergy level� position� etc�� at the console before commencing treatment� If the
operator wishes to alter the treatment data� for example� to rectify a mis�
take� then the data can be edited� using the cursor� without recommencing
the data entry procedure from the beginning�

A problem uncovered in ��� can occur when the editing is carried out very
quickly� i�e�whenthe operator moves the cursor� types in the new data� and
returns the cursor� all within � seconds� It is possible� in this scenario� for
the results of the edit to appear on the console screen but with the internal
treatment parameters remaining unchanged�

In order to uncover exactly how this situation can arise� we will examine
the high�level description of the various routines and tasks involved� as given
in ����

��� The Code

The overall behaviour of the machine is controlled by the TREAT task�
which runs concurrently with the keyboard handler task� One of the �rst
routines called by TREAT is DATENT �data entry� which communicates

�



fL��gIF mode�energy in MEOS speci�ed THEN
BEGIN

calculate table index
REPEAT

fetch parameter
output parameter
point to next parameter

UNTIL all parameters set
CALL MAGNET

fL��gIF mode�energy in MEOS changed THEN RETURN fgoto L�g

END
IF data entry is complete THEN set TPHASE to �
IF data entry is not complete THEN

IF reset command entered THEN set TPHASE to �
RETURN

Figure �
 DATENT ROUTINE

with the keyboard handler task via a shared variable to determine if the
treatment data has been entered� When the data entry is complete� then
the TREAT task begins another phase� namely to set up the machine and
deliver the treatment� The variable TPHASE �treatment phas indicator�
determines the next subroutine to be called
 � for routine DATENT� and �
for a routine called SET�UP TEST �a routine which is not relevant here��

The keyboard handler parses the mode and energy level speci�ed by
the operator and places the encoded result in the shared variable MEOS
�mode�energy o�set variable�� Initially� the data entry process forces the
operator to enter the mode and energy parameters� but the operator can
later edit both of these parameters separately� If an edit to these parameters
is detected during the rest of the data entry procedure� then the procedure
should start over again�

When the energy and mode parameters are set� a table of preset oper�
ating parameters is consulted and fetched� according to the given mode and
energy parameters� Once these operating parameters are set� the routine
MAGNET is called which sets the bending magnets�

It takes a certain amount of time to set each magnet �about � seconds to

�



Set bending magnet �ag
REPEAT

Set next magnet
Call PTIME

fL��gIF mode�energy in MEOS has changed THEN exit fgoto L�g
UNTIL all magnets are set
RETURN fgoto L�g

Figure �
 MAGNET ROUTINE

REPEAT
IF bending magnet �ag is set THEN

IF editing taking place THEN
IF mode�energy in MEOS has changed THEN exit fgoto L�g

UNTIL hysteresis delay has expired
fL��gClear bending magnet �ag

RETURN fgoto L�g

Figure �
 PTIME ROUTINE

	



set all of them� and so the routine MAGNET calls another routine PTIME
to introduce a time delay� A �ag to indicate that magnet bending activity is
taking place is set and cleared at the beginning and end �resp�� of PTIME�
Since there are several magnets� PTIME is entered and exited several times�
During both MAGNET and PTIME� the shared MEOS variable� which can
be set by the keyboard handler� is consulted to determine whether or not
the energy�mode parameters have been edited� There are numerous exit
points� corresponding to detection of such edits�

The pseudocode for these routines
 DATENT� MAGNET� and PTIME�
is given in �gures �� � and �� respectively� The code is taken from ���� with
the some minor additions� for readability�

��� The Intended Behaviour

Our primary concern is that when edits to the energy�mode parameters
occur� as re�ected in the MEOS variable� they are detected within the
DATENT routine and the routine should start again� That is� if the en�
ergy�mode parameter has changed� then control should return to fL�g� If
no edits are detected� then after completing DATENT� control should return
to TREAT� with a new TPHASE setting�

In essence� we are interested in two outcomes
 return to the start of
the DATENT routine again� or �nish the DATENT routine� This outcome
should depend on whether or not there are edits to the energy�mode param�
eters� as re�ected in the MEOS variable� at any time during the execution
of DATENT� More speci�cally� we are concerned with the edits which may
occur during the magnet setting period� If the routines are correct� then

� if there are edits to the energy�mode parameters during the magnet
setting period� then control should return to the start of the DATENT
routine�

� if there are no edits to the energy�mode parameters during the magnet
setting period� then the DATENT routine should �nish and return
control to TREAT�

In the next section� we give a formalisation of the code which will allow
us to check� formally� whether or not the code behaves correctly� with respect
to these properties�

�



� The LP Theorem Prover

LP ��� �the Larch Prover� is an interactive proof assistant for a subset of
multisorted �rst�order logic� The interested reader is directed to ��� for a
more comprehensive introduction to LP� Here� we review how LP was used
in this case study�

The underlying language is de�ned in LP by declarations� Sorts� vari�
ables� and operators �with functionality� are declared by commands of the
form


declare sort Elem

declare variables x�y� Elem

declare operators

c� �� Elem

f� Elem �� Elem

��

Multi�line commands in LP are always terminated by �����
Axioms are de�ned in LP by assertions� In our formalisation� we use

three forms of axiom
 equations� which are then oriented as rewrite rules�
rewrite rules� and induction rules� Axioms are de�ned in LP by commands
of the form


assert

f�c� 		 c

f�c� �� c

��

for equations and rewrite rules� respectively� and by


assert

Elem generated by c�f

for induction rules�
Much of LP�s deductive system is based on the rewrite rules which result

from orienting the equations� In general� not all equations are orientable�
however� in this example they may be oriented using the built�in �simpli�ca�
tion� termination ordering noeq�dsmpos� This is a registered ordering based
on the partial ordering between operators given by the user� and the one
deduced by LP according to the rewrite rules seen so far� In our axiomatisa�
tion� we give equations when we are certain that there is enough information

�



in the registry to deduce the orientation we intend� This is the preferred
approach� Otherwise� we give the axiom as a rewrite rule�

There are numerous inference methods in LP and several methods of
backward inference� In this example� the proofs of theorems are carried out
using a combination of prove by case and prove by implication methods�
along with rewrite rule instantiation and normalisation�

� The Axiomatisation

There are two obvious ways in which to formalise the editing code
 formalise
an abstract machine for the code and then consider the behaviour of this
machine when �running� the code� or formalise the code directly� as an
operation on abstract machine states� Since the editing code is the only
example program to be considered� we choose the latter approach�

The main components of the formalisation are �machine� states and edit�

ing histories� The former re�ect the state of the �abstract� machine� thus�
the routines are operations on states� The latter re�ect the behaviour of the
operator at the console� Essentially� we must model the editing behaviour�
at the console� over the time taken to set the magnets� Namely� for each
magnet� for each moment of the delay required for setting that magnet�
we need to specify whether or not the energy�mode parameters have been
edited�

The remaining two components of the formalisation are numbers and
the magnets and delay� which we model using numbers� Without loss of
generality� we �x the number of magnets to � and the unit of time delay to
��

In the formalisation� we have abstracted away from the details of the
actual data concerned� eg� the values of the mode and energy parameters and
other parameters which may be set by the operator� and details concerning
how the magnets are bent� Rather� we are only concerned with whether or
not the values have changed� Thus� the relevant parameters are modelled
by boolean variables�

In the following subsections� we give the LP axiomatisations of machine
states� numbers� magnets and delay� editing histories� and �nally� the code�

Comments are given on a line beginning with 
 and the current name
used to pre�x rules and conjectures is de�ned by the command set name

name�

�



��� State

For our purposes� an abstract state �the sort state� of the machine need
contain only three pieces of information
 whether or not the mode�energy
parameters in the MEOS variable have changed� whether or not the state of
the magnet bending �ag is set� and whether or not editing is taking place�
These are each represented by variables of the �built�in� boolean type and
named MEOS� MF �for magnet �ag� � and EF �for editing �ag�� respectively�
MEOS is true only when the mode�energy parameters have changed� MF is
true only when the magnet bending �ag is set� and EF is true only when
editing is taking place �that is� editing to any data �eld and not just to the
MEOS variable��

There is one generator operation to make a state� in addition� there are
operations to set and clear the MEOS and MF components of a state� and
several predicates to check the states of the components MEOS� MF and
EF� Note that there is no operation to set the edit �ag� EF� since this is not
a program operation but an operation of the keyboard handler�

set name basicstate

declare sort state

declare variables MEOS�MF�EF� bool� st�st��st�� state

declare operators


 a state is a triple� 
MEOS� MF� EF�


 MEOS� mode�energy offset variable �true when editing mode or energy�


 MF � magnet flag �true when bending magnets�


 EF � edit flag �true when editing any data entry�

stat� bool� bool� bool �� state

setMF � state �� state

setMEOS � state �� state

clrMF � state �� state

clrMEOS � state �� state

issetMF � state �� bool

issetMEOS � state �� bool

issetEF � state �� bool

issetEFMEOS � state �� bool

��

assert state generated by stat






assert

setMF�stat�MEOS�MF�EF�� 		 stat�MEOS�true�EF�

setMEOS�stat�MEOS�MF�EF�� 		 stat�true�MF�EF�

clrMF�stat�MEOS�MF�EF�� 		 stat�MEOS�false�EF�

clrMEOS�stat�MEOS�MF�EF�� 		 stat�false�MF�EF�

issetMF�stat�MEOS�MF�EF�� 	 MF

issetMEOS�stat�MEOS�MF�EF�� 		 MEOS

issetEF�stat�MEOS�MF�EF�� 		 EF

issetEFMEOS�st� 		 issetEF�st� � issetMEOS�st�

��

��� Numbers

The formalisation of numbers is fairly uninteresting� We use the standard
LP �le �nat�lp� and add two comparison operators and the constant ����
The interested reader can �nd the script for nat�lp in the Appendix�

execute nat�lp

declare operators

� �nat� nat �� bool


	� nat� nat �� bool

� ��� nat

��

assert

s�x� � � �� true

� � s�x� �� false

� � � �� false

s�x� � s�y� �� x � y

x 
	 y �� y � x � x 	 y

� �� s���

��� Magnets and Delay

As we stated above� magnets and delays are modelled by numbers�

set name magnets

declare operators

magnets� �� nat

assert

��



magnets 		 �

set name delay

declare operators

delay ��� nat

assert

delay 		 �

��� Editing Histories

An editing history �the sort edithistory� models the �relevant� history of
the editing behaviour at the console� during the setting of the magnets�

An editing state� at any moment� is represented by the sort editpr�
pairs of booleans representing whether or not the mode�energy parameters
have been changed� as re�ected in the variable MEOS� and whether or not
an editing is taking place� These components are called MEOS and EF� as
before� A state in which the mode�energy parameters are being edited is
represented by both MEOS and EF being true� if only EF is true� then some
other part of the treatment data is being edited�

An editing history� sort edithistory� is essentially a list of editpr
 the
positions in a list determining the corresponding magnet and delay� Since�
in this case� the delay is �� the positions in the list correspond directly to
the magnet numbers� Moreover� since we are restricted to lists of length
�� we can model editing histories by triples� Thus� there in one generator
operation to make an editpr� pr� and one generator operation to make an
edithistory� edit� There is one selector operation select which returns an
edit pair� from an edit history� given a magnet number and delay� Since the
delay is � in this example� an auxiliary operation selectx is used to de�ne
select� The constants edit�� edit�� and edit� are used for example edit
histories� The particular examples are described in the comments in the
axioms where they de�ned�

There are four predicates on edit histories
 iseditmeos and noeditmeos

denoting �resp�� whether or not there is an edit to the energy�mode param�
eters at any time in the history� and mag�editmeos and nomag�editmeos

denoting �resp�� whether or not there is an edit to the energy�mode pa�
rameters during the setting of magnet �� The motivation for these last two
predicates will be revealed when we try to prove the correctness properties�

Finally� there are two predicates on edit pairs
 issetMEOS� and issetEF�

��



which are similar to the predicates on state with the same name�

set name editing

declare sort edithistory� editpr

declare operators


edit � make an edit history


edit�� edit�� edit� � constants for example edits


select� magnet�delay� edithistory �� state


iseditmeos � any edit to mode�energy�


noeditmeos � no edit to mode�energy�


mag�editmeos � an edit to mode�energy during magnet ��


nomag�editmeos � no edit to mode�energy during magnet ��


issetMEOS�issetEF� issetEFMEOS � edits to EF and�or MEOS�

edit � editpr� editpr� editpr �� edithistory

pr � bool� bool �� editpr

select � nat� nat� edithistory �� editpr

selectx � nat� edithistory �� editpr

iseditmeos� noeditmeos � edithistory �� bool

nomag�editmeos � edithistory �� bool

mag�editmeos � edithistory �� bool

issetMEOS � editpr �� bool

issetEF � editpr �� bool

issetEFMEOS � editpr �� bool

��


ordering information

register height �edit��edit�� edit�� � edit

register height edit � �stat�true�false�����

register height noeditmeos � iseditmeos

declare variables m�n � nat� est � edithistory� e��e��e� � editpr

declare variables MEOS��MEOS�� MEOS��bool� MF��MF��MF� � bool

declare variables EF��EF��EF� � bool

assert edithistory generated by edit

assert

select�s�x��y�est� 		 selectx�s�x��est� 
assume that y	�

selectx���edit�e��e��e��� 		 e�

selectx���edit�e��e��e��� 		 e�

selectx���edit�e��e��e��� 		 e�

��



iseditmeos�edit�e��e��e���

		 issetEFMEOS�e�� � issetEFMEOS�e�� � issetEFMEOS�e��

noeditmeos�est� 		 not�iseditmeos�est��

nomag�editmeos�edit�e��e��e��� 		 not�issetEFMEOS�e���

mag�editmeos�edit�e��e��e��� 		 issetEFMEOS�e��

issetMEOS�pr�MEOS�EF�� 		 MEOS

issetEF�pr�MEOS�EF�� 		 EF

issetEFMEOS�e�� 		 issetMEOS�e�� � issetEF�e��

��


 define some editing behaviours as a constants


 define edits in order� eg� edit��st pr��nd pr��rd pr�

assert


edit�� � magnets� � delay� no edits

edit� 		 edit�pr�false�false��pr�false�false��pr�false�false��


edit�� � magnets� � delay� edit to MEOS during magnet �

edit� 		 edit�pr�false�false��pr�false�false��pr�true�true��


edit�� � magnets� � delay� edit to MEOS during magnet � and


 magnet �� but no edit during magnet �

edit� 		 edit�pr�true�true��pr�true�true��pr�false�false��

��

��� Code

Now we are able to formalise the code� The operations are essentially oper�
ations from state to state� with the additional argument of a current edit
history� and� in some cases� loop counters and indices for selection on the
edit history� The operations correspond quite closely to the program state�
ments and routines� with two exceptions� The �rst is that in order to detect
a return to the start of DATENT� i�e� to fL�g� we introduce a constant state
STARTAGAIN and replace the RETURN in fL�g� i�e� goto fL�g� by the state

��



STARTAGAIN� The second is that in order to represent a return of control
to TREAT� after completing DATENT� we introduce a state FINISH� ��
FINISH� � depends on the current state� so that we can observe the state
in which the program �nishes� We replace the commands after the main
loop of DATENT� by FINISH�st�� and so the statement fL�g involves a
branching between STARTAGAIN and FINISH�st�� We explicitly assert that
STARTAGAIN and FINISH�st� are not equivalent�

We note that the magnets are processed in the order magnet down to ��
i�e� in this example� magnet � is processed �rst�

Although we have included the operations Fetchparams and Tableindex
for completeness� these operations are not relevant here and they have no
observable e�ect on the state�

set name code

declare operators

L� � edthistory ��state

L� � state �� state

L� � edthistory� nat� state �� state 
 nat is for loop counter

L� � edthistory� nat� state �� state 
 ��


 subroutines

MAGNET � edthistory� state �� state

PTIME � edthistory� nat� nat� state �� state 
 nats for loop counters


 others

MAGLOOP � edthistory� nat� state �� state 
 nat for loop counter

BExp� � edthistory� nat� nat�state �� state 
 nats indices for history

BExp� � edthistory� nat� nat�state �� state 
 ��

Fetchparams � state �� state

Tableindex � state �� state


 state constants

INITIAL ��� state

STARTAGAIN ��� state

FINISH � state �� state

assert

INITIAL �� stat�false�false�false�

��



L��est� �� MAGNET�est�Fetchparams�Tableindex�INITIAL���

Fetchparams�st� �� st

Tableindex�st� �� st

MAGNET�est�st� ��MAGLOOP�est�magnets�setMF�st��

MAGLOOP�est���st� 		 L��st�

MAGLOOP�est�s�x��st� 		 PTIME�est�s�x��delay�st�

PTIME�est�x���st� �� L��est�x�st�

PTIME�est�x�s�y��st�

�� if�issetMF�st��BExp��est�x�s�y��st��PTIME�est�x�y�st��

BExp��est�x�s�y��st�

�� if�issetEF�select�x�s�y��est��� BExp��est�x�s�y��st��

PTIME�est�x�y�st��

BExp��est�x�s�y��st�

�� if�issetMEOS�select�x�s�y��est��� L��est�x�setMEOS�st���

PTIME�est�x�y�st��

L��st��� if�issetMEOS�st�� STARTAGAIN� FINISH�st��

L��est�s�x��st� �� if�issetMEOS�st�� L��st�� MAGLOOP�est�x�st��

L��est�x�st��� L��est�x�clrMF�st��

��� Ordering Register

The partial ordering on operators is given by


register height magnets � ���s�

register height delay � �

register height �edit��edit�� edit��edit� � �stat�true�false�����

register height noeditmeos � iseditmeos

register height BExp� � PTIME

register height PTIME � L�

�	



register height L� � L� � �STARTAGAIN� MAGLOOP�

register height MAGLOOP � L�

register height L� � FINISH

Given this register information� the equations and rewrite rules can be
ordered� as desired� according to the termination ordering� When the equa�
tions are oriented as rewrite rules� and internormalised� some of the rules
are very large indeed� eg� they can only be displayed over several screens on
the terminal� It is quite clear that it is not feasible to carry out proofs in
this rewriting system by hand� some machine assistance is obligatory�

� Theorems and Proofs

Now consider some of the desirable properties of the code� The properties
which interest us are of the form �if there are no edits �to the mode�energy
parameters in the MEOS� during the magnet setting period then the pro�
gram �nishes��

In our formalisation� we represent an edit by the open formula
edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF���� where MEOS�� EF�
� � � MEOS�� EF� are boolean variables representing the variables of the same
name during the setting of each magnet� We represent �there are no edits��
for a given edit history� by the �open� formula
noeditmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF�����

Since the program depends on an edit history and begins with the state�
ment fL�g� the program is represented by the �open� formula
L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����� This is the
general form of the program with an edit history�

The program with an example history� eg� with example edits edit��
edit� or tt edit�� is given more simply by a formula of the form L��edit���

In the following subsections� we give some example conjectures and
proofs� Some proofs require no user assistance� whereas others require guid�
ance� In each case� the guidance is fairly minimal� The descriptions which
follow are sequences of LP commands� with only minimal discussion of how
the proofs are carried out� The reader is again directed to ��� for a detailed
introduction to theorem proving in LP�

The resume by case x command causes LP to resume the proof �of the
current �sub� goal� under the assumptions of the case hypotheses� Namely�
resume the proof �rst under assumption x true� and then under assumption
not x true� The qed command causes LP to check whether there are any

��



outstanding conjectures� if so� then an error message appears� If not� there
is no response �except to expect the next command� and we may interpret
this as a �mathematical� qed�

In the proofs� the lines beginning with �� �box� and 
� �diamond� are
LP annotations� Diamonds indicate the introduction of subgoals and boxes
indicate the discharging of subgoals� When replaying a proof� these anno�
tations behave like the qed command
 they cause an error to be reported if
the proof does not follow the indicated format�

��� Correctness Properties

We begin by checking that some simple properties hold� for example� we
prove that edit� contains some edits to MEOS� but they do not take place
during the setting of magnet �� These properties are given in LP by the
following conjectures� or theorems� C� and C�� which are proved by nor�
malisation


C� 


prove nomag�editmeos�edit�� 	 true

�� conjecture

qed

C� 


prove iseditmeos�edit�� 	 true

�� conjecture

qed

We can also prove that there are no edits to MEOS in edit history
edit�� and that the program� with edit�� �nishes in a state of the form
FINISH�st�� In fact� it �nishes in a state with all three variables false� This
is given in LP by the theorems


C� 


prove noeditmeos�edit�� 	 true

�� conjecture

qed

C� 


��



prove L��edit�� 	 FINISH�stat�false�false�false��

�� conjecture

qed

Now we try to generalise theorem C� to the �rst of the correctness prop�
erties mentioned above
 if there are no edits in the edit history then the
program �nishes� i�e� it ends in a state of form
FINISH�stat�false�false�false��� This is given in LP by the implica�
tion


C	 


prove

�noeditmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF�����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 FINISH�stat�false�false�false��

by 	�

��

We discover that we cannot prove this conjecture directly from the axioms�
we must �rst prove the following two lemmata� The �rst is proved by impli�
cation and normalisation and the second is proved by case and normalisation


C� 


prove

noeditmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	�

not�MEOS� � EF��

by 	�

��


� � subgoal for proof of 	�

�� 	� subgoal

�� conjecture

qed

C� 


prove not�b� � b�� 	� if�b��if�b��st��st���st�� 	 st�

resume by case b�

��




� � subgoals for proof by cases

resume by case b�


� � subgoals for proof by cases

�� case b�c

�� case not �b�c�

�� case b�c

�� case not�b�c�

�� conjecture

qed

Now the main conjecture� C	� is proved by instantiation� referring to
lemma C� which is named code��� in LP� This instantiation is necessary
as during the course of proving C	� its variables are replaced by constants�

prove

�noeditmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF�����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 FINISH�stat�false�false�false��

by 	�

��


� � subgoal for proof of 	�

instantiate b� by MEOS�c�b� by EF�c in code���

�� 	� subgoal

�� conjecture

qed

Another property to check is that when there is an edit to the en�
ergy�mode parameters in MEOS� as in edit�� then the program starts again�
i�e� it ends in a state of form STARTAGAIN� These properties are given in LP
by the following theorems which are all proved by normalisation


C� 


prove iseditmeos�edit�� 	 true

�� conjecture

qed

C
 


prove mag�editmeos�edit�� 	 true

�




�� conjecture

qed

C�� 


prove L��edit�� 	 STARTAGAIN

�� conjecture

qed

Now consider generalising this last theorem to any edit history� As a
�rst step in generalisation� consider the case where there is an edit during
magnet �� i�e� if there is an edit to MEOS� then the program starts� This is
given in LP by


C�� 


prove

mag�editmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 STARTAGAIN

��

Again� this conjecture does not follow from the axioms� but when we �rst
prove the subgoals


