
I N D U C T I V E INFERENCE FOR SOLVING DIVERGENCE
IN KNUTH-BENDIX COMPLETION

Muffy Thomas

University of Glasgow, Dept. of Computing Science, Lilybank Gardens, Glasgow, G12, Scotland.

Klaus P. Jantke

Leipzig University of Technology, Dept. of Mathematics & Informatics, P.O. Box 66, 7030

Leipzig, German Democratic Republic.

1. INTRODUCTION

This paper presents an .approach to solving divergence in the Knuth-Bendix completion
algorithm [Knuth/Bendix].

The Knuth-Bendix completion procedure generates a confluent set of rewrite rules by repeatedly

superposing left hand sides of rewrite rules and adding any generated critical pairs as new

rewrite rules. The process may terminate in two ways; with success: there are no more (non-

trivial) critical pairs, or with failure: a critical pair is generated which cannot be oriented by

the ordering. The process is said to diverge if it does not terminate at all.

When the confluent set is infinite (i.e. an infinite sequence of critical pairs is generated), then we

attempt to replace the infinite sequence of rewrite rules by a finite sequence of rules which are

equivalent in some sense. Obviously, this is only possible if the word problem under

consideration is decidable. Therefore, the approach presented here is only applicable in an

enumerable number of cases. We note that our approach differs from that in [Kirchener] where

meta-variables and meta-rules are introduced for solving divergence problems; our aim is to

derive an ordinary, finite, rewrite rule system which is confluent and terminating.

The key idea of our approach consists of invoking inductive inference techniques (cf. the survey in

[Angluin/Smith]) when generalising a given sequence in order to replace it by a single term.

The basic notions and notations of algebraic specification and term rewriting systems from

[Ehrig/Mahr, l-Iuet/Oppen] are assumed. The paper is organised in the following way. In

sections 2 and 3 the basic definitions of rewriting and generalisation are given. Section 4 contains

a brief introduction to inductive inference. Section 5 contains the main example which illustrates

289

the divergence problem and section 6 contains two inductive inference algorithms which may be

applied to the example. In section 7 the conclusions and directions for future work are discussed.

2. TERM REWRITING AND CONFLUENCE

We assume a finite, heterogeneous signature X with an appropriate set of sorted variables such

that every sort contains at least one ground term, i.e. carrier sets in the corresponding algebras

are not empty. Terms are defined as usual; terms which do not contain variables are called

ground terms.

A given rewrite rule system R (over ~) defines the rewrite relation ~ R , the transitive closure

~*R, and the equivalence relation e~* R as usual.

Confluent and terminating (i.e. canonical) term rewriting systems are desirable because they

ensure that every term has a unique normal form and thus equality between terms is decided by

comparing normal forms. Moreover, (finite) canonical rewriting systems provide an operational

semantics for abstract data types with initial algebra semantics.

When a given system is not confluent, one can attempt to complete it by means of a completion

algorithm such as the Knuth-Bendix algorithm. This algorithm computes critical expressions

and critical pairs which are then proposed as new rules. We assume that it is possible to orient a

critical pair as desired (w.r.t. an underlying well-founded ordering on terms) such that the rule

may be inserted into the given rewrite rule system without violating termination; we do not

consider termination orderings explicitly here. Moreover, we assume that all terms which occur

in a new rewrite rule are in normal form.

When the process diverges and we have an infinite set of confluent rewrite rules, then we only

have a semi-decision procedure. Consider the situation where an application of a critical pair

completion procedure to a given rewrite rule system R results in an infinite sequence of critical

pairs <11,r1> , <12,r2> , <13,r3> which should be considered as new rewrite rules 11--)rl,

12--~r 2, 13~r 3, . . . For a given rewrite rule system R, we denote the (possibly) infinite set of

(persistent) canonical rules generated by the completion procedure by R °°. If this is an infinite

sequence and to be replaced by a finite set of rules, such a replacement, an enrichment of R,

should meet certain conditions. First, the enrichment should be canonical and second, it should

preserve the equational theory defined by R (or the rewrite relation defined by R°°). The

enrichment of R, denoted here by R', may be based on a larger signature; i.e. the new rules in R"

may use some new operators and, perhaps, some new sorts. Intuitively, the enrichment R" should

reflect exactly the equational theory of R, when restricted to the original sorts. This notion is

referred to as ground consistency, or a conservative extension [Ehrig/Mahr]:

290

Definition

Let R be a rewrite rule system over a given signature ~ and let R" be a finite enrichment of R. We

say that R' is a conservative extension of R when

(Vt l , t2~TF_ ,) t I ~--~*Rt2 iff t I ~-~*R, t2 .

