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1. INTRODUCTION 

This paper presents an .approach to solving divergence in the Knuth-Bendix completion 
algorithm [Knuth/Bendix]. 

The Knuth-Bendix completion procedure generates a confluent set of rewrite rules by repeatedly 

superposing left hand sides of rewrite rules and adding any generated critical pairs as new 

rewrite rules. The process may terminate in two ways; with success: there are no more (non- 

trivial) critical pairs, or with failure: a critical pair is generated which cannot be oriented by 

the ordering. The process is said to diverge if it does not terminate at all. 

When the confluent set is infinite (i.e. an infinite sequence of critical pairs is generated), then we 

attempt to replace the infinite sequence of rewrite rules by a finite sequence of rules which are 

equivalent in some sense. Obviously, this is only possible if the word problem under 

consideration is decidable. Therefore, the approach presented here is only applicable in an 

enumerable number of cases. We note that our approach differs from that in [Kirchener] where 

meta-variables and meta-rules are introduced for solving divergence problems; our aim is to 

derive an ordinary, finite, rewrite rule system which is confluent and terminating. 

The key idea of our approach consists of invoking inductive inference techniques (cf. the survey in 

[Angluin/Smith]) when generalising a given sequence in order to replace it by a single term. 

The basic notions and notations of algebraic specification and term rewriting systems from 

[Ehrig/Mahr, l-Iuet/Oppen] are assumed. The paper is organised in the following way. In 

sections 2 and 3 the basic definitions of rewriting and generalisation are given. Section 4 contains 

a brief introduction to inductive inference. Section 5 contains the main example which illustrates 
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the divergence problem and section 6 contains two inductive inference algorithms which may be 

applied to the example. In section 7 the conclusions and directions for future work are discussed. 

2. TERM REWRITING AND CONFLUENCE 

We assume a finite, heterogeneous signature X with an appropriate set of sorted variables such 

that every sort contains at least one ground term, i.e. carrier sets in the corresponding algebras 

are not empty. Terms are defined as usual; terms which do not contain variables are called 

ground terms. 

A given rewrite rule system R (over ~) defines the rewrite relation ~ R ,  the transitive closure 

~*R,  and the equivalence relation e~* R as usual. 

Confluent and terminating (i.e. canonical) term rewriting systems are desirable because they 

ensure that every term has a unique normal form and thus equality between terms is decided by 

comparing normal forms. Moreover, (finite) canonical rewriting systems provide an operational 

semantics for abstract data types with initial algebra semantics. 

When a given system is not confluent, one can attempt to complete it by means of a completion 

algorithm such as the Knuth-Bendix algorithm. This algorithm computes critical expressions 

and critical pairs which are then proposed as new rules. We assume that it is possible to orient a 

critical pair as desired (w.r.t. an underlying well-founded ordering on terms) such that the rule 

may be inserted into the given rewrite rule system without violating termination; we do not 

consider termination orderings explicitly here. Moreover, we assume that all terms which occur 

in a new rewrite rule are in normal form. 

When the process diverges and we have an infinite set of confluent rewrite rules, then we only 

have a semi-decision procedure. Consider the situation where an application of a critical pair 

completion procedure to a given rewrite rule system R results in an infinite sequence of critical 

pairs <11,r1> , <12,r2> , <13,r3> . . . .  which should be considered as new rewrite rules 11--)rl, 

12--~r 2, 13~r 3, . . .  For a given rewrite rule system R, we denote the (possibly) infinite set of 

(persistent) canonical rules generated by the completion procedure by R °°. If this is an infinite 

sequence and to be replaced by a finite set of rules, such a replacement, an enrichment of R, 

should meet certain conditions. First, the enrichment should be canonical and second, it should 

preserve the equational theory defined by R (or the rewrite relation defined by R°°). The 

enrichment of R, denoted here by R', may be based on a larger signature; i.e. the new rules in R" 

may use some new operators and, perhaps, some new sorts. Intuitively, the enrichment R" should 

reflect exactly the equational theory of R, when restricted to the original sorts. This notion is 

referred to as ground consistency, or a conservative extension [Ehrig/Mahr]: 
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Definition 

Let R be a rewrite rule system over a given signature ~ and let R" be a finite enrichment of R. We 

say that R' is a conservative extension of R when  

(Vt l , t2~TF_ ,) t I ~--~*Rt2 iff t I ~-~*R, t2 . 

This definition reflects our  intent ion that a correct completion must  not  imply any  new equalities 

among  ground terms over the original sorts. We note that we do not  require this condit ion for 

terms which contain variables; namely,  we may introduce theorems from the inductive theory. 