C�� 


prove

mag�editmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	�

�MEOS� � EF��

by 	�

��


� � subgoal for proof of 	�

�� 	� subgoal

�� conjecture

qed

C�� 


��



prove

mag�editmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 STARTAGAIN

��


� � subgoal for proof of 	�

�� 	� subgoal

�� conjecture

qed

then theorem C�� is proved by


prove

mag�editmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 STARTAGAIN

��


� � subgoal for proof of 	�

instantiate b� by MEOS�c�b� by EF�c in code���

�� 	� subgoal

�� conjecture

qed

We can generalise this theorem further to the main conjecture for the
correctness property� i�e� if there are any edits to MEOS then the program
starts again by


C�� 


prove

�iseditmeos�edit�b�� b�� b�� b�� b�� b�� b�� b�� b���

	�

L��edit�b�� b�� b�� b�� b�� b�� b�� b�� b���

	 STARTAGAIN

��

We �nd that we are unable to prove this theorem� and from the subgoals
generated by LP� we are led to think of the following conjecture


C�	 


��



prove

�iseditmeos�edit�b�� b�� b�� b�� b�� b�� b�� b�� b���

� nomag�editmeos�edit�b�� b�� b�� b�� b�� b�� b�� b�� b����

	�

L��edit�b�� b�� b�� b�� b�� b�� b�� b�� b���

	 STARTAGAIN

��

This conjecture says that if there is an edit to the MEOS� but it is not

during the setting of magnet �� then the program starts again� This is just a
re�nement of C�� and so it is also a correctness property that should hold�
But� again� we cannot prove it�

��� Incorrect properties

We cannot prove the main correctness property C��� nor the conjecture
C�	� because we can prove that when there is an edit to the MEOS� but not
during the setting of magnet �� then the program �nishes� Surely� this is
not an intended behaviour as we wish the program to start again whenever

the MEOS has been edited� In LP� we prove it as follows


C�� 


prove

�iseditmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

�

nomag�editmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF�����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 FINISH�stat�false�false�false��

��

resume by case MEOS� � EF�


� � subgoals for proof by cases

�� case EF�c � MEOS�c

instantiate b� by MEOS�c� b� by EF�c in code���

�� case not�EF�c �MEOS�c�

�� conjecture

qed

A hint of what is going wrong in the program comes when we show the
normal form of the term

��



L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF�����
the general form of the program with an edit history�

C�� 


show normal

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

gives the term

if�EF��

if�MEOS�� STARTAGAIN� FINISH�stat�false� false� false����

FINISH�stat�false� false� false���

This normalisation demonstrates that the behaviour of the program depends
only on the variables MEOS� and EF�
 the variables used to de�ne the state
during the setting of magnet �� The other variables representing the edit
history during the setting of the other magnets are ignored� This means
that the behaviour at the console� during the setting of the other magnets�
is ignored� Thus� for example� an edit to the MEOS during the setting of
magnet � will be ignored and the program could �nish� instead of starting
again�

Indeed� this result leads us to try to prove the conjecture which says
that if there are no edits during the setting of magnet �� then the program
�nishes� In LP this is proved in two steps by


C�� 


prove

nomag�editmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	� not�MEOS� � EF��

by 	�

��


� � subgoal for proof of 	�

�� 	� subgoal

�� conjecture

qed

C�
 


��



prove

nomag�editmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	� L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 FINISH�stat�false�false�false��

��

�� conjecture

qed

We conclude from these theorems that the behaviour of the routines depends
solely on the editing behaviour at the console during the setting of magnet
�� i�e� the �rst magnet to be set�

� Discussion of Incorrectness

Since the behaviour of the editing routines depends solely on the editing
behaviour during the setting of the �rst magnet �i�e� magnet ��� if an edit
occurs during the setting of the other magnets� then the edit will be ignored
in routine DATENT� In practice� since setting the magnets takes about �
seconds �the precise time is not known by this author�� this means that edits
performed within � seconds of initial data entry� but after the time to set one
magnet� although appearing on the console� are not re�ected in DATENT by
the fetching of the relevant operating parameters� Thus� without hardware
interlocks �which were present in the predecessor Therac��� machine but
not in the Therac��	�� a radiation overdose is� and was� possible�

� Corrections

We can pinpoint the problem in the program to the clearing of the bending
magnet �ag at fL�g in PTIME� As discussed in ���� this �ag is cleared after
the �rst magnet is set and so in futher calls of PTIME� the premise of the
�rst conditional
 IF bending magnet �ag is set THEN ���� will always be
false� Thus� edits during the remaining calls of PTIME cannot detected�

In this section we use LP to try to pinpoint the source of error in order to
correct it� We have shown� above� that the behaviour depends solely on the
editing state during the setting of the �rst magnet� In order to uncover the
error� we will work our way backwards through the behaviour and examine
the state of the machine at two points
 before the �rst call of PTIME from
MAGNET and after one call of PTIME from MAGNET�

��



The �rst examination point is revealed by replacing the rule

MAGLOOP�est�s�x��st� 		 PTIME�est�s�x��delay�st�

by

MAGLOOP�est�s�x��st� �� st

and then showing the normal form of

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

which gives


stat�false�true�false��

This shows us that before PTIME is called �for the �rst time�� regardless
of the editing history� the MF �ag �the second parameter to stat� is true�
This is as we expect
 the magnet bending �ag should be true during the
setting of the magnets�

Now consider the second examination point
 after the �rst call of PTIME�
This point is revealed by replacing the rule

L��est�s�x��st� �� if�issetMEOS�st�� L��st�� MAGLOOP�est�x�st��

by

L��est�s�x��st� �� st

�the remaining rules are in their original form� and then showing the normal
form of

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

which gives


if�EF��

if�MEOS��stat�true�false�false��stat�false�false�false���

stat�false�false�false���

This shows us that in each possible outcome� regardless of the values
of EF� and MEOS�� the MF �ag �the second parameter to stat� is false�
However� our intuition tells us that the magnet bending �ag should only be

�	



cleared after the bending of the magnets has �nished� Thus� we conclude
that the magnet bending �ag has been incorrectly cleared after one call of
PTIME�

Our proposed correction is to clear the �ag within the MAGNET routine�
Thus� we replace the rule which clears the magnet bending �ag


L��est�s�st� �� if�est�x�clrMF�st��

by

L��est�x�st� �� if�est�x�st�

and replace the rule which calls L� at the end of MAGNET with the cleared
magnet bending �ag


MAGLOOP�est���st� 		 L��clrMF�st��

by

MAGLOOP�est���st� 		 st�

��� Proving the Corrections Correct

We now show that this code is correct by proving that the two correctness
properties hold� i�e� we show that conjectures C	 �if there are edits in the
edit history then the program �nishes� and C�� �if there are edits in the
edit history then the program starts again� hold for the modi�ed code�

In order to prove these conjectures� the following lemma is required�

C�� 


prove �b� � b�� 	� if�b��if�b��st��st���st�� 	 st�

resume by case b�


� � subgoals for proof by cases

resume by case b�


� � subgoals for proof by cases

�� case b�c

�� case not�b�c�

�� case b�c

�� case not�b�c�

�� conjecture

��



qed

The proofs of the conjectures �renamed C�� and C��� respectively� are
carried out using case analysis and proof by implication�

C�� 


prove

�iseditmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF�����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	 STARTAGAIN

��

resume by case EF� � MEOS�


� � subgoals for proof by cases

�� case EF�c � MEOS�c

resume by case EF� � MEOS�


� � subgoals for proof by cases

�� case EF�c � MEOS�c

resume by case EF� � MEOS�


� � subgoals for proof by cases

�� case EF�c � MEOS�c

�� case not�EF�c � MEOS�c�

�� case not�EF�c � MEOS�c�

�� case not�EF�c � MEOS�c�

�� conjecture

qed

C�� 


prove

noeditmeos�edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF����

	�

L��edit�pr�MEOS��EF���pr�MEOS��EF���pr�MEOS��EF���� 	

FINISH�stat�false�false�false�� by 	�

��


� � subgoal for proof of 	�

instantiate b� by EF�c� b� by MEOS�c in code���

instantiate b� by EF�c� b� by MEOS�c in code���

instantiate b� by EF�c� b� by MEOS�c in code���

��



�� 	� subgoal

�� conjecture

qed

� Discussion

We believe that this example illustrates one of the best applications of au�
tomated theorem proving
 to uncover an error in a piece of software �or
hardware�� Anecdotal evidence in support of this approach is that we did
try informally� along with a few colleagues� to locate the error before carrying
out the formal exercise� but without success� We note that it is reported in
��� that the error was �xed in a similar way� after the accidents� by clearing
the MF �ag after all the magnets have been set� in the routine MAGNET�

However� we must be clear about what we have and have not proved�
Correctness is a relative property and we have only discovered the error
because we were considering a particular correctness property� Thus� veri�
�cation should be seen as the search for evidence that certain incorrect �or
indeed unsafe� situations do no arise� rather than a search for the unobtain�
able � a proof of absolute correctness� or safety �the role of formal methods
in reasoning about complex systems is further discussed in ����� Unfortu�
nately� poor software engineering methods were used in the development of
the Therac��	 code� and certainly no formal speci�cation� or veri�cation�
was carried out�

Moreover� we have to be very careful when proofs fail
 do they fail
because the conjectures are really untrue� w�r�t� the real life object� or do
they fail because there is insu�cient theory�

In this example� we were con�dent of our result of incorrectness� with
respect to the original code� for two reasons


� we had enough theory to prove some of the expected properties�

� we were able to prove another result� C�
 �the theorem which says that
if there are no edits during the setting of magnet �� then the program
�nishes�� which shows why the proof of the correctness property C�	
fails�

The experience with LP was a very positive one� and we have a high
degree of con�dence in our results because there were achieved using this
theorem prover�checker� The axiomatisation described herein is not our �rst
attempt� In a previous axiomatisation� we used a di�erent� more abstract

��



representation of editing histories� Whilst this representation was more ap�
pealing� as a speci�cation� the work required to build up enough theory to
enable the proofs of the basic correctness properties was very discouraging�
As a result� that approach was abandoned and the current approach using
histories as lists was adopted� Once this more operational style of speci�ca�
tion was used� the theorem proving tasks were quite straightforward� given
a moderate knowledge of how to use LP�

	 Conclusions

We have formalised a pseudocode description of some �assembler� code
known to be a source of error in the computer�controlled Therac��	 ra�
diation machine� and used the theorem prover�proof assistant LP to reason
about the behaviour of the code� Our strategy was to try to prove enough of
the expected properties of the code so that we could learn about the nature
of the error when a proof of a desired� but untrue� property failed� The
strategy was successful and we were able to uncover exactly why the code
did not behave as expected� We then went on to correct the error and prove
that the corrected code was indeed correct�

This approach can only be considered successful when we a� consider a
useful set of desired properties and b� have con�dence that the theory we
consider is rich enough with respect to the real life object� In this example�
we have demonstrated both these aspects�

The axiomatisation and proofs involved in the example could not be
managed by hand
 the theorem prover LP was a very valuable and reliable
tool�

Finally� this application of formal methods is just one part of an approach
to dealing with safety�critical software and hardware systems� We agree
with Leveson and Turner that with respect to safety�critical systems� we
should not focus too much on a particular software error alone� we must
also consider the whole complex system of which the software is just one
component�

Acknowledgements

This work was carried out whilst the author was visiting Digital Equipment
Corporation Systems Research Centre �DEC SRC�� Palo Alto� California�
Jim Horning� Jim Saxe and Steve Garland provided valuable assistance in

�




the use of LP� Financial support from DEC SRC and The Nu�eld Founda�
tion is gratefully acknowledged�

References

��� S� Garland� J� Guttag� An Overview of LP� the Larch Prover� Proceed�
ings of the Third International Conference on Rewriting Techniques
and Applications� Chapel Hill� N�C�� Lecture Notes in Computer Sci�
ence �		� Springer�Verlag� pp������	�� �
�
�

��� S� Garland� J� Guttag� A Guide to LP� The Larch Prover� Report no�
��� Digital Equipment Corporation Systems Research Center Research
Reports� ��� Lytton Avenue� Palo Alto� California� �

��

��� J� Jacky� Safety�Critical computing
 Hazards� Practices� Standards and
Regulation� in Computerization and Controversy� Dunlop and Kling
�eds��� Academic Press� �

��

��� N� Leveson� C� Turner� An Investigation of the Therac��	 Accidents�
IEEE COMPUTER� pp� ������ July �

��

�	� M� Thomas� The Story of the Therac��	 in LOTOS� High Integrity
Systems Journal� Volume �� Issue �� OUP� �

��

��� M� Thomas� Order� Disorder and Chaos in Complex Systems
 The Role
of Formal Methods in Safety�Critical Computer Software� Computing
Science Research Report� Formal Methods Sub�Series� FM��

���� Uni�
versity of Glasgow� �

��

A Appendix


 Axioms for the natural numbers in nat�lp

set name nat

declare sort Nat

declare variables x� y� z� Nat

declare operators

�� �� � � �� Nat

s � Nat �� Nat

��



�� � � Nat� Nat �� Nat

��


 Ordering hints

register height � � � � � � � � s � �

register polynomial � � �

register polynomial � � �

register polynomial � � �

register polynomial � x � y � � x�y

register polynomial s x � � x � �

register polynomial � x�y x�y


 Axioms

assert ac �

assert ac �

assert Nat generated by �� s

assert

x � � 		 x

x � s�y� 		 s�x � y�

x � � 		 �

x � s�y� 		 �x � y� � x

x � �y � z� 		 �x � y� � �x � z�

� 		 s���

� 		 s���

� 	 s�x� 		 false

s�x� 	 s�y� 		 x 	 y

��

��


