Is my configuration any good: checking
usability in an interactive sensor-based
activity monitor

Muffy Calder, Phil Gray & Chris
Unsworth

Innovations in Systems and Software
Engineering
A NASA Journal

ISSN 1614-5046

Innovations Syst Softw Eng

SYSTE/MS AND SOFTWARE
DOI 10.1007/s11334-013-0203-1

ENG,I/N EERING
/‘ "//

@ Springer

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag London. This e-offprint is for personal
use only and shall not be self-archived in
electronic repositories. If you wish to self-
archive your work, please use the accepted
author’s version for posting to your own
website or your institution’s repository. You
may further deposit the accepted author’s
version on a funder’s repository at a funder’s
request, provided it is not made publicly
available until 12 months after publication.

@ Springer

Innovations Syst Softw Eng
DOI 10.1007/s11334-013-0203-1

SI: FMIS

Is my configuration any good: checking usability in an interactive

sensor-based activity monitor

Muffy Calder - Phil Gray - Chris Unsworth

Received: 6 March 2012 / Accepted: 12 March 2013
© Springer-Verlag London 2013

Abstract We investigate formal analysis of two aspects of
usability in a deployed interactive, configurable and context-
aware system: an event-driven, sensor-based homecare activ-
ity monitor system. The system was not designed from formal
requirements or specification: we model the system as it is
in the context of an agile development process. Our aim was
to determine if formal modelling and analysis can contribute
to improving usability, and if so, which style of modelling is
most suitable. The purpose of the analysis is to inform con-
figurers about how to interact with the system, so the system
is more usable for participants, and to guide future devel-
opments. We consider redundancies in configuration rules
defined by carers and participants and the interaction modal-
ity of the output messages.Two approaches to modelling are
considered: a deep embedding in which devices, sensors and
rules are represented explicitly by data structures in the mod-
elling language and non-determinism is employed to model
all possible device and sensor states, and a shallow embed-
ding in which the rules and device and sensor states are rep-
resented directly in propositional logic. The former requires
a conventional machine and a model-checker for analysis,
whereas the latter is implemented using a SAT solver directly
on the activity monitor hardware. We draw conclusions about
the role of formal models and reasoning in deployed systems
and the need for clear semantics and ontologies for interac-
tion modalities.

M. Calder (X)- P. Gray - C. Unsworth

School of Computing Science, University of Glasgow,
Glasgow G12 8RZ, UK

e-mail: muffy.calder@glasgow.ac.uk

Published online: 29 March 2013

1 Introduction

We investigate the analysis and automatic checking of usabil-
ity in a deployed configurable, interactive, context-aware,
system. Our aim was to determine if formal modelling and
analysis can contribute to improving usability, and if so,
which style of modelling is most suitable. The system is
event-driven and sensor-based: it provides activity monitor-
ing in a homecare setting.

The system was not designed from formal requirements or
specification, so we model the system as it is, in the context
of an agile development process. The purpose of the analysis
was to inform configurers about how to interact with the
system, so the system is more usable for participants, and to
guide future developments.

We consider two aspects of interaction: configuration of
the system by rules defined by carers and participants, and
the interaction modality of the output messages, for a given
configuration. We detect rule redundancy, which is relevant
because the system imposes a small, finite number of rules,
and the simultaneous use interaction modalities for outputs
from the system, as defined by the rules, which may be con-
fusing to a participant. Analysis is based on formal models
that include representations of the devices and sensors and
representations of user configurations specified by a finite set
of rules. Two different approaches to modelling are investi-
gated. Since a key feature of the system is user-defined rules,
we investigate two styles of representation taken from theo-
rem proving and programming languages. The first is a deep
embedding, in which one language or logic is represented in
the data structures of another, and the second is a shallow
embedding, which is simply a syntactic translation from one
language to another. In our deep embedding, the devices,
sensors and rules are represented explicitly by data struc-
tures in the Promela language (the specification language of

@ Springer

M. Calder et al.

the model checker SPIN [10], and non-determinism is used
to represent all possible device and sensor states. In our shal-
low embedding, the devices, sensors and rules are represented
explicitly in propositional logic. Reasoning about the former
involves formulating temporal logic properties and explo-
ration of the underlying state space using the model-checker
SPIN; reasoning about the latter involves solving the model
using a SAT solver [8].

The system we consider is the MATCH Activity Moni-
tor (hereafter, referred to as MAM) system, an experimental
platform built on top of the MATCH homecare infrastructure
[15,20]. The MATCH project (http://www.match-project.
org.uk) is a collaborative research project focussing on tech-
nologies for care in the home.The MAM is a typical example
of an activity awareness system [14] that allows groups of
users to share information about their current status or recent
activities. The system detects sensed activities such as move-
ment in rooms, on equipment (e.g. kettle), or by individuals,
and it delivers messages to participants and carers such as
text messages, a wide variety of sounds and vibration alerts.

Configuring the monitoring tasks is an essential part of
sensor-based monitoring of the participant’s activities and
state. For example, carers reconfigure the systems regularly,
to take into account changes in the participants’ medical con-
dition, their home situation, and consequent changes to the
services and sensors. For these reasons, system configura-
tion is treated as an ongoing process throughout the lifetime
of a system, just as we would consider any other kind of
interaction or context change.

The system was not designed with verification in mind:
there is no formal specification or design, nor are there formal
requirements. But, after the system was deployed, it became
clear that configurability was an issue for some users and
help for them was required, as well as evidence to guide
the designers when considering future improvements. The
aim of this work was to investigate how formal modelling
and analysis can contribute to the provision of that help, by
determining better ways to configure the system and config-
urations that are more usable.

