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Abstract— The major problem with model checking concurrent
programs is the inability to prove that properties scale up:
do results that hold for all systems of sizen say, hold for
a system of sizeN , where N > n? This problem is known
as the parameterised model checking problem(PMCP) which is
in general undecidable [1]. Model checking alone is unable to
satisfy the need to answer questions about systems of any size.
But it is essential that techniques for scaling and generalising
results are available. In this paper we develop two approaces to
generalisation (one based on abstraction, the other on induction)
and illustrate their applicability in the domain of software
verification, specifically in protocol analysis.

I. I NTRODUCTION

In this paper we discuss methods for generalising model
checking results to systems of any size. Attempts to overcome
the PMCP are not new. For example, in [2] a classification
of systems into subclasses for which methods are available
for generalisation is suggested and examples given. One of
the most widely used approaches to tackling the PMCP when
processes of a system areisomorphic(that is, they are identical
up to labelling) is the synthesis of networkinvariants[3]–[6].
In [7] a similar approach is used to show how certain properties
of a modifiedversion of the tree identifition stage of the IEEE
FireWire protocol (the MTIP) can be proven for any size of
network – provided that the processes have a star topology.
This approach involves a combination of model-checking and
the construction of anAbstractprocess.

In this paper we consider two ways to generalise properties
of the tree identification stage of the IEEE FireWire protocol
(TIP), for any size of network. In section II we briefly describe
the TIP and in section III we summarise previous attempts
to formalise the behaviour of the TIP, for a fixed size of
network. In section IV we show how abstraction can be applied
when there is a star topology. The major contribution of
this paper is given in section V in which we introduce a
novel approach to generalisation, based on induction, which
exploits the degenerative behaviour of the protocol – processes
eventually terminate and play no further part in the protocol.
We use our method to infer properties of the TIP foranysize
of network, with any topology.

Model checking plays an essential part in our proofs. Our
abstraction technique relies on the verification of a fixed
Abstractprocess using model cheking. In our induction tech-
nique, not only does model checking enable us to establish a
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Fig. 1. The tree Identify protocol for processi

base casefor our argument but it ensures that the model upon
which our proof is based is reasonable.

II. T HE TREE IDENTIFY PHASE OF THEIEEE TREE

IDENTIFY PROTOCOL(TIP)

In figure 1 we give a diagrammatic representation of the
automaton for a node process (Node[i]) communicating via the
tree identify protocol (TIP). For a specific node,n denotes the
number of neighbours of the node. The messages that are sent
during the protocol arebe my parent, be my child andack. A
process can not progress to thechild handshakestate until it
has received at leastn�1 be my parentrequests. (Hence a leaf
node is immediately able to progress). Contention occurs when
a pair of nodes sendbe my parentrequests to each other at the
same time. Figure 2 illustrates the communication sequence
for one possible exectution of the TIP for a specific, acyclic
configuration on6 nodes. For convenience abbreviations of the
messages are used in the figures. Note that in figure 2,Node[4]
is the first to send an acknowledgement and terminate. The size
of the network decreases as the protocol progresses. This is an
important observation and will be discussed further in section
V.

III. F ORMAL APPROACHES TO VERIFYING THETIP

The TIP has been specified via a variety of different
formalisms, e.g. E-LOTOS [8], I/O automata [9], [10] and
�CTL [11]. For a summary of specification only approaches
see [12]. Verification of the TIP for fixed confugurations of
processes has been achieved via model-checking (using SPIN
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Fig. 2. Example behaviour of TIP on6 nodes

[7] and SMV [13] for example) and thorough analysis of the
RCP achieved using probablistic techniques (see section III-
A below). Many of these and other verification approaches
appear in [14] together with a full comparative case study.