This definition reflects our intent ion that a correct completion must not imply any new equalities

among ground terms over the original sorts. We note that we do not require this condit ion for

terms which contain variables; namely, we may introduce theorems from the inductive theory.

3. GENERAUSATION

In this section we present some basic generalisation concepts. Our motivat ion is that a given

sequence of terms {tl, t 2 } may be generalised, in some sense, by a single term. The concepts

should reflect our intui t ion as well as being computat ional ly tractable. We note that a l though

the defini t ions below apply to sequences of terms, by an abuse of notat ion they also apply

sequences of rewrite rules when we consider a rewrite rule l-4r as a term with -4 as its outermost

operator.

When the terms occurring in a sequence {tl, t 2 , ...} contain variables, then our intuitive notion of

general is ing this sequence mus t take into account all possible g round instances of all the

individual terms. In order to formalise this, we define the language generated by a term, or a set

of terms, respectively.

Definition

Let R be a terminating rewrite rule system over signature ~ and let X be a set of sorted variables.

Let t be a term in Ty.(X) and let T be a subset of TG(X). We define the language of t, L(t) and the

language of T,L(T), by

L(t) =def {t" I (3~: X -> T7, ,) t~ = t'}

L(T) =deal the un ion of all L(t) for t ~ T

We also define the normal form language (w.r.t. a rewrite rule system) of a term, or set of terms.

Defini t ion

Let R be a terminat ing rewrite rule system over signature G. For each set M of terms in T ~ SM

denotes the set of all normal forms of terms in M , w.r.t. R °~.

Now, two generalisation relations, >> and >>N, are defined.

291

Defin i t ion

Let R be a rewri te rule system over signature Y., and let t, t 1, t 2 be terms in Tx(X).

t >> {t 1, t 2, ...} iff L(t) ~ L({t 1, t 2 }).

t >>N {tl" t2 } iff ,l,L(t) ~ SL({tl,t2, ... }).

When L(t) = L({ t I , t 2 }), then t is called an exact generalisation of {t 1, t 2, ...}.

When SL(t) = ,[L({ t 1 , t 2 }), then t is called an exact normal generalisation of {tl, t 2, -.}.

Clearly, enr iching a g iven rewri te rule system R with an exact generalisation will result in a

conservat ive extension of R. Moreover , enriching R with an exact normal general isat ion also

results in a conservative extension of R.

Leznl~a

Let R be a g iven rewrite rule system and let p be an exact normal generalisation of R ~. R u p is a

conservative extension of R.

Proof

The implication f rom left to right is trivial; we prove the converse by contradiction. Assume that

p implies a new equivalence between ground terms s I and s2; namely, s 1--~s 2 is a ground instance of

P' Sl ~'-)*R u p s2 but s 1 (")*R s2 does not hold. Clearly .J,(p) ~$({Sl--~s2}) w.r.t. R u p. However ,

because P is an exact normal generalisation, then we also have "['(9) D-'['({Sl--~s2}) w.r.t. R and as a

consequence s 1 (-~*R s2 which contradicts the assumption.

Al though the above notions of generalisation are very intuitive, they are not computat ionat ly

tractable. Therefore, we introduce some further definitions.

Definition

Let R be a rewrite rule system over signature ~, let t , t 1, t 2 be terms in Tz(X) and let Cl, cr2, ...

be substitutions f rom X toTy.(X).

t > {t 1, t2, ...} i f f For every term t i there is a substitution c i such that tc~ i = t i .

t >{ t l , t2,. . .}(~* R) i f f For every term t i t he r e i s a subs t i t u t i onc r i such that tcr i ~ , R t i .

t > {t 1, t 2, ...}(~-~*R) i f f For every term t i there is a substitution ~i such that tcr i ,-~*Rti .

The relation > is also referred to as the subsumption relation and is used as the generalisation

concept in [Kodratoff]; the relation > (modulo any theory) is used as the generalisation concept

in [Plotkin]. We note that these definitions are not comprehensive and that there are some more

292

possibilities, e.g. ~ * R may be replaeecl by ~*R"

The required properties are difficult to verify, in general, except the condit ion of >, (with the

empty theory), which is pure ly syntactical and decidable. This is a good reason to prefer the

relation > as a concept of generalisation. The relation >(~-~*R) causes serious problems as it has

been shown [Lange] that it is und~.iclable whether or not there exists a generalisation (modulo an

equivalence) of two arbitrary terms {t 1, t2}.