3. GENERAUSATION 

In this section we present  some basic generalisation concepts. Our  motivat ion is that a given 

sequence of terms {tl, t 2 .. . .  } may be generalised, in some sense, by a single term. The concepts 

should reflect our  intui t ion as well as being computat ional ly tractable. We note that a l though 

the defini t ions below apply  to sequences of terms, by an  abuse of notat ion they also apply  

sequences of rewrite rules when we consider a rewrite rule l-4r as a term with -4 as its outermost 

operator.  

When the terms occurring in a sequence {tl, t 2 , ...} contain variables, then our intuitive notion of 

general is ing this sequence mus t  take into account  all possible g round  instances of all the 

individual  terms. In order to formalise this, we define the language generated by a term, or a set 

of terms, respectively. 

Definition 

Let R be a terminating rewrite rule system over signature ~ and let X be a set of sorted variables. 

Let t be a term in  Ty.(X) and let T be a subset of TG(X). We define the language of t, L(t) and  the 

language of T,L(T), by  

L(t) =def {t" I (3~: X -> T7, ,) t~ = t'} 

L(T) =deal the un ion  of all L(t) for t ~ T 

We also define the normal form language (w.r.t. a rewrite rule system) of a term, or set of terms. 

Defini t ion 

Let R be a terminat ing rewrite rule system over signature G. For each set M of terms in T ~  SM 

denotes the set of all normal forms of terms in M ,  w.r.t. R °~. 

Now, two generalisation relations, >> and >>N, are defined. 
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Defin i t ion  

Let R be a rewri te  rule system over  signature Y., and let t, t 1, t 2 .... be terms in Tx(X). 

t >> {t 1, t 2, ...} iff L(t) ~ L({t 1, t 2 .... }). 

t >>N {tl" t2 .. . .  } iff ,l,L(t) ~ SL({tl,t2, ... }). 

When  L(t) = L({ t I , t 2 . . . .  }), then t is called an exact generalisation of {t 1, t 2, ...}. 

When  SL(t) = ,[L({ t 1 , t 2 . . . .  }), then t is called an exact normal generalisation of {tl, t 2, -.}. 

Clearly,  enr iching a g iven  rewri te  rule system R with an  exact generalisation will  result  in a 

conservat ive  extension of  R. Moreover ,  enriching R with  an exact normal general isat ion also 

results in a conservative extension of R. 

Leznl~a 

Let R be  a g iven  rewrite rule system and let p be an exact normal generalisation of R ~. R u p is a 

conservative extension of  R. 

Proof 

The implication f rom left to right is trivial; we prove the converse by contradiction. Assume that 

p implies a new equivalence between ground terms s I and s2; namely, s 1--~s 2 is a ground instance of 

P' Sl ~'-)*R u p s2 but  s 1 (")*R s2 does  not  hold. Clearly .J,(p) ~$({Sl--~s2}) w.r.t. R u p. However ,  

because P is an exact normal  generalisation, then we also have "['(9) D-'['({Sl--~s2}) w.r.t. R and as a 

consequence s 1 (-~*R s2 which contradicts the assumption. 

Al though  the above  notions of generalisation are  very intuitive, they are not  computat ionat ly  

tractable. Therefore, we introduce some further definitions. 

Definition 

Let R be a rewrite rule system over  signature ~, let t ,  t 1, t 2 .... be terms in Tz(X) and let Cl, cr2, ... 

be  substitutions f rom X toTy.(X). 

t > {t 1, t2, ...} i f f  For every  term t i there is a substitution c i such that tc~ i = t i . 

t >{ t l ,  t2,. . .}(~* R) i f f  For every  term t i t he r e i s a subs t i t u t i onc r  i such that tcr i ~ , R t i .  

t > {t 1, t 2, ...}(~-~*R ) i f f  For every  term t i there is a substitution ~i such that tcr i ,-~*Rti . 

The  relation > is also referred to as the subsumption relation and is used as the generalisation 

concept  in [Kodratoff]; the relation > (modulo any theory) is used as the generalisation concept 

in [Plotkin]. We note that these definitions are not comprehensive and that there are some more 
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possibilities, e.g. ~ * R  may be replaeecl by ~*R" 

The required properties are difficult to verify, in general, except the condit ion of >, (with the 

empty  theory), which is pure ly  syntactical and  decidable. This is a good reason to prefer the 

relation > as a concept of generalisation. The relation >(~-~*R ) causes serious problems as it has 

been shown [Lange] that it  is und~.iclable whether or not  there exists a generalisation (modulo an 

equivalence) of two arbitrary terms {t 1, t2}. 