A. Root Contention

The root contention protocol (RCP) is an important sub-
protocol of the TIP. The RCP involves complicated timing
parameters and the random selection of waiting periods. Thus
in order to model this part of the protocol realistically, notions
of real-time, randomization and timing must be taken into con-
sideration. Attempts to model check the TIP using real-time
have concentrated solely on the RCP, leaving the verification of
the rest of the TIP for non real-time methods (see section III-
B below). As only two nodes are ever involved in contention,
verification of the RCP only involves considering the parallel
composition of two processes - unlike the verification of
the whole TIP, where fixed networks of a given size are
considered.

Various attempts have been made to verify the RCP for
a fixed size of network [15]–[17]. In the more general case,
Kwiatowska et al [18] use probabilistic timed automata based
on classic timed automata [16] to study deadline properties of
the RCP. Finite-state Markov decision processes are obtained
from the automata via a property-preserving discrete-time
semantics. The minimal probablilty that RCP elects a leader
within a given deadline is then computed. The results are
highly convincing – given a long enough deadline contention
will eventually be resolved. (The probability of electing a
leader converges to1 as the deadline approches1). This is
equivalent to proving that contention will always eventually
be resolved.

B. Model checking a fixed configuration of node processes

Model checking is an automatic technique for verifying
finite state concurrent systems. Systems are specified using
a modelling language and the Kripke structure [19] associ-
ated with this specification checked to verify given temporal
properties.

Definition 1: Let AP be a set of atomic propositions. A
Kripke structure overAP is a tupleM = (S; S0; R; L) where
S is a finite set of states,S0 is the set of initial states,R �
S � S is a transition relation andL : S ! 2AP is a function
that labels each state with the set of atomic propositions true
in that state.
In [7] a set of properties of the TIP are verified using SPIN
[20]. SPIN is a generic verification system that supports the
verification of asynchronous process systems. A specification
is written in the verification language Promela (PROcess MEta
LAnguage) and correctness claims specified in the syntax of
linear temporal logic (LTL). The Promela description of the
concurrent system consists of one or more process templates or
proctypedefinitions plus a process instantiation. Each template
is translated by SPIN into a finite automaton and the global
behaviour of the concurrent system is obtained by computing
the asynchrounous interleaving product of the automata. This
interleaving product is often referred to as the state space of the
system (or global reachability graph). We do not give details
here of how SPIN performs LTL model checking (see [20]).
For our purposes it is sufficient to note that verification of
a property� for a given Promela specification using SPIN
implies that� holds for the Kripke structure representing (the
state graph of) our Promela specification.

The model of the TIP described in [7] consists of a param-
eterised specification of a Node processp say, based on the
description of the protocol given in figure 1. Communication
is asynchronous and takes place via channels of length1.
This is a good reflection of the physical case - wires only
convey one “message” in a given direction at a time. (SPIN)
verification of a given property� entails running a number
(N ) of instantiations ofp (with a chosen configuration,C
say) concurrently against an LTL formula representing�.
Successful verification implies that� holds for the specific
configurationC on N processes.

In the model described in [7] contention is modelled as
a simple coin toss (in which the first process to reach the
contentionstate wins the toss). There is no concept of real-time
in SPIN, although the notions ofalwaysandeventuallycan be
incorporated into the LTL properties via the[] andhi operators.
We can only assert that contention iseventuallyresolved –
not that it is resolved within a given time-limit. Because of
the time parameters and random selection of waiting times
that is involved in the RCP it is not possible to model
contention realistically within our framework. Therefore we
leave the proof of the RCP to the real-time/probablilistic real-
time community (see section III-A above) who have proved
[18] that contention will eventually be resolved, and work
under this assumption.

A set of properties were checked for all configurations
of N nodes, where2 � N � 6. The Promela description
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varies depending on the configuration and the property to be
verified. An example Promela model for the TIP for a given
acyclic configuration on6 nodes can be found on our website
[21]. Four of the properties with their LTL descriptions are
given below. The LTL descriptions rely on a variable (elected)
that appears in the Promela description. This variable is used
to record the id of the current leader. The default value of
elected is N , the number of processes (6 in our case) - the
ids of the processes taking values between0 andN � 1. The
proposition(node[proci]@start) states that node with idi is
at the labelstart (i.e. reached thestart state). All properties
which contain a free variable (i) are said to beindexed byi
and must be verified for all instantiationsi0 of i, 0 � i0 � 5.

Property 1 (Under the assumption of weak-fairness) process
i will not wait for a “be my parent” request for an infinitely
long time.
That is [](hi:p) wherep is (node[proci]@start).

Property 2 A leader will always be elected.
That is (hiq) whereq is :(elected == N).

Property 3 (Under the assumption of weak-fairness) it is
possible for processi to be elected leader.
That is:hir is violated, wherer is (elected == i).

Property 4 Only one process will be elected leader.
That is [](p! ([]p)) wherep is (elected == i).

Property 1 represents the loop detection aspect of the TIP
(which we do not describe here) and holds for all acyclic
configurations and no cyclic configurations. Weak fairness is
a feature of the type of paths that are to be considered. We are
only interested in paths for which no enabled process fails to
make a transition indefinitely. SPIN has aweak fairnessoption
which restricts a search only to the paths of interest. Properties
2–4 hold for all acyclic configurations, for all2 � i � 6. (See
[7] for experimental results of SPIN verification for example
configurations on6 nodes.)

IV. U SING ABSTRACTION TO VERIFY PROPERTIES OF THE

TIP FOR A STAR TOPOLOGY OF ANY SIZE

We are now ready to discuss generalisation.
In this section we consider star configurations of processes

following the TIP. That is, networks consisting of a central
node processCentral node(0) say, which is connected to
N � 1 other leaf nodesLeaf [1]; Leaf [2]; : : : ; Leaf [N � 1].
First we discuss a simplified star model for a fixed number
of processes. Our abstraction will be based on this simplified
model.

A. A simplified star model for fixedN

It is fairly straightforward to create a model of the TIP for
such a configuration for a fixed value ofN using Promela.
Indeed one could use the general Promela model of the
TIP given in [7]. However, for simplicity we use a less
general description (specific to star topologies) consisting of
an instantiation of aCentral node proctype (withid = 0)
together withN � 1 intanitations of aLeaf proctype. We

can use this model to verify any of the properties described
in section III-B for any small, fixed number of processes. An
example of such a model (asimplified star model) used to
verify property4 with i = 1 for a 6-node star configuration
can be found on our website [21].

In the simplified star model the “coin toss” procedure is less
complicated because communication only occurs between the
Central node process and theLeaf processes (not between
theLeaf processes themselves).

B. The abstracted star configuration

In this section we introduce a technique based on ab-
straction and induction to prove safety properties of the TIP
(for example our property 4) for a star topology for any
number of processes. One can not hope to prove the properties
using induction alone [4], [6], because the behaviour of the
Central node process depends upon the total number of
processes. However, an important observation is that for a star
topology consisting ofN processes, much of the behaviour
of the Central node processes depends upon whether the
number of messages that have at arrived at its ports (channels
from neighbours) is less thanN � 2, equal toN � 2 or equal
to N � 1, rather than the specific number of messages.

Another important observation is that in order to verify
property depending only on processi, the internal behaviour of
all processes other thani can be ignored. Assume for the time
being thati 6= 0. Without loss of generality, we may assume
that i = 1. Our abstraction approach involves modelling
Leaf [1] as before and modifying the communication between
Central node[0] and all leaf nodes withid 6= 1. We refer to
leaf processes with ids6= 0 or 1 as abstractprocesses. The
modifiedCentral node process,Central node0[0] commu-
nicates withLeaf [1] as before. However, instead of reading
messages from an abstract proces,Central node0[0] makes a
non-deterministic choice over the set of messages (or whether
the number of messages is less thanN�2, equal toN�2, or
equal toN � 1) which may (or may not) have arrived at that
point. Unlike Central node[0], Central node0[0] does not
write messages to any abstract process, apart from sending an
ack message to an abstract process whenCentral node0[0]
has become a child of an abstract process. In all other
instancesCentral node0[0] makes a dummy move (skip)
and no message is sent. Thus all communication between
Central node0[0] and abstract processes, apart from the send-
ing of ack from Central node0[0] to an abstract process,
can be thought of as beingvirtual. Our approach is sum-
marised in figure 3.Central node[0] andCentral node0[0]
are represented byq and q0 and, for 1 � i � N � 1, pi
representsLeaf [i]. The cloud labelledAbstractrepresents all
of the abstract processes. Solid arrows represent communi-
cation between processes and dotted arrows represent virtual
communication.