Proposition

1. t > {t I, t 2, ...}

2. t > {tl, t 2,.. .}(~*R)

3. t > {t 1 , t 2,.. .}

4. t > {t 1, t 2, ...}(-~*R**)~

t > {h, t2, .-} ('-"R)

t > {h, t2,. . .}(O*R)

t >> {tl, t2, .-}

t >>N {tl' t2' °''}

l~roof of 4

If t > {t 1, t 2 }(-~*R**), then by definition of >, for each t i , i=1,2,..., there exists an (~i s.t.

tcri ~*R** ti- By definition of normal forms, for each t i there is a normal form St i s.t. t i "**R Sti" If

for some t, we have tc~ i "-¢*R** t, then by the confluence property, we also have t ~*R ~ St i . Thus,

for every St i there is a substitution ~i s.t. ,l, tc~ i = St i .

Lelllnla

- (t >> {t 1 , t 2 , . . . }~ t >{t l , t 2,..}).

Proof: By counter example. Assume any signature with at least three sorts s , s' , s" , an operator

h: s ~ s ' " , exactly one s-sorted operator f : s" --¢ s and there are no constants of sort s. Let x and y

be variables of sort s and s" respectively. Now consider the following two terms: t =clef h(f(y))

and t' =clef h(x). Because all instantiations of h(x) must have the form h(f(z)), where z has sort

s ' , both terms define the same language of ground terms; i.e. t >> {t'} and t' >> {t}. But clearly t

> {t'} does not hold.

~ m a

If every sort contains at least one constant and two distinct ground terms, then

t >> {t 1 , t 2,...}=~ t > i t 1 , t 2,...}.

Proof: Let t, t 1, t 2 ... be terms with t >> {t 1, t 2 }. Consider any term t' ~ {t 1, t 2 , ...} and let c~

be a ground substi tution which substitutes every variable in t' by a constant. The resulting term

t'c~ has the same structure t' and, by assumption, must belong to L(tL Thus, t' cannot be

structural ly more general than t: at the occurrences of variables in t', t must contain either

variables or constants. If, at such a position in t, there is a constant, then one could generate from

t' a term which could not be generated from t; (this is possible by substituting another ground term

which exists by assumption). Thus, at every occurrence of a variable in t', t must also have a

293

variable at this position. Moreover, distinct variables in t' must also be distinct in t. Otherwise,

by using the two different ground terms, one could generate a term from t' which cannot be

generated from t. Thus, t must be identical to or structurally more general than the chosen term

t ~ .

Finally, we note that must of course exclude certain "unacceptable" generalisations which are

formally possible, but generate rewrite rules which are unacceptable: e.g. x - 4 y. In the

following, we call a rewrite rule 1-4 r acceptable, if all variables occurring in r also occur in 1.

Our aim is to find, where possible, ground consistent, acceptable generalisations of sequences of

critical pairs. Fortunately, we see that the simple, syntactic notion of > is equivalent in many

cases. Moreover, we shall look for generalisations which are minimal, exact or exact normal

generalisations.

4. INDUCTIVE INFERENCE

Inductive inference [Angluin/Smith] is a mathematical theory of algorithmic learning from

incomplete information. As inductive inference addresses the problem of learning from

incomplete information, when applying an inductive inference procedure to some learning

problem, one never knows in advance whether or not the information processed so far is

comprehensive enough to construct reasonable hypotheses about the phenomenon to be learned.

Therefore, even successful inductive inference methods may offer only a semi-computable tool.

Fortunately, this fits very well into the framework of critical pair completion procedures where

termination (of the algorithm) is undecidable.

In general, it is impossible to prove the correctness of an hypothesis with respect to some infinite

sequence of information as each hypothesis is usually generated from a finite, initial segment of

the sequence. An inductive inference strategy has to be designed such that its result becomes

correct after processing a sufficiently large, but still finite, amount of information. Every wrong

hypothesis must be changed after a finite number of steps.

• , #

For example, if there is an sequence of critical pairs/rewrite rules:

11-4r 1, 12-4r 2, 13-4r 3, . . .

and if some generalised rule 1-4 r has been constructed from the initial part

11 ---)r I t n -4 r n,

then it is impossible to prove that this rule is a generalisation of the whole sequence.

Consequently, there is no way to prove that a generalisation is minimal, or exact, in general.

However, this may be possible in particular cases using additional knowledge about the sequence

of critical pairs, e.g. by describing (finitely) how the sequence is generated.

294

We will use inductive inference when constructing a generalisation of a sequence from a finite

init ial segment; in the fol lowing section we give an example in order to mot ivate the

general isat ion algori thms.

5. AN EXAMPLE

Considering the following rewrite rule system R. The signature contains the sort na t with the

usual ar i thmetic operators 0:nat , S: nat -> na t and + : nat nat -> nat, and the sort T with

operators f, g, h have arities T -> T, T -> T, and nat T -> T,resp.