Proposition 

1. t > {t I, t 2, ...} 

2. t > {tl, t 2,.. .}(~*R ) 

3. t > {t 1 , t  2,.. .} 

4. t > {t 1, t 2, ...}(-~*R**)~ 

t > {h, t2, .-} ('-"R) 

t > {h, t2,. . .}(O*R) 

t >> {tl, t2, .-} 

t >>N {tl' t2' °''} 

l~roof of 4 

If t > {t 1, t 2 . . . .  }(-~*R**), then by  definition of >, for each t i , i=1,2,..., there exists an  (~i s.t. 

tcri ~*R** ti- By definition of normal forms, for each t i there is a normal form St i s.t. t i "**R Sti" If 

for some t, we have tc~ i "-¢*R** t, then by the confluence property, we also have t ~*R ~ St i . Thus, 

for every St i there is a substitution ~i s.t. ,l, tc~ i = St i . 

Lelllnla 

- ( t  >> {t 1 , t  2 , . . . }~  t >{t l ,  t 2,..}). 

Proof: By counter  example. Assume any  signature with at least three sorts s ,  s' ,  s" ,  an operator 

h: s ~ s ' " ,  exactly one s-sorted operator f : s" --¢ s and there are no constants of sort s. Let x and y 

be variables of sort s and  s" respectively. Now consider the following two terms: t =clef h(f(y)) 

and  t' =clef h(x). Because all instantiations of h(x) must  have the form h(f(z)), where z has sort 

s ' ,  both terms define the same language of ground terms; i.e. t >> {t'} and t' >> {t}. But clearly t 

> {t'} does not  hold. 

~ m a  

If every sort contains at least one constant and two distinct ground terms, then 

t >> {t 1 , t  2,...}=~ t > i t  1 , t  2,...}. 

Proof: Let t, t 1, t 2 ... be terms with t >> {t 1, t 2 .... }. Consider any term t' ~ {t 1, t 2 , ...} and  let c~ 

be a ground substi tution which substitutes every variable in t' by a constant. The resulting term 

t'c~ has the same structure t' and,  by  assumption,  must  belong to L(tL Thus, t' cannot  be 

structural ly more  general  than t: at the occurrences of variables in t', t must  contain either 

variables or constants. If, at such a position in t, there is a constant, then one could generate from 

t' a term which could not  be generated from t; (this is possible by substituting another ground term 

which exists by assumption).  Thus, at every occurrence of a variable in t', t must  also have a 
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variable at this position. Moreover, distinct variables in t' must  also be distinct in t. Otherwise, 

by using the two different ground terms, one could generate a term from t' which cannot be 

generated from t. Thus, t must be identical to or structurally more general than the chosen term 

t ~ . 

Finally, we note that must  of course exclude certain "unacceptable" generalisations which are 

formally possible, but  generate rewrite rules which are unacceptable: e.g.  x - 4  y.  In  the 

following, we call a rewrite rule 1-4 r acceptable, if all variables occurring in r also occur in 1. 

Our aim is to find, where possible, ground consistent, acceptable generalisations of sequences of 

critical pairs. Fortunately, we see that the simple, syntactic notion of > is equivalent in many 

cases. Moreover, we shall look for generalisations which are minimal, exact or exact normal 

generalisations. 

4. INDUCTIVE INFERENCE 

Inductive inference [Angluin/Smith] is a mathematical theory of algorithmic learning from 

incomplete information. As inductive inference addresses the problem of learning from 

incomplete information, when applying an inductive inference procedure to some learning 

problem, one never knows in advance whether or not the information processed so far is 

comprehensive enough to construct reasonable hypotheses about the phenomenon to be learned. 

Therefore, even successful inductive inference methods may offer only a semi-computable tool. 

Fortunately, this fits very well into the framework of critical pair completion procedures where 

termination (of the algorithm) is undecidable. 

In general, it is impossible to prove the correctness of an hypothesis with respect to some infinite 

sequence of information as each hypothesis is usually generated from a finite, initial segment of 

the sequence. An inductive inference strategy has to be designed such that its result becomes 

correct after processing a sufficiently large, but still finite, amount of information. Every wrong 

hypothesis must be changed after a finite number of steps. 

• , # 

For example, if there is an sequence of critical pairs/rewrite rules: 

11-4r 1, 12-4r 2, 13-4r 3, . . .  

and if some generalised rule 1-4 r has been constructed from the initial part 

11 ---)r I . . . . .  t n -4 r n, 

then it is impossible to prove that this rule is a generalisation of the whole sequence. 

Consequently, there is no way to prove that a generalisation is minimal, or exact, in general. 