The main contribution of this paper is two different styles
of modelling of the MAM system and formulation of prop-
erties that essentially allow one to ask the question is a
configuration any good? More specifically, we consider the
following:

e are all the rules necessary? Are some rules redundant or
unnecessarily complex?

e are users being constrained by the number of rules
allowed because of the redundancies in the rule set?

e how does the system notify an agent (e.g. a carer, or
the cared person, or another automated system) in the
event of a specific action or activity and is the notifica-
tion unambiguous? For example, is it possible to deliver

@ Springer

multiple speech outputs at the same time, or to deliver
multiple tactile outputs simultaneously?

We investigate two different approaches to modelling, and
in both cases consider detecting rule redundancies and check-
ing for confusing use of interaction modalities. The deep
embedding involves developing a model of the entire event-
driven system, which includes modelling the current rule set
and events that change the status of input devices; the shal-
low embedding involves modelling the logic of the device
and sensor states and rules directly as disjunctive clauses.
Whereas in the former rules are represented in the mod-
elling language, in the latter, the rules are the model. In the
latter, reasoning is performed directly on the MAM hard-
ware, whereas the former requires a conventional PC. In both
cases parts of the model are generated automatically from the
MAM system or logged data about configurations.

The paper is organised as follows: in Sect. 2 we give an
overview of the MAM system and in Sect. 3 we discuss how
rule redundancy and interaction modality can affect usability.
In Sect. 4 we outline our approach to modelling the MAM.
In Sect. 5 we give an overview of the deep embedding in the
Promela language, and in Sect. 6 we give an overview of the
shallow embedding in propositional logic. In the following
section we discuss how to generate the models and then check
properties, using SPIN to reason about the Promela model
and a SAT solver to reason about the logic model. Discussion
follows in Sect. 8 and an overview of related work in Sect. 9.
Conclusions and future work are given in Sect. 10.

2 The MATCH Activity Monitor

The MAM system consists of one or more hubs that carry
out a finite number activity monitoring tasks, supported by a
rich set of sensor-generated events and actuated events that
are defined as message types.The messages may be have dif-
ferent modalities: text, audio, tactile, etc. The monitoring
tasks are defined by a (finite) set of rules.

Each hub is connected to a set of satellites and other hubs
(see architecture diagram in Fig. 1). Typically, a hub resides
inthe home of a person requiring care (i.e. a participant) while
the satellites are used by carers, clinicians, family and friends.
If a user is not interacting with a MAM hub, it operates a
digital photo frame application that displays a photo supplied
by a user (see Fig. 2) to make it a non-intrusive part of the
participant’s home.

Sensors and output messaging devices can be attached
to everyday items like coffee cups, bathtubs and doors: for
example, the system uses a Jake sensor pack [11] for simple
movement sensing, and the Shake sensor pack [18], for richer
sensing capabilities and tactile feedback.

http://www.match-project.org.uk
http://www.match-project.org.uk

Is my configuration any good: checking usability in an interactive sensor-based activity monitor

Q //O Q\ /Q

Hub

s o

Fig. 1 MAM system architecture

Fig. 2 A MAM hub displaying digital photo

sensors devices rule set

MAM system

messages

Fig. 3 MAM hub

A MAM hub (Fig. 3) supports a set of up to eight monitor-
ing tasks, each of which involves the generation of messages
based on user-generated and sensor-generated input indicat-
ing an event or activity. Monitoring tasks are defined by rules
that specify an event or activity to be reported plus the desti-
nation and form of the reporting message. Typical rules might
state that when a calendar request from a given user to the
cared person is received, the home should be notified by a
doorbell earcon! on a speaker in the lounge, or the use of
a coffee cup (captured via a Jake) in the home of the cared
person, should be reported to a carer (i.e. the hub in the home
or office of the carer) via a speech message.

The MAM system supports a variety of data sources, mes-
sage destinations and message interaction modalities (e.g.
speech, graphics, tactile, etc.). A list from the current proto-
type is given in Fig. 4.

2.1 Configuration

Each MAM hub can be configured to support up to eight
monitoring tasks. This limitation, imposed by the designers,

' A short meaningful audio segment.

was intentional and is based on empirical evidence, to limit
the complexity of the application. Each monitoring task is
specified explicitly as a monitoring rule. In addition to sim-
ple <input source> <destination, modality> rules, it is also
possible to specify combinations of inputs (e.g. a button press
or an appointment) or message modalities (e.g. speech and
graphics). Rules may also have a guard condition; currently
the MAM only supports a location condition such that the
message is sent if someone is sensed near a specified loca-
tion.

A user may also choose a system-generated recommen-
dation of the input, destination or modality. The recommen-
dation can be used in an automatic or semi-automatic mode.
In the former case, the system will choose the input, desti-
nation or modality most commonly associated with the other
parameters, based on a history of logged configurations. In
the latter case, the system will offer a ranked list of choices,
based again on frequency of association, from which the user
must select one.

A user interface is supplied for configuration. To config-
ure the hub, a user touches the screen and the photo appli-
cation fades away, replaced by the MAM application, from
which the configuration screen is accessible. Figure 5 shows
a typical rule configuration. Note the eight tabs to the left,
one for each rule; rule 1 is selected. The rule configuration
view is divided into a left-hand panel for specifying input
and a right-hand panel for destination and modality. In this
case the blue and red buttons on my hub (left-hand panel)
have been selected to create messages to be sent to Lucy’s
machine(s) (right-hand panel). The large vertical green but-
ton on the right of the panel is the on-off toggle switch for
the rule: when green, the rule is active and when red the
rule is inactive. Figure 6 indicates the full functionality of
the configuration screen. We note that the user interface to
the MAM configuration subsystem (i.e. rule specification) is
itself a subject of research and is not considered in this paper.

Even with the rather limited set of inputs, destinations and
message types, the configuration space (i.e. number of dif-
ferent possible rule sets) is huge and not all configurations
are desirable. In particular, configurations may be unaccept-
able or ineffective for users because of the inappropriate use
of certain interaction modalities for particular users or sit-
uations, or the rules may be inefficient themselves, due to
redundancy.