(A1) x + 0 --~ x

(A2) 0 + x --) x

(A3) x + S(y) --~ S(x + y)

(A4) S(x) + y --~ S(x + y)

(AS) (x+y)+ z --~ x + (y + z)

(B1) f(g(f(x))) --~ f(h(S(0),x))

(B2) f(g(h(y,x))) --) f(h(S(y),x))

(B3) f(h(z ,h(y,x))) --) f(h(z + y,x))

The subsystem consisting of (A1) (AS) is obviously canonical, but the system as a whole is not

confluent. The generated sequence of critical pairs/rewrite rules is:

(C1) f(h(S(0),g(f(x))))

(C2) f(h(S(0),g(h(y,x))))

(C3) f(h(S(S(0)),g(f(x))))

(C4) f(h(S(S(0)),g(h(y,x))))

(C5) f(h(S(S(S(0))),g(f(x))))

(C6) f(h(S(S(S(0))),g(h(y,x))))

(C7) ffh(S(S(S(S(0)))),g(f(x))))

-~ f(h(S(S(0)),x))

--~ f(h(S(S(y)),x))

--) f(h(S(S(S(0))),x))

-~ f(h(S(S(S(y))),x))

f(h(S(S(S(S(0)))),x))

--~ f(h(S(S(S(S(y)))),x))

--~ f(h(S(S(S(S(S(0))))),x)) etc.

For generalisation, the sequence is parti t ioned into two subsequences: (C1), (C3), (C5), ... and

(C2), (C4), (C6), ...

(C1) f(h(S(0),g(f(x)))) --~ f(h(S(S(0)),x))

(C3) f(h(S(S(0)),g(f(x)))) --~ f(h(S(S(S(0))),x))

(C5) f(h(S(S(S(0))),g(f(x)))) --) f(h(S(S(S(S(0)))),x))

(C7) f(h(S(S(S(S(0)))),g(f(x)))) --) f(h(S(S(S(S(S(0))))),x)) etc.

295

(C2) f(h(S(0),g(h(y,x)))) --4 f(h(S(S(y)),x))

(C4) f(h(S(S(0)),g(h(y,x)))) -~ f(h(S(S(S(y))),x))

(C6) f(h(S(S(S(0))),g(h(y,x)))) --~ f(h(S(S(S(S(y)))),x)) etc.

The motivation for the partitioning is that we wish to generalise every resulting (sub)sequence

w.r.t, one of the generalisation concepts introduced above: every sequence should be replaced by a

single rule. The question of how, in general, to partition a sequence into appropriate subsequences

is a difficult problem and remains open. For the moment, there are some useful heuristics. For a

given critical pair, call the (superposed) rules which generate it its parents. Now, every rule in

the first sequence has the rule (B1) among its parents, whereas every rule of the second sequence

has (B2). If we consider, additionally, grandparents and so on, this may provide sufficient

information for partitioning a given sequence of critical pairs into generalisable subsequences.

Before introducing the algorithms for generalising rules, we use the example for illustration.

For the first sequence: (C1), (C3), (C5), .. , the rule

(G1) f(h(S(y),g(f(x)))) --) f(h(S(S(y)),x))

is a generalisation of the sequence (C1), (C3), (C5),... w.r.t. >. (Recall that rewrite rules are

considered as terms with --) as outermost operator.) Moreover, (G1) is a generalisation of the

sequence (C1), (C3), (C5) w.r.t, all the other generalisation concepts. (G1) is not an exact

generalisation of (C1), (C3), (C5), but it is an exact normal generalisation and therefore it is a

conservative extension of R1.

Generalising the second sequence (C2), (C4), (C6) w.r.t. > is more difficult. In particular,

there is no exact or exact normal generalisation which is a generalisation w.r.t. >. However,

(G2) f(h(S(z),g(h(y,x)))) -4 f(h(S(S(z+y)),x))

is a generalisation w.r.t. >(--~*R ~) and and it is an exact normal generalisation. Namely, after

substituting any ground term of sort nat for z in (G2), the resulting subterm is always rewritten

into a normal form which occurs in a particular rule (Ci). For example, substi tuting

(S(0)+0)+S(S(0)) for z yields the normat forms S(S(S(S(0)))) and S(S(S(S(S(y))))) which are the

left and right hands (resp.) of the rule (C8).

To summarise, (A1) (AS), (G1) (G2) is a canonical rewrite system and {(G1), (G2)} is a

conservative extension of (A1), ... ,(A5).

296

6. TWO BASIC INDUCTIVE INFERENCE ALGORITHMS

In this section we give two inductive inference algorithms for generalising infinite sequences of

critical pairs. Each algorithm takes as input some finite, initial segment of such a sequence and

generates single rules intended to be generalisations. Because generalisation is associative, we

assume exactly two examples as input: 11 -+ r I and 12 --~ r 2.