However, this may be possible in particular cases using additional knowledge about the sequence 

of critical pairs, e.g. by describing (finitely) how the sequence is generated. 
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We will use inductive inference when constructing a generalisation of a sequence from a finite 

init ial  segment;  in  the fol lowing section we give an  example in  order  to mot ivate  the 

general isat ion algori thms. 

5. AN EXAMPLE 

Considering the following rewrite rule system R. The signature contains the sort na t  with the 

usual  ar i thmetic  operators  0:nat ,  S: nat  -> na t  and  + :  nat  nat  -> nat,  and  the sort T with 

operators f, g, h have arities T -> T, T -> T, and nat  T -> T,resp. 

(A1) x + 0  --~ x 

(A2) 0 + x  --) x 

(A3) x + S(y) --~ S(x + y) 

(A4) S(x) + y --~ S(x + y) 

(AS) (x+y)+ z --~ x + (y + z) 

(B1) f(g(f(x))) --~ f(h(S(0),x)) 

(B2) f(g(h(y,x))) --) f(h(S(y),x)) 

(B3) f(h(z ,h(y,x)))  --) f(h(z + y,x)) 

The subsystem consisting of (A1) . . . . .  (AS) is obviously canonical, but  the system as a whole is not 

confluent. The generated sequence of critical pairs/rewrite  rules is: 

(C1) f(h(S(0),g(f(x)))) 

(C2) f(h(S(0),g(h(y,x)))) 

(C3) f(h(S(S(0)),g(f(x)))) 

(C4) f(h(S(S(0)),g(h(y,x)))) 

(C5) f(h(S(S(S(0))),g(f(x)))) 

(C6) f(h(S(S(S(0) )),g(h(y,x)))) 

(C7) ffh(S(S(S(S(0)))),g(f(x)))) 

-~ f(h(S(S(0)),x)) 

--~ f(h(S(S(y)),x)) 

--) f(h(S(S(S(0))),x)) 

-~ f(h(S(S(S(y))),x)) 

f(h(S(S(S(S(0)))),x)) 

--~ f(h(S(S(S(S(y)))),x)) 

--~ f(h(S(S(S(S(S(0))))),x)) etc. 

For generalisation, the sequence is parti t ioned into two subsequences: (C1), (C3), (C5), ... and  

(C2), (C4), (C6), ... 

(C1) f(h(S(0),g(f(x)))) --~ f(h(S(S(0)),x)) 

(C3) f(h(S(S(0)),g(f(x)))) --~ f(h(S(S(S(0))),x)) 

(C5) f(h(S(S(S(0))),g(f(x)))) --) f(h(S(S(S(S(0)))),x)) 

(C7) f(h(S(S(S(S(0)))),g(f(x)))) --) f(h(S(S(S(S(S(0))))),x)) etc. 
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(C2) f(h(S(0),g(h(y,x)))) --4 f(h(S(S(y)),x)) 

(C4) f(h(S(S(0)),g(h(y,x)))) -~ f(h(S(S(S(y))),x)) 

(C6) f(h(S(S(S(0))),g(h(y,x)))) --~ f(h(S(S(S(S(y)))),x)) etc. 

The motivation for the partitioning is that we wish to generalise every resulting (sub)sequence 

w.r.t, one of the generalisation concepts introduced above: every sequence should be replaced by a 

single rule. The question of how, in general, to partition a sequence into appropriate subsequences 

is a difficult problem and remains open. For the moment, there are some useful heuristics. For a 

given critical pair, call the (superposed) rules which generate it its parents. Now, every rule in 

the first sequence has the rule (B1) among its parents, whereas every rule of the second sequence 

has (B2). If we consider, additionally, grandparents and so on, this may provide sufficient 

information for partitioning a given sequence of critical pairs into generalisable subsequences. 

Before introducing the algorithms for generalising rules, we use the example for illustration. 

For the first sequence: (C1), (C3), (C5), .. , the rule 

(G1) f(h(S(y),g(f(x)))) --) f(h(S(S(y)),x)) 

is a generalisation of the sequence (C1), (C3), (C5),... w.r.t. >. (Recall that rewrite rules are 

considered as terms with --) as outermost operator.) Moreover, (G1) is a generalisation of the 

sequence (C1), (C3), (C5) . . . .  w.r.t, all the other generalisation concepts. (G1) is not an exact 

generalisation of (C1), (C3), (C5), but it is an exact normal generalisation and therefore it is a 

conservative extension of R1. 