3 Usability

We consider interaction and usability in the context of users
being constrained to define only a small, finite number of
rules, and the confusion that can arise from rule overlap-
pings, redundancies and the interaction modalities of output
messages.

@ Springer

M. Calder et al.

Fig. 4 MAM activity

monitoring task parameters

Fig. 5 Sample task
configuration screen

3.1 Redundant rules

Rules are typically added to the system by non-expert users,
or at least by occasional users. It is possible to create redun-
dant rules, through overlappings or repetition, which may
confuse the user about the meaning of the rule set and also
unnecessarily constrain the number of (useful) rules that can

@ Springer

Input Sources

Calendar

An online calendar scheduling system reports upcoming appointments.

Accelerometer

Small custom-built Bluetooth accelerometers can be placed around the
home (e.g. on a phone, teacup, or door) or on a person, in order to
detect movement-signalled activity of the instrumented thing/person.
This is performed using JAKE and SHAKE devices [WMSHO7].

Webcam movement
events

Fixed and wireless webcams can be used to provide motion detection.
This allows for room occupancy to be detected and reported.

User-generated text

Users can key in their current activity, mood or needs explicitly using
an on-screen keyboard.

Abstract Buttons

A user may select an “abstract button” to which no particular meaning
has been assigned in advance by the developers of the system (i.e. “the
red square”) The user may negotiate with other people to assign a
particular meaning to these buttons. This concept is derived from
MarkerClock [RMO7] that uses a similar abstract marker feature.

Message Destinations

Local Hub

Messages are directed to one of the output devices associated with the
local machine.

Registered Users

Messages are directed to specified users; the message will be sent to
their hub, if they have one, or to their registered web-based client(s).

Modalities

Graphical Notice of an activity is briefly overlaid on top of the hub photoframe;
an icon indicates that there is an unread message waiting. Additionally,
the message will be added to a scrollable list of messages that is
permanently available.

Speech The content of the message is rendered into VoiceXML and played

through any of the device’s speakers.

Non-speech audio

A selection of auditory alerts is provided, such as “nature” sounds and “animal”
sounds as well as more familiar “alert” noises. Each set of sounds contains multiple
.wav files, each of which is mapped to a particular type of alert.

As with speech, this can be directed to any distinct speaker.

Tactile The Shake device (but not the Jake) is equipped with an inbuilt
vibrotactile actuator that can be activated. Vibration “profiles” (i.e.
vibrate fast-slow-fast, slow-fast-slow) can be used to distinguish
between different types of activity.

Email Predefined activity messages can be delivered to one or more email addresses
that the user can specify.

My Messages Rules | Status Settings
1 1
=2y e :

Hlels = 2 X|O@ w2 X

= & if |4+ M[Z] & if

Your and others Buttons
Lennons Lucy Shannon @
|| My Shake Buttons

4 ' Editing : My Buttons

1’
i
v

blug

5

6

People - Send messages to other people

",
.

Lennons Lucy Shannan

My Buttons |

red

yallow

be defined (recall, the MAM interface allows up to 8 rules).
This conjecture was confirmed by the MAM developers dur-
ing user evaluation studies: they found that many test subjects
indicated they had trouble understanding complex rules—
many subjects only wanted to define disjoint (sets of) simple
rules but found they had unintentionally defined more com-
plex rules.

Is my configuration any good: checking usability in an interactive sensor-based activity monitor

Fig. 6 Sample task
configuration screen:
functionality

Text
Messages

Buttons

Movement

UMPC
screen

Speech Groups of

sounds

Individual
sounds

Vibration

Rules
Email
e e
Lennons Lucy Shannon
My Shake Buttons
4 Fdlping - My Buttsns Other
5 people
; : g Re Clear
Switch _—* s
rule 7 Context N
AND (if) \
8 Turn a
rule on/off
| \\
Switch Click to
between select
categories devices in
inan arule
option

We define a rule to be redundant if it can be removed
from the system without affecting how the system operates.
We do not aim to remove such rules automatically; in most
cases, further interaction with the user is required to deter-
mine which rule should be removed. For example, while it
might be most efficient (from the point of view of minimis-
ing the number of rules) to retain the most general rule (if
one exists), a user may wish to retain a particular redundant
rule, anticipating later changes to the rule set, or because dif-
ferent subsets of rules are defined by different types of user
(e.g. nurse, family member) and that provenance needs to
be preserved. The implementation and analysis of the best
form of interaction with the user is an issue for the MAM
design team; we have, therefore, focussed on providing the
information about which rules are redundant, and why.

3.2 Interaction modalities

Output devices are classified according to user interaction
modalities. For example, earcons and speech are audio,
screen pop-ups and text messages are visual and vibration
alerts are tactile. The usability of a configuration may depend
on the appropriate use of the different modalities. But this
is a subtle and context-dependent concept, subject also to
personal preference. There are a number of dimensions to
consider; for example, the use of interaction modality may
indicate priority or urgency, audio may indicate higher pri-
ority than visual or there may be standard ways of using

modalities for certain users. For example, it may be standard
to use visual output devices to deliver a message about med-
ication use to a participant (unless they are visually impaired).
Visual output devices should be avoided for severely visu-
ally impaired users, though, it may still be appropriate to use
them to notify carers.

The dimension we consider here is one that is less
personal: the simultaneous use of the same interaction modal-
ity for more than one message. For example, simultaneous
audio outputs, e.g. two speech outputs, or two earcons such
as an animal sound and a door bell, may confuse a partic-
ipant and result in the loss of messages. The MAM offers
a rich set of earcons and so this type of confusion is quite
likely. Overuse of tactile interaction, e.g. vibration, may also
result in the user being unable to differentiate between two
different messages.