In the following, we use the convention that when p is a position in a term, for example, 1.1.1,

then t[p] is the (sub) term of t at position p, and t[x/p] denotes t with the substitution of x for the

subterm at position p in t. When t' is a term, then t[x/t '] is the usual substifion of x for t' in t.

6.1 First Algori thm

We consider generalisations w.r.t. > (the empty theory) first. For a given set of terms, the set of

all possible generalisations (modulo renaming) is a complete lattice partially ordered w.r.t. >

and so finding a minimal generalisation w.r.t. > is always effectively possible. Thus, the

intention of presenting the first algorithm is more to explain a particular inductive inference

method in some detail and to provide a firm basis for the following propositions than to

convince the reader that the problem of generalisation w.r.t. > is recursively solvable. The

algorithm consists of two parts: the synthesis of left hand side and the right hand side of the

generalisation rule resp. and we assume a list of global variables V.

Part 1: This part investigates the left hand sides of the given rules and synthesises the new

left hand side. If Part 1 succeeds in a non-trivial way, then the result, which we will denote by

r , is 11 (or 12) with substitutions of a number of (not necessarily distinct) variables at the

occurrences of the (smallest) differing subterms in each input term 11 and 12. If part 1 succeeds in a

trivial way, then the result is a single variable.

Part 2: This part tries to establish a link between the replacements in left hand sides of critical

pairs / rewri te rules with their corresponding right hand sides and if successful, synthesises the

new right hand side.

More precisely, the l.h.s, and r.h.s, of the generalisation rule are given by:

297

L.H.S(II,I 2) = 11 [xl/Pl , . . . ,xn/Pn]

R.H.S(ll ,12,rl , r 2) = r I [x l /q l l , - . - ,x l /q l j l xn /qni , . . . ,x l /q ~]

if r 1 [x l /q l l , . . . , x l /q l j l xn /qn l , . . , x l / qn j] = r 2 [x l /q l l , . . . ,x l /q l j l xn/qnl , . . . ,x l /q~ n]

= e otherwise

w h e r e Pl , -- ' , Pn are the posit ions of the smallest differing subterms of 1 t and 12,

Xl, x n are variables which do not occur in 11 and 12 and

(Vi,j:l<_i,j_sn) ((ll[Pi] = tt{Pj] A 12[Pi] = 12[Pj]) => xi= Xj) ,

for each i, l<_i<_n,

si 1 s i ki are the posit ions of ll[Pi] in r 1,

ti 1 t i l i a re the posit ions of 12[Pi] in r2,

{qi 1 q i j i } = { s i l Sik i} c ~ { t i l t i l l } .

If the a lgor i thm succeeds (i.e. the new right hand side is not e), then the r ight hand side is

denoted by r' and the generated hypothesis is the rewrite rule 1' --~ r'.

As an example, consider the the first two rules in the first sequence of critical pairs:

(C1) f(h(S(0),g(f(x)))) -~ f(h(S(S(0)) ,x))

(C2) f(h(S(S(0)),g(h(y,x)))) --> f(h(S(S(S(0))) ,x))

The smal les t d is t inct terms in 11 (the Lh.s. of C1)) and 12 (the 1.h.s. of C3)) occur at posi t ion

1.1.1.1: the subterms 0 and S(0) in 11 and 12 resp. They are replaced by a variable y in part 1 and

1' = f(h(S(y),g(f(x)))). In part 2 we search for occurrences of 0 and S(0) in r 1 and r 2 resp. In both

cases, the posi t ion is exactly 1.1.1.1.1 and the result of replac ing the resp. subterms by y is

r' = f(h(S(S(y)), x)). The terms 0 and S(0) do not occur e lsewhere in 11 or 12; therefore, the

generated rewrite rule is

(G1) f(h(S(y), g(f(x)))) --> f(h(S(S(y)), x)).

We should note that when generat ing a right hand side, it is very impor tant to consider, for each

in t roduced variable, only the intersection of the posit ions of the general ised sub- terms in each

given term. For example, consider the rules F(0) => fr0,0) and F(succ(O)) => f(succ(0),0). From the

first part , we have the general isat ion F(x), with x generatising 0 in the first example and succ(0)

in the second. Consider now the right hand sides. In the right hand side of the first example, we

should a p p l y the general is t ion only to the first 0 (position 1.1) to get fix,O). The posi t ion 1.2, the

posit ion of the second 0, is not a posit ion of succ(0) in the second example; if we general ised this

occurrence of 0 then we would not have the same generalisation for both examples. In the right

hand side of the second example, we apply the genera| isation to posi t ion 1.t, the only occurrence

of succ(0) to get fix,0).