Generalising the second sequence (C2), (C4), (C6) .... w.r.t. > is more difficult. In particular, 

there is no exact or exact normal generalisation which is a generalisation w.r.t. >. However, 

(G2) f(h(S(z),g(h(y,x)))) -4 f(h(S(S(z+y)),x)) 

is a generalisation w.r.t. >(--~*R ~) and and it is an exact normal generalisation. Namely, after 

substituting any ground term of sort nat for z in (G2), the resulting subterm is always rewritten 

into a normal form which occurs in a particular rule (Ci). For example, substi tuting 

(S(0)+0)+S(S(0)) for z yields the normat forms S(S(S(S(0)))) and S(S(S(S(S(y))))) which are the 

left and right hands (resp.) of the rule (C8). 

To summarise, (A1) . . . . .  (AS), (G1) (G2) is a canonical rewrite system and {(G1), (G2)} is a 

conservative extension of (A1), ... ,(A5). 
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6. TWO BASIC INDUCTIVE INFERENCE ALGORITHMS 

In this section we give two inductive inference algorithms for generalising infinite sequences of 

critical pairs. Each algorithm takes as input some finite, initial segment of such a sequence and 

generates single rules intended to be generalisations. Because generalisation is associative, we 

assume exactly two examples as input: 11 -+ r I and 12 --~ r 2. 

In the following, we use the convention that when p is a position in a term, for example, 1.1.1, 

then t[p] is the (sub) term of t at position p, and t[x/p] denotes t with the substitution of x for the 

subterm at position p in t. When t' is a term, then t[x/t '] is the usual substifion of x for t' in t. 

6.1 First Algori thm 

We consider generalisations w.r.t. > (the empty theory) first. For a given set of terms, the set of 

all possible generalisations (modulo renaming) is a complete lattice partially ordered w.r.t. > 

and so finding a minimal generalisation w.r.t. > is always effectively possible. Thus, the 

intention of presenting the first algorithm is more to explain a particular inductive inference 

method in some detail  and to provide a firm basis for the following propositions than to 

convince the reader  that the problem of generalisation w.r.t. > is recursively solvable. The 

algorithm consists of two parts: the synthesis of left hand side and the right hand side of the 

generalisation rule resp. and we assume a list of global variables V. 

Part  1: This part investigates the left hand sides of the given rules and synthesises the new 

left hand side. If Part 1 succeeds in a non-trivial way, then the result, which we will denote by 

r ,  is 11 (or 12) with substitutions of a number of (not necessarily distinct) variables at the 

occurrences of the (smallest) differing subterms in each input term 11 and 12. If part 1 succeeds in a 

trivial way, then the result is a single variable. 

Part  2: This part tries to establish a link between the replacements in left hand sides of critical 

pairs / rewri te  rules with their corresponding right hand sides and if successful, synthesises the 

new right hand side. 

More precisely, the l.h.s, and r.h.s, of the generalisation rule are given by: 
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L.H.S(II,I  2) = 11 [xl/Pl , . . . ,xn/Pn] 

R.H.S(ll ,12,rl , r  2) = r I [x l /q l l , - . - ,x l /q l j l  ..... xn /qni , . . . ,x l /q  ~ ]  

if r 1 [x l /q l l , . . . , x l /q l j l  ..... xn /qn l , . . , x l / qn j ]  = r 2 [x l /q l l , . . . ,x l /q l j l  . . . . .  xn/qnl , . . . ,x l /q~ n] 

= e otherwise 

w h e r e  Pl ,  -- ' ,  Pn are the posit ions of the smallest differing subterms of 1 t and 12, 

Xl, ....  x n are variables which do not  occur in 11 and 12 and 

(Vi,j:l<_i,j_sn) ((ll[Pi] = tt{Pj] A 12[Pi] = 12[Pj]) => xi= Xj) , 

for each i, l<_i<_n, 

si 1 . . . . .  s i ki are the posit ions of ll[Pi] in r 1, 

ti 1 . . . . .  t i l i a re  the posit ions of 12[Pi] in r2, 

{qi 1 . . . . .  q i j i } = { s i l  . . . . .  Sik i}  c ~ { t i l  . . . . .  t i l l } .  

If the a lgor i thm succeeds (i.e. the new right hand  side is not  e), then the r ight  hand  side is 

denoted by  r' and  the generated hypothesis  is the rewrite rule 1' --~ r'. 

As an example,  consider  the the first two rules in the first sequence of critical pairs: 

(C1) f(h(S(0),g(f(x)))) -~ f(h(S(S(0)) ,x))  

(C2) f(h(S(S(0)),g(h(y,x)))) --> f(h(S(S(S(0))) ,x))  

The smal les t  d is t inct  terms in 11 (the Lh.s. of C1)) and 12 (the 1.h.s. of C3)) occur at  posi t ion 

1.1.1.1: the subterms 0 and S(0) in 11 and 12 resp. They are replaced by  a variable y in part  1 and 

1' = f(h(S(y),g(f(x)))). In part  2 we search for occurrences of 0 and S(0) in r 1 and r 2 resp. In both 

cases, the posi t ion is exactly 1.1.1.1.1 and the result  of replac ing the resp. subterms by  y is 

r' = f(h(S(S(y)),  x)). The terms 0 and  S(0) do  not  occur e lsewhere in 11 or 12; therefore,  the 

generated rewrite rule  is 

(G1) f(h(S(y),  g(f(x)))) --> f(h(S(S(y)), x)). 