Consider the following five MAM modalities: graphical,
speech, non-speech, tactile and email. We could find no stan-
dard taxonomy or ontology of interaction modalities or guid-
ance for their use in the literature to inform our analysis. But
based on user trials, we propose that, at least in the MAM
system, it is not a problem to use graphical or email modal-
ity for simultaneous delivery of multiple messages—because
messages can be delivered sequentially, with an appropriate
additional message indicating there are more messages to be
uncovered/read. But, the audio and tactile modalities should
not be used for multiple messages simultaneously because
to do so can be confusing to the participant. We conclude it is

@ Springer

M. Calder et al.

acceptable to deliver messages in different interaction modes,
simultaneously, but that messages should not be delivered
simultaneously in the same mode, for some modes.

The exact ontology of interaction modes is critical in our
models; for example, we have chosen to distinguish between
the audio modalities of speech and non-speech. We note this
may be too fine-grained from a usability point of view, or
indeed, not fine-grained enough. For example, we could dis-
tinguish between animal earcons, {lion, elephant, dog} and
nature earcons {wave, forest, wind}. In the future, further
empirical investigation of the MAM system may inform a
different ontology.

4 Modelling the MAM

Our approach is based on the principle that we model the
system as it is implemented, rather than an idealised view of
what it should do. To this end, we derived configuration-
parameterised models from the actual deployed system
through a combination of code inspection, analysis of
observed behaviour and interviews with the designers. The
parameter (the configuration) is instantiated automatically
from internal data or logfiles.

The key aspects of the MAM system from a modelling per-
spective are it is event-driven and rule-based. Events include
(but are not restricted to) direct user interaction with the hub,
such as pushing buttons and editing rules, and indirect user
interaction such as movement captured by a webcam or exter-
nal actions such as messages received from other users. The
rules describe how activities are monitored and so define how
the system reacts to events, which may include changes to
the current set of rules. Thus after every event, the rules are
applied. Rules are defined via the graphical interface and
stored internally as instances of pre-defined (parameterised)
evaluation functions that return input or output devices. Eval-
uation functions are the basic building blocks of the MAM
system, and so they are also fundamental to the model(s).

Each rule consists of an input and an output evalua-
tion function and a list of parameters.Both input and output
functions can be themselves compositions of other (evalua-
tion) functions. Composition of input evaluation functions is
interpreted as a disjunction, meaning that an event will be
triggered if either evaluation function is true, whereas the
composition of output functions is a conjunction, meaning
that if the conjunction of the output functions is triggered,
then the result of both evaluation functions will be used.

The MAM system designers did not define a textual for-
mat for user-defined rules, but during the modelling process
we found it helpful to have one and so we implemented a
small procedure to extract textual rules from internal evalua-
tion functions. An example rule set thus derived is shown in
Fig. 10.

@ Springer

typedef hub{
bit red;
bit yellow;
bit blue;
bit shake_in_b;
chan audio_out = [5] of { mtype };
chan screen_popup = [5] of { mtype };
chan screen_list = [5] of { mtype };
byte webcam;
byte jake_in_m;
byte shake_out;
mtype text_in }

Fig. 7 Hub datatype

We note that while users interact with the system, not
only as the subjects of sensing and communication, but as
active participants in the configuration process,users are not
modelled explicitly. Rather, we represent explicitly the events
that could occur as a consequence of their actions. This means
we make no distinction between user interaction and any
other change of context: while there may be intent associated
with the former, from a modelling point of view both are
simply aspects of state that may be captured by propositions
(whose validity may be temporal).

In the remainder we assume a single hub that can take input
from one or more satellites or additional hubs, and a single
rule set, though it would be a simple matter to extend the
model to include multiple hubs and rule sets and dynamic rule
sets. We investigate two different styles of modelling: the first
is a deep embedding in the specification language Promela:
a high-level language for specifying concurrent processes,
communication and data types, and the second is a shallow
embedding in standard propositional logic.

5 A deep embedding in Promela

In the deep embedding model in the Promela language, the
hub is represented by a data type that encapsulates the input
and output device types. An example of a simple hub data
type with four buttons (coloured and Shake), a single move-
ment sensor (Jake), a movement actuator (Shake), and an
(audio) speaker, is shown in Fig. 7.

The input and output sensors and devices and the current
rule set are all represented by processes, which are composed
concurrently thus:

sensori||sensory|| ... ||devicei||devicey ... ||rules

A coordination mechanism is required to ensure that the
rules are applied repeatedly, after every event. We use a global
boolean variable (called event) for coordination, i.e. to indi-
cate whether an event can be processed or not.

In the following sections, we give specifications of some
example input and output devices/sensors, and rule sets:

Is my configuration any good: checking usability in an interactive sensor-based activity monitor

proctype button()
{do
if event ->
:: atomic{red_button != 0 -> red_button=0;event=0}
: atomic{ red_button !'= 1 -> red_button=1;event=0}
fi
od}

Fig. 8 Example of a button process

proctype speaker(chan in_chan)
{mtype audio_file;
do
if event ->
:: atomic{in_chan?audio_file; event = 0};
fi
od}

Fig. 9 Example of a speaker process

5.1 Inputs

Each input device/sensor is represented by a process and a
corresponding global variable. For example, a button press
is represented by a single bit variable and a process that non-
deterministically assigns the values O or 1, as given in Fig. 8.
Note the use of atomicity to ensure that the event synchro-
nisation variable is updated in the same computation step.

Movement sensors such as a Jake, Shake or webcam are
represented as an integer variable, and as above, their respec-
tive processes nondeterministically assign values to that vari-
able. In the current prototype, for the movement sensors, we
have chosen the abstraction: 0 represents no movement and
1, 2 and 3 represent low, medium and high levels of move-
ment, respectively. Text-based inputs, such as messages from
other hubs, are represented as an mtype variable (an mtype is
a Promela enumerated type). Again, the associated processes
assign values nondeterministicaly.

Together, these processes act as sources of events for the
system, whereas output devices act as sinks.