208

Lemma

If the first a lgori thm processes a finite number of rules 11 --) r I 1 n --4 r n and outputs the

rewri te rule 1 -4 r, then 1 --, r > {l I - , r l , . . . , I n --) rn} and l--* r is an acceptable, minimal

general isat ion.

Proof

The proof of generalisation obvious; it just uses the substitutions introduced in Part 1. Clearly any

rule thus genera ted is acceptable because the variables used in Part 2 are a subset of the

variables used in Part 1. We prove that l -4 r is minimal by contradiction. Assume that 1 ---) r is

not minimal: there exists r --4 r' > {l I --4 r I I n --~ rn} such that l -4 r > 1' --, r ' . Because the

generalisations possible on the r.h.s, of rules are always a subset of the generalisations on the

l.h.s., we need only consider the l.h.s Thus, there must exist a variable v occurr ing in 1, at

posit ion p, and a substitution (~(v)=f(xl,...,t n) such that lc; = r. v can only occur in 1 when there

exists two example terms, I i and lj, say, and substitutions (~i and cj, say, such that 1 i [p] = 1(~ i[p] =

f l (t I tn), lj[p] = l(~j[p] = f2(s I sin), and lj[p] ~ I i [p] . More specifically, f l ~ f2. Because 1' is

also a generalisation of 1 i and lj, there must exist substitutions Pi and pj, say, such that rpi = lj,

lpj=lj, and therefore 1 i [p] = l'Pi [p] = f l (1 tn),lj[p] = l'pj[p] = f2(s I sln). Since 1 generalises r,

then l'Pi [p] = lc~Pi [p] = f(x I tn)Pi = f l (1 t n) and l'pj[p] = l(~pj[p] = f(x I tn)pj = f2(s I Sm).

But there cannot exist an f such that f = f l , f = f2 and f l ~ f2. Therefore, there cannot exist such a

substitution c~, and thus 1-*r is minimal.

Coro l la ry

If the first algori thm processes an infinite number of rules 11 -e r 1 , 12 -* r 2 , . . and outputs the

r u l e s l --4 r, t h e n l --* r > { l 1--4 r 1, 12 --4 r 2, ... } a n d l - * r is an acceptable, min imal

general isat ion.

An induct ive inference a lgor i thm is considered as solving a par t icular learning p rob lem

successfully if it converges when applied to a sequence of examples; i.e. after a finite number of

steps it genera tes a hypothes is which will not be changed later w h e n process ing more

information. This clearly reflects the concept of learning f rom incomplete information. The

natural question is whether or not the algori thm presented is able to generalise all sequences of

critical pairs which are generalisable.

Lemma

If for some infinite sequence of rules { 11--)rl, 12 -4 r 2, ... } there exists an acceptable, minimal

generalisafion w.r.t. >, then the first algorithm solves the learning problem successfully.

299

Proof:. (sketch of proof by contradiction).

Assume that there exists an acceptable generalisation 1 --) r with 1 -~ r > { ll--~r 1, 12 --) r 2 },

but that the algori thm does not solve the problem. One can easily exclude the case that the

algorithm does not terminate for some finite set {ll-~r 1, 12 --~ r 2, ...}. An instance of l, perhaps l

itself, can always be found by part I of the algorithm. Similarly, part 2 can not fail. It remains to

determine whether or not the algorithm may have an infinite number of mind changes. Assume

that the first algorithm, when processing the infinite sequence { l l ~ r 1, 12 ~ r 2 } generates an

infinite sequence of hypotheses { l 'l--~r'l, r 2 --) r' 2 } where every hypothesis r m --~ r' m is a

generalisation of some finite initial segment. For every 1" i , i=1,2,..., there must be a substitution

c i with l ' i a i = 11, as all hypotheses are generalisations covering at least the first example.

Therefore, the term 1" i cannot be syntactically larger than 11. This means that at least the 1.h.s.

of l ' l ~ r ' 1, 1' 2 ~ r'2, ... must become stable because there are (up to renaming of variables) only

finitely many terms which may be constructed by part 1, and part I always computes some term.

It generates a new version of I only when the former version becames wrong. As it must reject terms

which do not generalise some example, it always keeps a correct generalisation and such a term

exists by assumption. We denote this term by 1". Therefore, almost all 1" i are equal to 1". Now,

consider part 2 of the algorithm; similar arguments apply: there must be some term r " which

equals almost every r" i. Thus, the construction of the generalisation contradicts the assumption

of infinitely many distinct hypotheses.

We can now apply these results to the example investigated above. In particular, we use the

knowledge about the underlying term rewriting system which allows us to prove that the

distinct subterms occuring in (C1), (C3) form the complete sequence of normal forms 0, S(0),

S(S(0)), ... for the sort na t .

Corol lary

The first algorithm solves the inductive inference problem given by (C1), (C3), ... successfully

and generates a generalisation w.r.t. > which is additionally an exact normal generalisation.

As a consequence of this corollary, (G1) is a correct generalisation; i.e. R1 u (G1) is a

conservative extension of R1.

Now, consider the first two examples in the second sequence of critical pairs (C2), (C4) Part 1

of the algorithm proceeds as described above and the resulting term is 1' = f(h(S(z), g(h(y, x))).

However, in this example, part 2 can not succeed because the terms 0 and S(0) do not occur as

subterms of the corresponding right hand sides and after (trivially) applying the generalisation

of 0 and S(0) to z, the resulting terms differ. Thus, the algorithm fails. Obviously, the problem is

the inability to recognise the similarity between 0 and S(0) on the one hand and y and S(y) on

the other hand. The only way to generalise the right hand sides w.r.t. > involves the

introduction of a completely new variable which does not occur in any left hand side. However,

a l though this would yield a general isat ion w.r.t. >, it would not be an acceptable
generalisation.

300

We now present a second semi-algorithm which is an extension of the first and solves this

problem by looking for generalisations modulo the theory -')*R •

6.2 Second (Semi)-Algorithm

Part 1: This par t is ident ical to the cor responding par t of the first induc t ive inference

a lgor i thm and yie lds a term t'.

Part 2: First, the same procedure as Part2 of the first a lgor i thm is appl ied in as many positions

as possible. Thus, every right hand side may be modif ied by in t roducing some variables as

before. If the first a lgor i thm terminates with failure, then the second a lgor i thm proceeds to

search for a right hand side by searching for a normal general isat ion as follows. There are still

some occurrences in which the modif ied r ight hand sides are different, these occurrences are

denoted by v 1, . . . , v m. If the corresponding subterm of the right hand side at occurrence vj is

denoted by t[vj],then we look for the first wj in the lexicographic order ing of terms from TG(X),

where X is the set of variables occurr ing in the r ight hand sides and any variables introduced

into the modif ied left hand sides, such that for each i, wja i ~ * R t[vj]. We note that the first

a lgori thm is just the special case wjs i = t[vj]. Thus, we have

L.H.S(ll,12)

R.H.S(ll ,12,rl ,r 2)

= 11 [xl/Pl, . .- ,xn/Pn]

= r 1 [x l /q l l , . . . ,x l /q l j I xn/qnl,o..,xl/q~jn] [Wl/Vl,.--,Wm/Vm]

where

Pl , -.-, Pn are the posit ions of the smallest differing subterms of 11 and 12,

Xl, ..., x n are variables which do not occur in 11 and 12 and

(Vi,j:l<_i,j<n) ((ll[Pi] = ll[pjl ^ 12[Pil = 12[p~) => xi= x j) ,

for each n, l<i<n,

si 1' "- "si k i are the positions of ll[Pi] in r 1,

ti 1 t i l i a re the posit ions of 12[Pi] in r 2,

{qi 1 qiji }={ si 1 s ik i} n { t i 1 t i l l }

v t , ..., v m are posi t ions of the (smallest) differing subterms in

r I [xl /ql l , . . . ,Xl /ql j l xn/qnl,...,Xl/Ch~] and r 2 [xl /ql l , . . . ,Xl/ql j l xn/qnl , . . . ,xl /qr~],

for each v i, l < i < m

w i is the least term in TE(var(r 1) u var(r 2) ~; {x 1, ..., Xn})
(assuming a total ordering on variables and lexicographic ordering on terms)

such that

301

wi[x l / r l [q l 1] xn / r l [q~ l l "-~*R rlIvi]

wi[xl/r2[q11] xn/r2[Clnl l] "-~*R r2[vi]

If the(semi)-algorithm terminates, then the right hand side is denoted by r' and the generated

hypothesis is the rewrite rule l' --~ r'.

As an example, consider the first pair in the first sequence of critical pairs: (C1) and (C3).

(C2) f(h(S(0),g(h(y,x)))) --~ f(h(S(S(y)),x))

(C4) f(h(S(S(0)),g(h(y,x)))) -~ f(h(S(S(S(y))),x))

Part 1 results in the introduction of one variable for generalisation, z say, (for terms 0 and S(0)

resp.) and the resu l t ing l.h.s, is f(h(S(z),g(h(y,x))). In Part 2, we search for the least r' in

Tz({x,y,z}) such that r '[0/z] can be rewritten to f(h(S(S(y)),x)) and r'[s(0)/z] can be rewritten to

f(h(S(S(S(y))),x)). Clearly, the first solution for r' is f(h(S(S(z + y)),x)). Thus the generated

rewrite rule is

(G2) f(h(S(z),g(h(y,x)))) --~ f(h(S(S(z+y)),x))

Lelllma

If the second algorithm processes a finite number of rules 11 --~ r 1 , 1 n --~ r n and outputs a

rewrite rule 1 -~ r , then I --~ r > {l 1 -~ r I 1 n --~ r n } and 1 --~ r is an acceptable, minimal

general isat ion.

Corol lary

If the second algorithm processes an infinite number of rules 11 --~ rl , 12 --~ r2, ... and outputs a

rewrite rule 1--~ r , t h e n I --~ r > {11 - ~ r 1 , } (-~*R) 1 -~ r i s a n acceptable, minimal

general isaf ion.

L ~ m a

If for some infinite sequence of rules {11 --~ rl , t 2 --~ r2, _. } there exists an acceptable minimal

genera l i sa t ion w.r.t . > (---)*R), then the second a lgor i thm solves the l ea rn ing p rob lem

successfully.

Corol lary

The second a lgor i thm solves the induct ive inference problem g iven by (C2), (C4), (C6), ...

successfully and genera tes a general isa t ion w.r.t. > (--~*R) which is an exact normal

general isat ion.

As a consequence of this corollary, (G2) is a correct generalisation; i.e. R1 ~ G2 is a conservative

extension of R1.

302

7. CONCLUSIONS

In this paper we have introduced two concepts of generalisation. The first refers to the language

of terms and although it is more appropriate to our problem of finding confluent, ground consistent

enrichments of non-confluent rewriting systems, we have found that the simpler (usual) syntactic

notion may be used in many examples. Two basic inductive inference algorithms for finding

generalisations of infinite sequences of terms (or rules) have been presented and shown to be

successful for the example under consideration.

Often, a set of terms is not generalisable because we cannot quantify over operators: we have

only first order rewriting. Two alternatives to higher-order rewriting, or meta-rewriting (as

described in [Kirchener]) are i) to embed the given problem in a richer theory (i.e. add auxiliary

sorts, operators and rules) where we can "count" operators and ii) introduce a richer type structure

with sub-type relations. Both approaches are currently under investigation and further work is

planned.

ACKNOWLEDGEMENTS

We thank Alfons Geser and Brian Matthews for their helpful comments on this topic and the

second author gratefully acknowledges grants from the Nuffield Foundation and Leipzig

University of Technology.

REFERENCES

[Angluin/Smith]
D. Angluin, C.H. Smith, A survey of inductive inference: theory and methods, Computing

Surveys 15 (1983) 3, pp. 237-269.

[Barzdin]
J.M. Barzdin, Some rules of inductive inference and their use for program synthesis, Proc. IFtP
9th World Congress,Paris, 1983, R.E.A. Mason (ed.), North-Holland, 1983, pp. 333-336.

[Ehrig/Mahr]
H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification1,
Theoretical Computer Science, Springer-Verlag, 1985

EATCS Monographs on

[Huet/Oppen]
G.Huet, D. Oppen, Equations and Rewrite Rules: A Survey, in Formal Lanaguage Theory:
Perspectives and Open Problems, R. Book (ed.) pp. 349-405, Academic Press, New York, 1980.

303

[Kirchener]

H. Kirchner, Schematization of infinite sets of rewrite rules. Application to the divergence of

completion processes, in Proc. Rewriting Techniques and Applications, P. Lescanne (ed.), Lecture

Notes in Computer Science 256, Springer-Verlag, 1987, pp. 180-191.

[Kodratoffl
Y. Kodratoff, Generalizing and particularising as the techniques of learning, Proc. 2nd Int.

Symp. on Artif. InteIL and Inf. Control Systems of Robots, Smolenice, Czech., I. Plander (ed.),
North-Holland,1982, pp. 131-134.

[Knuth/Bendix]

D. E. Knuth, P. B. Bendix, Simple Word Problems in Universal Algebras,
Algebra, J. Leach (ed.), Pergammon Press 1970.

Computational

flange]

St. Lange, A decidability problem of Church-Rosser specifications for program synthesis, Proc.
Analogical and Inductive Inference, Wendisch-Rietz, GDR, K.P. Jantke (ed.), Lecture Notes in

Computer Science 265, Springer-Verlag, 1987,
pp.105-124.

[Florin]

G.D Plotkin, Automatic Methods of Inductive Inference, Ph.D. Thesis, Edinburgh University,
1971.