We should  note that  when generat ing a right hand  side, it is very impor tant  to consider,  for each 

in t roduced  variable,  only  the intersection of the posit ions of the general ised sub- terms in each 

given term. For  example,  consider  the rules F(0) => fr0,0) and F(succ(O)) => f(succ(0),0). From the 

first part ,  we  have the general isat ion F(x), with x generatising 0 in the first example  and succ(0) 

in the second. Consider  now the right hand sides. In the right hand  side of the first example,  we 

should  a p p l y  the general is t ion only  to the first 0 (position 1.1) to get fix,O). The posi t ion 1.2, the 

posit ion of the second 0, is not  a posit ion of succ(0) in the second example;  if we general ised this 

occurrence of 0 then we would  not  have the same generalisation for both examples.  In the right 

hand side of the second example,  we apply  the genera| isation to posi t ion 1.t, the only occurrence 

of succ(0) to get  fix,0). 
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Lemma 

If the first a lgori thm processes a finite number  of rules 11 --) r I . . . . .  1 n --4 r n and outputs  the 

rewri te  rule 1 -4 r, then 1 --, r > {l I - ,  r l , . . . ,  I n --) rn} and l--* r is an acceptable, minimal  

general isat ion.  

Proof 

The proof of generalisation obvious; it just uses the substitutions introduced in Part 1. Clearly any 

rule  thus  genera ted  is acceptable because the variables used in Part  2 are a subset  of the 

variables used in Part 1. We prove that l -4 r is minimal by contradiction. Assume that 1 ---) r is 

not minimal: there exists r --4 r' > {l I --4 r I . . . . .  I n --~ rn} such that l -4 r > 1' --, r ' .  Because the 

generalisations possible  on the r.h.s, of rules are always a subset of the generalisations on the 

l.h.s., we need only  consider  the l.h.s Thus, there must  exist a variable v occurr ing  in 1, at 

posit ion p, and a substitution (~(v)=f(xl,...,t n) such that lc; = r.  v can only occur in 1 when  there 

exists two example terms, I i and lj, say, and substitutions (~i and cj, say, such that 1 i [p] = 1(~ i[p] = 

f l ( t  I ..... tn), lj[p] = l(~j[p] = f2(s I ..... sin), and lj[p] ~ I i [p] . More specifically, f l  ~ f2. Because 1' is 

also a generalisation of 1 i and lj, there must exist substitutions Pi and pj, say, such that rpi  = lj, 

lpj=lj, and therefore 1 i [p] = l'Pi [p] = f l (  1 ..... tn),lj[ p] = l'pj[p] = f2(s I ..... sln). Since 1 generalises r,  

then l'Pi [p] = lc~Pi [p] = f(x I ..... tn)Pi = f l (  1 ..... t n) and l'pj[p] = l(~pj[p] = f(x I ..... tn)pj = f2(s I ..... Sm). 

But there cannot exist an f such that f = f l ,  f = f2 and f l  ~ f2. Therefore, there cannot exist such a 

substitution c~, and thus 1-*r is minimal. 

Coro l la ry  

If the first algori thm processes an infinite number  of rules 11 -e  r 1 , 12 -* r 2 , . .  and outputs  the 

r u l e s l  --4 r, t h e n l  --* r > { l  1--4 r 1, 12 --4 r 2, ... } a n d l - *  r is an acceptable,  min imal  

general isat ion.  

An  induct ive  inference a lgor i thm is considered as solving a par t icular  learning p rob lem 

successfully if it converges when  applied to a sequence of examples; i.e. after a finite number  of 

steps it genera tes  a hypothes is  which  will  not  be changed  later  w h e n  process ing more  

information.  This clearly reflects the concept of learning f rom incomplete  information.  The 

natural  question is whether  or  not  the algori thm presented is able to generalise all sequences of 

critical pairs which are generalisable. 

Lemma 

If for some infinite sequence of rules { 11--)rl, 12 -4 r 2, ... } there exists an acceptable, minimal  

generalisafion w.r.t. >, then the first algorithm solves the learning problem successfully. 
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Proof:. (sketch of proof by  contradiction). 

Assume that there exists an acceptable generalisation 1 --) r with 1 -~ r > { ll--~r 1, 12 --) r 2 .... }, 

but that the algori thm does not solve the problem. One can easily exclude the case that the 

algorithm does not terminate for some finite set {ll-~r 1, 12 --~ r 2, ...}. An instance of l, perhaps l 

itself, can always be found by part I of the algorithm. Similarly, part  2 can not fail. It remains to 

determine whether or not the algorithm may have an infinite number of mind changes. Assume 

that the first algorithm, when processing the infinite sequence { l l ~ r  1, 12 ~ r 2 .... } generates an 

infinite sequence of hypotheses { l 'l--~r'l, r 2 --) r' 2 . . . .  } where every hypothesis r m --~ r' m is a 

generalisation of some finite initial segment. For every 1" i , i=1,2,..., there must be a substitution 

c i with l ' i a  i = 11, as all hypotheses are generalisations covering at least the first example. 

Therefore, the term 1" i cannot be syntactically larger than 11. This means that at least the 1.h.s. 

of l ' l ~ r '  1, 1' 2 ~ r'2, ... must become stable because there are (up to renaming of variables) only 

finitely many terms which may be constructed by part 1, and part I always computes some term. 

It generates a new version of I only when the former version becames wrong. As it must reject terms 

which do not generalise some example, it always keeps a correct generalisation and such a term 

exists by  assumption. We denote this term by 1". Therefore, almost all 1" i are equal to 1". Now, 

consider part 2 of the algorithm; similar arguments apply: there must  be some term r " which 

equals almost every r" i. Thus, the construction of the generalisation contradicts the assumption 

of infinitely many distinct hypotheses. 

We can now apply  these results to the example investigated above. In particular, we use the 

knowledge about the underlying term rewriting system which allows us to prove that the 

distinct subterms occuring in (C1), (C3) .... form the complete sequence of normal forms 0, S(0), 

S(S(0)), ... for the sort na t .  

Corol lary 

The first algorithm solves the inductive inference problem given by (C1), (C3), ... successfully 

and generates a generalisation w.r.t. > which is additionally an exact normal generalisation. 

As a consequence of this corollary, (G1) is a correct generalisation; i.e. R1 u (G1) is a 

conservative extension of R1. 

Now, consider the first two examples in the second sequence of critical pairs (C2), (C4) .... Part 1 

of the algorithm proceeds as described above and the resulting term is 1' = f(h(S(z), g(h(y, x))). 

However, in this example, part 2 can not succeed because the terms 0 and S(0) do not occur as 

subterms of the corresponding right hand sides and after (trivially) applying the generalisation 

of 0 and S(0) to z, the resulting terms differ. Thus, the algorithm fails. Obviously, the problem is 

the inability to recognise the similarity between 0 and S(0) on the one hand and y and S(y) on 

the other hand. The only way to generalise the right hand sides w.r.t. > involves the 

introduction of a completely new variable which does not occur in any left hand side. However, 

a l though this would  yield a general isat ion w.r.t. >, it would not  be an acceptable 
generalisation. 
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We now present  a second semi-algorithm which is an extension of the first and  solves this 

problem by  looking for generalisations modulo  the theory -')*R • 

6.2 Second (Semi)-Algorithm 

Part 1: This par t  is ident ical  to the cor responding  par t  of the first  induc t ive  inference 

a lgor i thm and yie lds  a term t'. 

Part 2: First, the same procedure  as Part2 of the first a lgor i thm is appl ied  in as many  positions 

as possible.  Thus, every  right hand  side may  be modif ied  by  in t roducing  some variables as 

before. If the first a lgor i thm terminates  with failure, then the second a lgor i thm proceeds  to 

search for a right hand  side by  searching for a normal general isat ion as follows. There are still 

some occurrences in which the modif ied r ight  hand sides are different, these occurrences are 

denoted  by v 1, . . . ,  v m. If the corresponding subterm of the right hand  side at occurrence vj is 

denoted by  t[vj],then we look for the first wj in the lexicographic order ing of terms from TG(X), 

where  X is the set of variables occurr ing in the r ight  hand sides and any variables introduced 

into the modif ied  left hand sides, such that  for each i, wja  i ~ * R  t[vj]. We note that  the first 

a lgori thm is just the special case wjs i = t[vj]. Thus, we have 

L.H.S(ll,12) 

R.H.S(ll ,12,rl ,r  2) 

= 11 [xl/Pl, . .- ,xn/Pn] 

= r 1 [x l /q l l , . . . ,x l /q l j I  ..... xn/qnl,o..,xl/q~jn] [Wl/Vl,.--,Wm/Vm] 

where 

Pl ,  -.-, Pn are the posit ions of the smallest differing subterms of 11 and 12, 