5.2 Outputs

Each output device is represented as a process with an associ-
ated global variable or channel to which messages are written.
The process continuously polls for a value being assigned to
the variable/written to the channel, and then it resets the vari-
able or reads the message off the channel. For example, the
speaker on the hub is modelled as a channel and a process as
given in Fig. 9.

5.3 Rules
The rule setis represented by a single process, and each rule is

represented by a conditional statement, consisting of a guard
and a compound statement. More precisely, we represent a

rule as a single statement C — A, where C is a guard state-
ment made up of a disjunction of statements representing the
condition of the rule and A is compound statement consist-
ing of a sequence of statements representing the action. For
example, the rule “when the red console button is pressed
play the doorbell earcon on the hub speaker” maps to the
Promela statement

(this.red >0)— this.audio_out'earcon_doorbell. Rules
can also be context sensitive. For example, “If the red button
is pressed then, if the webcam has recently detected move-
ment inform me with synthesised speech else send me an
e-mail”. In this case the definition of recent is a system para-
meter, which we represent by a global variable.

The Promela representation of the example rule set is in
Fig. 11.In this example there are two hubs, one that belongs
to the user and one that belongs to Bill. The user’s hub is
referred to by the global variable this and Bill’s hub by Billh
(both have type hub as defined in Fig. 7). Again, note the use
of atomicity to ensure that all the rules are applied in one
computation step.

The representation of a rule set in Promela is generated
automatically from within the MAM system or from logfiles
of configurations.

5.4 Interaction modality

We do not represent the interaction modality of each out-
put message explicitly, but rather the counts of the usage
of specific modalities, which is implemented by the addi-
tion of simple counters. We track only the interaction
modalities, speech, non-speech and tactile, represented by the
counters speech_count, nspeech_count, tactile_count,
respectively. These are all initially set to O and incremented
in the (atomic) action sequence of the rules. They are reset to
0 after the atomic step. For example, the rule set from Fig. 11
is augmented as shown in Fig. 12.

6 A shallow embedding in propositional logic

We now turn our attention to a shallow embedding using
propositional logic. In this representation, the rules, sensors
and device states and modality counts are modelled by literals
and disjunctive normal form clauses.

6.1 Literals: inputs and outputs

Each simple input type is represented by a single literal. For
example, a literal represents a button press or receipt of a
message from someone. Similarly, simple output types are
also represented as literals. More complex input functions,
such as movement, which has low, medium and high inputs,
can be represented as one literal per input value. A clause then

@ Springer

M. Calder et al.

Fig. 10 Example rule set If the red or blue buttons are pressed then play the rocket earcon
If my webcam detects movement then display a pop-up message on my screen
and display a message on the screen list
If T receive a message from Bill or then inform me using synthesised speech
Bill presses his red button
If I receive a message from Bill then send a vibration message via the shake
If the red button is pressed then send a message to Bill
and inform me using synthesised speech
If the jake senses movement then send a vibration message via the shake
If Bill presses his red button then inform me using synthesised speech
If the yellow button is pressed then send a vibration message via the shake
Fig. 11 Promela representation proctype rules()
of example rule set {
do
if (event) -> atomicq{
::(this.red 1) || (this.blue == 1) -> this.audio_out'!ec_rocket;

: (this.webcam > 2) ->

{this.screen_popup = me; this.screen_list = mel};

::(this.text_in == Bill || Billh.red == 1) -> this.audio_out!speech;
:(this.text_in == Bill) -> this.shake_out = 1;

::(this.red ==1) -> {Billh.text_in = me; this.audio_out!speech};

::(this.jake_in_m > 1) -> this.shake_out = 1;

::(Billh.red == 1) -> this.audio_out!speech;

::(this.yellow == 1) -> this.shake_out = 1;}

event = 1;
od
}

Fig. 12 Promela representation proctype rules()
of example rule set with {

interaction modality counts do
if (event) -> atomic{

::(this.red == 1) || (this.blue == 1) -> {this.audio_out!ec_rocket; speech_count++};

: (this.webcam > 2) ->

{this.screen_popup = me; this.screen_list = me};

::(this.text_in == Bill || Billh.red == 1) -> {this.audio_out!speech; nspeech_count++};
: (this.text_in == Bill) -> {this.shake_out = 1; tactile_count++};

::(this.red == 1) -> {Billh.text_in = me; this.audio_out!speech; nspeech_count++};
:(this. jake_in_m > 1) -> {this.shake_out = 1; tactile_count++}

::(Billh.red == 1) -> {this.audio_out!speech; speech_count++};

: (this.yellow == 1) -> this.shake_out = 1;

tactile_count++}

event = 1; speech_count = 0; nspeech_count = 0; tactile_count = 0

od
}

needs to be added to ensure the input values are consistent.
For example, if the literal for a movement level high is true,
then both medium and low should also be true. To ensure
this, the clauses low vV —medium and medium v —high
are added, which will need to be done for each movement
detection device. However, if only one rule takes input from
amovement detection device, then the input can be treated as
a simple input device and the clause can be omitted. Classes
of output can be modelled in one of two ways, similar to
inputs. If only one rule uses the individual elements from a
class, then the class can be represented as a single literal.
Otherwise, each of the class members is represented as a
single literal and there is an additional literal for the class.
For example, the MAM earcon class nature is represented by
wave V forest V wind vV —nature.

@ Springer

There are several ways to represent the use of interac-
tion modalities by output messages. Since we do not actually
need the counts, values can be partitioned into three classes:
no use, once and more than once. We simply introduce two
boolean variables per modality: the first variable is set to true
on the first use of the modality, and the second variable is set
to true on the second use.

6.2 Clauses: rules

Rules are represented by literals and clauses. Assume an
indexed set of rules. We represent each (indexed) rule r; by
a new literal r;, which is set to true to indicate it has been
triggered, and a set of clauses defined as follows and sum-
marised in Fig. 13. There are four types of clause associated

Is my configuration any good: checking usability in an interactive sensor-based activity monitor

1. | Vri € R | Vcer; r; Ve
2. | Vr€R | Vej €y ciVeaV...Ven Vrg
3. | Vri € R | Ya€er; -r;Va
4. | Ya€ R | Vrj.action(rj,a) | r1VraV...VryV -a;

Fig. 13 Clauses required to represent a given rule set R

with a rule. First, a clause r; VvV —c is added for each condi-
tion ¢ that triggers rule i. Second, to ensure r; is not true if
none of its conditions are met, the following clause is added:
c1 VeV Ve, Vg Third, if rule i is triggered then
the appropriate outputs must be set to true; thus the clause
—r; V a is added for each action a associated with rule i.
Finally, to ensure that actions are only taken if associate with
arule, the clause r;y Vro V---Vr, V—aq; is added, where ry
to r, are all the rules that are associated with action a.

7 Model generation and analysis

Both the Promela and logic models depend on the given con-
figuration; we generate each model instance automatically
from rules stored in the internal MAM evaluation function
format. This enables us to generate models automatically
from logfiles of user trials, and at runtime.

7.1 Analysis: promela model

We used the model checker SPIN to generate the entire state
space and verify LTL (linear temporal logic) properties that
encode rule redundancy and interaction modality.

Rule redundancy is encoded by associating an LTL prop-
erty with each rule and then checking whether that property
holds in the model generated without that rule or not. More
precisely, recall that conditions (i.e. inputs) are disjunctions
and actions (i.e. outputs) are conjunctions. For each Promela
representation of rule r of form X — Yy, ...Y,, where X is
a guard and Y7, ... Y, is a sequence of statements, the asso-
ciated property is the postcondition associated with the com-
pound statement Yi,...Y, (a conjunction of propositions
encoding the assignments Y;) will always eventually occur
after the guard X (a disjunction of conditions) becomes true.
Namely, for rule r, define a mapping f such that f(r) =
O(f(C) — Of(A)), where f() maps guards and assign-
ments to propositions in the obvious way, and [J and ¢ are
the globally and eventually operators, respectively. For exam-
ple, the rule (this.yellow > 0)— > this.shake_out = 1
maps to the LTL property

O((this.yellow > 0) — O(this.shake_out == 1)).
We then define a rule r in the rule set R to be redundant if
for model M (R|r), which represents R without r, f(r) =
M(R|r). Namely, the consequences of X hold, even when

the rule r is not in the rule set. A rule set R is defined to
contain no redundant rules if Vr. f (r) = M(R]|r).

Appropriate use of interaction modality of output mes-
sages is encoded as LTL safety properties (something
“bad” does not happen), e.g. L((speech_count <= 1),
O((tactile_count <= 1), etc. Specifically, given such a
property ¢, we check ¢ &= M(R); if it is false, there is an
inappropriate simultaneous use of an interaction modality in
the set k.

7.2 Analysis: logic model

We used the open-source SAT solver miniSAT to check sat-
isfiability of the logic model(s), calling it from a script that
generates the appropriate model. Although SAT solving is
in general NP-complete, such solvers are highly efficient for
many practical applications, and this proved to be the case
here.

To detect redundant rules, we solve the model once for
each atomic condition in the rule to check if atomic condition
¢ from rule r; is redundant. We add a clause for each input
literal, setting the literal related to c to true and all the rest to
false. All literals that represent the actions from rule »; are
set to true. All clauses related to the rule being checked are
removed. If the resultant model is satisfiable, then condition
¢ from rule r; is redundant; if all conditions associated with
rule r; are redundant, then r; is redundant.

To check for inappropriate use of interaction modality, we
solve the model when the second variable associated with that
modality is true.

7.3 Complexity and comparison

In the deep embedding, a typical search depth is of the order
10° and state space of order 108, with verification times
between 10 and 30 minutes on a conventional PC. While
this representation is straightforward and can be extended
easily to accommodate more devices or a different interac-
tion taxonomy, it clearly cannot be used to deliver feedback
to the configurer at run-time. In the shallow embedding, a
typical model consists of order 100 literals and clauses,with
each instance of the problem requiring less than a thousandth
of a second to solve on a conventional PC. All instances were
solved with propagation alone, and no search was required.
Given this stunning improvement on complexity (which is
not a reflection on the SPIN model-checker but the different
styles of deep and shallow embedding), we then reimple-
mented the entire process on the actual MAM hardware (no
separate PC required). Using that hardware, reading in and
checking a rule set requires approximately 5 s. The majority
of this time is taken to read and parse the log file. Each indi-
vidual SAT model requires approximately 15,000 of a second
to solve and thus we were able to offer analysis at run-time.

@ Springer

M. Calder et al.

8 Discussion

The aim of this paper was to determine if formal modelling
and analysis can contribute to improving usability of a sys-
tem in which configuration is an ongoing process and when
configured, (possibly different) users interact with the sys-
tem, according to the context as perceived through a variety
of input sensors and devices.

Modelling is after deployment, so the goal of analysis was
to help configurers of the current system, and, in the spirit
of agile development, designers of future increments. This
means that we have not modelled an idealised system, but
one that has been designed and engineered in the context
of specific practices and personal conventions. This presents
non-trivial challenges for any modelling process. We have
focussed on two specific aspects of usability, not full func-
tionality; thus our approach may be regarded as an applica-
tion of formal methods light [12].

A key question to ask is which style of modelling is most
suitable. We presented two models differentiated by the style
of representation: deep or shallow. But the distinction also
reflects two quite different abstractions: in the former there
is a clear representation of events and computation paths,
whereas the in the latter the system is essentially a knowledge
base. To an extent, in this application, one could argue that
the state of a sensor encapsulates a set of computational paths
(or at least what is required to know them) and so we do not
need to study the paths themselves. Thus the knowledge-base
approach may be more appropriate for this type of context-
aware system. In both cases, the models are straightforward.
The novel aspect of this work is not the models themselves,
but the process of deriving them and consideration of how
analysis will be used.

How to detect and resolve redundancy depends on an
agreed understanding of modalities, priorities, and more gen-
erally, context. One contribution of our formal modelling and
analysis of MAM design has been to expose the need for clear
semantics and ontologies for interaction modalities and con-
text, with respect to acceptability and usability. For example,
a user may not care about the simultaneous use of earcons
unless one of them has been generated by a certain condition.
Delivering messages via the television and the beeper simul-
taneously may be acceptable, unless one of the messages
is considered significantly more urgent than the other or has
arisen because of an unsafe context. It has become clear from
our discussions with the designers of the MAM that priori-
ties on rules and messages are a likely extension, thus rein-
forcing the need for clear ontologies. This also illustrates a
well-known benefit of the formalisation process, which is not
the model itself, but exposure of what needs to be clarified
to develop a model.

We note that we have not experimented with the selection
and presentation of feedback to configurers, but rather we

@ Springer

have focussed on how to produce the analysis that will form
the basis of that feedback.

Further, since we can directly incorporate logfiles into
model(s), we can analyse sets of models to detect frequently
occurring pitfalls and to explore design decisions concerning
the ranking of recommendations. For example, currently the
system makes recommendations based on historical asso-
ciations. It would be interesting to investigate whether, in
practice, recommended rules lead more often to redundancy
or inappropriate use of interaction modality. If so, it might
be advisable (for the designers) to add some form of check-
ing and filtering at the recommendation stage. Further, we
might also analyse logfiles for other kinds of usability issues.
For example, in at least one configuration from a logfile we
noticed overlapping rules in the sense that inputs overlap
(e.g. report two different messages for the same input), and in
another we noted a circularity amongstrules, e.g. the message
output for one rule was the input for another. This is distinct
from process mining, which attempts to recover information
from logfiles; here, we treat logfiles as data.

We note that while in the current prototype the configurers
are humans, in future, the system might autonomously con-
figure itself in response to a context change and so automatic
checking of usability aspects would become more urgent.

9 Related work

Modelling and reasoning about interactive, context-aware
systems has been recognised as a significant challenge [5,7]
for at least two decades now. Much formal analysis is
focussed on techniques for requirements involving location
and resources, within a tractional waterfall framework. For
example [2], employs the Ambient calculus for requirements
and [3] employs a constraint-based modelling style and tem-
poral logic properties. There are various knowledge-based
approaches, such as the language CML (context modelling
language) [1,9], which is based on conceptual modelling
techniques for databases. There is related work develop-
ing policy conflict handling mechanisms from telecommu-
nications systems in the MATCH project [19,22]. Our work
shares similar motivations but is complementary in that it
investigates in detail how (configuration) policy rules for
the MAM can be modelled and verified. Some work has
been done on better integration of formal analysis techniques
within the context of interactive system interfaces (e.g. [6]),
but there is little work on analysis in the context of a more
agile software development process. One exception is [16],
where a model of salience and cognitive load is developed and
a usability property is considered. The model is expressed in
a higher order logic, and the property is expressed in LTL. In
some cases, analysis revealed inconsistencies between exper-
imental behaviour and the formal model, which led them

Is my configuration any good: checking usability in an interactive sensor-based activity monitor

to suggest refinements to the rules and also new studies of
behaviour.

Another exception is Kristoffersen’s work on automatic
usability assessment based on structured user interface spec-
ifications [13]. This study analyses principles of usablity
(consistency, synthesisability, etc.) by generating a rewriting
logic model (written in the language Maude) automatically
from an XUL specification of an interface and then checking
state invariants that encode some of those principles. While
this work focusses on user interface design, which is not
our concern, we note that two conclusions accord with ours.
First, attempts at formalising design ambitions may make
them more trivial. We have a similar issue: formalising rule
redundancy and inappropriate use of interaction modes has
resulted in somewhat trivial properties (albeit, ones that can
be checked automatically and quickly). Second, while XUL
has many drawbacks as a design language, it does offer many
advantages compared with most other automatic usability
evaluation methods based on models, because there is no
“impedance mismatch”. Kristoffersen refers to this as a prob-
lem when the representation of the application intended for
analysis is not an accurate image of the application. While
we do not have the exact equivalent of XUL here, we have
worked directly with the so-called evaluation functions of
the MAM system, and thus we also have minimised the
impedance mismatch.

We note that an early version of this work is presented in
[4]; the main differences here are we provide more details of
the distinction between deep and shallow embeddings, the
purpose and derivation of the models and modelling interac-
tion modalities.

10 Conclusions and future work

We have reported two modelling and analysis approaches
for usability aspects of a interactive, configurable, activity
monitoring system.

The system was already deployed, having been designed
and engineered in the context of specific practices and per-
sonal conventions. The goal of our formal analysis was to
help users (configurers and participants) configure the sys-
tem better and guide designers in the context of an agile
development process.

We considered redundancies in configuration rules defined
by carers and participants, and the interaction modality of the
output messages, for a given system configuration. We devel-
oped two different approaches to modelling. One is a deep
embedding in a specification language in which devices, sen-
sors and rules are represented explicitly by data structures in
the modelling language and non-determinism is employed to
model device and sensor states. The other is a shallow embed-
ding in propositional logic in which the rules and device and

sensor states are represented directly in propositional logic.
The former requires a conventional machine and a model-
checker for analysis, whereas the latter is implemented using
a SAT solver directly on the activity monitor hardware. In
both cases, the models are closely aligned with the internal
evaluation functions and parts of the models are generated
automatically from actual configuration data or log files. We
conclude that the state of a sensor effectively encapsulates a
set of computational paths and so we do not need to study
the paths themselves; thus a logic-based representation may
be best (and most efficient) for this type of context-aware
system. In both types of model, the chosen ontology of the
user interaction modality is crucial and there is a strong need
for clear ontologies of interaction modalities. This illustrates
a well-known benefit of the formalisation process, which is
not the model itself, but the exposure of what needs to be
clarified to develop a model.