Xl, ..., x n are variables which do  not occur in 11 and  12 and 

(Vi,j:l<_i,j<n) ((ll[Pi] = ll[pjl  ^ 12[Pil = 12[p~) => xi= x j ) ,  

for each n, l<i<n,  

si 1' "- "si k i are the positions of ll[Pi] in r 1, 

ti 1 . . . . .  t i l i a re  the posit ions of 12[Pi] in r 2, 

{qi 1 . . . . .  qiji }={ si 1 . . . . .  s ik i}  n { t i  1 . . . . .  t i l l }  

v t ,  ..., v m are posi t ions of the (smallest) differing subterms in 

r I [xl /ql l , . . . ,Xl /ql j l  ..... xn/qnl,...,Xl/Ch~] and r 2 [xl /ql l , . . . ,Xl/ql j l  ..... xn/qnl , . . . ,xl /qr~],  

for each v i, l < i < m  

w i is the least term in TE(var(r 1) u var(r  2) ~; {x 1, ..., Xn}) 
(assuming a total ordering on variables and lexicographic ordering on terms) 

such that 
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wi[ x l / r l [ q l  1] ..... xn / r l [ q~ l l  "-~*R rlIvi] 

wi[ xl/r2[q11] ..... xn/r2[Clnl l] "-~*R r2[vi] 

If the(semi)-algorithm terminates, then the right hand  side is denoted by  r' and  the generated 

hypothesis is the rewrite rule l' --~ r'. 

As an  example, consider the first pair in the first sequence of critical pairs: (C1) and  (C3). 

(C2) f(h(S(0),g(h(y,x)))) --~ f(h(S(S(y)),x)) 

(C4) f(h(S(S(0)),g(h(y,x)))) -~ f(h(S(S(S(y))),x)) 

Part 1 results in the introduction of one variable for generalisation, z say, (for terms 0 and S(0) 

resp.) and  the resu l t ing  l.h.s, is f(h(S(z),g(h(y,x))). In Part 2, we search for the least r' in 

Tz({x,y,z}) such that r '[0/z] can be rewritten to f(h(S(S(y)),x)) and  r'[s(0)/z] can be rewritten to 

f(h(S(S(S(y))),x)). Clearly, the first solution for r' is f(h(S(S(z + y)),x)). Thus the generated 

rewrite rule is 

(G2) f(h(S(z),g(h(y,x)))) --~ f(h(S(S(z+y)),x)) 

Lelllma 

If the second algorithm processes a finite number  of rules 11 --~ r 1 . . . .  , 1 n --~ r n and  outputs  a 

rewrite rule 1 -~ r ,  then I --~ r > {l 1 -~ r I . . . . .  1 n --~ r n } and 1 --~ r is an acceptable, minimal  

general isat ion.  

Corol lary 

If the second algorithm processes an  infinite number  of rules 11 --~ rl ,  12 --~ r2, ... and outputs  a 

rewrite rule 1--~ r , t h e n  I --~ r > {11 - ~ r  1 . . . .  , } ( -~*R ) 1 -~ r i s a n  acceptable, minimal  

general isaf ion.  

L ~ m a  

If for some infinite sequence of rules {11 --~ rl ,  t 2 --~ r2, _. } there exists an acceptable minimal  

genera l i sa t ion  w.r.t .  > (---)*R), then the second a lgor i thm solves the l ea rn ing  p rob lem 

successfully. 

Corol lary 

The second a lgor i thm solves the induct ive  inference problem g iven  by (C2), (C4), (C6), ... 

successfully and  genera tes  a general isa t ion w.r.t. > (--~*R) which is an  exact normal  

general isat ion.  

As a consequence of this corollary, (G2) is a correct generalisation; i.e. R1 ~ G2 is a conservative 

extension of R1. 



302 

7. CONCLUSIONS 

In this paper we have introduced two concepts of generalisation. The first refers to the language 

of terms and although it is more appropriate to our problem of finding confluent, ground consistent 

enrichments of non-confluent rewriting systems, we have found that the simpler (usual) syntactic 

notion may be used in many examples. Two basic inductive inference algorithms for finding 

generalisations of infinite sequences of terms (or rules) have been presented and shown to be 

successful for the example under consideration. 

Often, a set of terms is not generalisable because we cannot quantify over operators: we have 

only first order rewriting. Two alternatives to higher-order rewriting, or meta-rewriting (as 

described in [Kirchener]) are i) to embed the given problem in a richer theory (i.e. add auxiliary 

sorts, operators and rules) where we can "count" operators and ii) introduce a richer type structure 

with sub-type relations. Both approaches are currently under investigation and further work is 

planned. 
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