In detail, our plans for further work fall into four areas.
We will carry out user trials to investigate the best forms
of interaction with, and feedback to, human users, when
we detect redundancies and inappropriate use of interaction
modalities. We will gather empirical evidence about whether
recommended rules contribute to these problems or not. We
will also investigate ways to present and use analysis results
in the context of non-human agents. We will investigate incor-
porating aspects of stochastic user and sensor behaviour, per-
formance and real-time into the model and properties. For
example, we could consider probabilistic abstractions of log
files as a representation of the configuration process and thus
obtain a probabilistic model of the whole system. Finally, we
will further investigate ontologies for interaction modalities,
especially in the context of priorities.

Acknowledgments This research was supported by the VPS project
(Verifying interoperability in pervasive systems), funded by the Engi-
neering and Science Research Council (EPSRC) under grant number
EP/F033206/1. We also acknowledge support from the MATCH Project,
funded by the Scottish Funding Council under grant HR04016.

References

1. Bettini C, Brdiczka O, Henricksen K, Indulska J, Nicklas D, Ran-
ganathan A, Riboni D (2010) A survey of context modelling and
reasoning techniques. Pervasive Mobile Comput 6(2):161-180

2. Coronato A, DePietro G (2009) Formal specification of a safety
critical pervasive application for a nuclear medicine department.
IEEE International Conference on Advanced Information Net-
working and Applications Workshops. pp 1043—-1048

3. Cerone A, Elbegbayan N (2007) Model-checking driven design of
interactive systems. Electron Notes Theor Comput Sci 183:3-20

4. Calder M, Gray P, Unsworth C (2009) Tightly coupled verification
of pervasive systems. Proceedings of the Third International Work-
shop on Formal Methods for Interactive Systems (FMIS 2009),
Electronic Communications of the EASST

@ Springer

M. Calder et al.

10.

11.
12.

13.

Campos JC, Harrison MD (1997) Formally verifying interactive
systems: areview. In Design, Specification and Verification of Inter-
active Systems 97, Springer, pp 109-124

Campos JC, Harrison MD (2008) Systematic analysis of control
panel interfaces using formal tools. In XVth International Work-
shop on the Design, Verification and Specification of Interactive
Systems (DSV-IS 2008), volume 5136 of Lecture Notes in Com-
puter Science, Springer, Berlin pp 72-85

Curzon P, Riikénas R, Blandford A (2007) An approach to for-
mal verification of human-computer interaction. Formal Aspects
of Computing pp 513-550

Eén N, Sorensson N (2003) An extensible SAT-solver. In: Enrico
Giunchiglia, Armando Tacchella (eds) SAT. Springer, vol 2919, pp
502-518

Karen Henricksen, Jadwiga Indulska (2006) Developing context-
aware pervasive computing applications: models and approach.
Pervasive Mobile Comput 2:37-64

Holzmann GJ (2003) The SPIN model checker: primer and refer-
ence manual. Addison Wesley, Boston

Jake project. http://code.google.com/p/jake-drivers/

Jones Cliff B, Daniel Jackson, Jeannette Wing (1996) Formal meth-
ods light. Computer 29(4):20-22

Kristoffersen S (2009) A preliminary experiment checking usabil-
ity principles with formal methods. IEEE Second International
Conference on Advances in Computer-Human Interactions, pp
261-270. doi:10.1109/ACHI.2009.26

@ Springer

14.

15.

16.

17.

18.
19.

20.

21.

22.

Markopoulos P, deRuyter B, Mackay WE (2009) Awareness sys-
tems: advances in theory. Methology and design. Springer, Berlin
McBryan T, Gray P (2009) User configuration of activity aware-
ness. Lecture Notes Computer Sci 5518:748-751

Riikénas R, Back J, Curzon P, Blandford A (2008) Formal mod-
elling of salience and cognitive load. ENTCS 57-75

Riche Y, Mackay WE (2007) Markerclock: A communicating aug-
mented clock for the elderly. Proc. Interact 07. Part II. Lecture
Notes Comput Sci 4663:408-411

Shake users group. http://www.dcs.gla.ac.uk/research/shake/
Kenneth J. Turner, Gavin A. Campbell, Feng Wang (2007) Poli-
cies for sensor networks and home care networks. In: Mohammed
Erradi (ed) Proc. 7th. Int. Conf. on New Technologies for Distrib-
uted Systems pp 273-284

Turner KJ (2012) Results of The MATCH Project. Advances in
Home Care Technologies. IOS Press

Williamson J, Murray-Smith R, Hughes S (2007) Shoogle: exci-
tatory multimodal interaction on mobile devices. Proc. SIGCHI
Conference on Human Factors in. Comput Syst 4663:121-124
Wang F, Turner K (2008) Policy conflicts in home care systems.
Proc. 9th Int. Conf. on Feature Interactions in Software and Com-
munications Systems pp 54-65

http://code.google.com/p/jake-drivers/
http://dx.doi.org/10.1109/ACHI.2009.26
http://www.dcs.gla.ac.uk/research/shake/

	Is my configuration any good: checking usability in an interactive sensor-based activity monitor
	Abstract
	1 Introduction
	2 The MATCH Activity Monitor
	2.1 Configuration

	3 Usability
	3.1 Redundant rules
	3.2 Interaction modalities

	4 Modelling the MAM
	5 A deep embedding in Promela
	5.1 Inputs
	5.2 Outputs
	5.3 Rules
	5.4 Interaction modality

	6 A shallow embedding in propositional logic
	6.1 Literals: inputs and outputs
	6.2 Clauses: rules

	7 Model generation and analysis
	7.1 Analysis: promela model
	7.2 Analysis: logic model
	7.3 Complexity and comparison

	8 Discussion
	9 Related work
	10 Conclusions and future work
	Acknowledgments
	References