Another feature of the abstracted (N -process) model is
that contention between theCentral node process and any
abstract process now involves a non-deterministic choice over
the result of a coin toss.
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Fig. 3. Abstraction technique forN -process model, star topology

Let us refer to (the Kripke structure)

MN =M(Central nodejjLeaf [1]jj : : : jjLeaf [N � 1])

as the concrete model of sizeN . Note that in figure 3 processes
p1 andq0 are referred to asconcrete processes. This is because
they are, like the processes of the concrete model, fixed, finite
processes. (The abstract process is also fixed and finite, but
representsthe behaviour of any number of processes.)

Let us define

MAbs1 =M(Central node0jjLeaf [1]jjAbstract)

to be theabstracted1 model. Correspondingly we can define
a family of modelsfMAbsig

N�1
i=0 – theabstracted i models

– where, for1 � i � N � 1,

Absi = Central node0jjLeaf [i]jjAbstract

and
Abs0 = Central node0jjAbstract:

We show, using abstraction that properties that hold for the
abstracted i models hold for all concrete models of sizeN ,
for all N greater than a specified minimal size. That is, we
show

Theorem 1:If �i is a property indexed byi and, for all
i0 � 0 let �i0 be the instantiation of�i with i = i0, then, if
MN is the concrete model (for a star topology) of sizeN ,

1) ff M(Abs0) j= �0 thenMN j= �0 for all N � 3 and
2) If M(Abs1) j= �1 thenMN j= �i0 for all i0 � 1, for

all N � min(i0; 4).

In particular,

Corollary 1: If �i is property4 then

1) MN j= �0 for all N � 3 and,
2) for all i � 1, MN j= �i for all N � max(i; 4).

We can not give a full proof of theorem 1 here, for space
reasons. However below we give a brief outline of the proof.

In order to prove Theorem 1 we first define two reduced
forms of the modelMN , namelyMri

N and Mr0
N . These

reduced structures are constructed via data abstraction [22] and
(by a result proved in [23]), any property that can be shown to
hold for a reduced model, holds for the concrete model. It can
be shown that for anyN � 3 there is a simulation preorder
[24] betweenMr0 andMAbs0 . Similarly, for all i � 1, for all
N � max(i; 4), there is a simulation preorder betweenMri

andMAbsi . For modelsM andM0, M0 j= � implies that
M j= �. Proof of theorem 1 follows.

When�i is property 4, we can show, using model checking,
thatMAbs0 j= �0 andMAbs1 j= �1. In addition we can prove
that, in this case,MAbs1 j= �1 if and only if MAbsi j= �i,
for all i > 1. Hence Corollary 1 follows from theorem 1.

C. Limitations of this approach

We can only use this abstraction when we have a star topol-
ogy. In addition, we can only prove properties thathold for
the abstracted model. Due to the additional non-determinism
in the abstracted model, many properties that should hold for
a concrete model of any size can not be shown to do so. For
example, property 2 does not hold in the abstracted model, so
can not be shown to hold for the concrete model using this
approach.

V. USING INDUCTION TO EXPLOIT THE DEGENERATIVE

NATURE OF THETIP

In this section we use the degenerative behaviour of the
TIP together with induction (on network size) to prove the
following theorem. HereM�n is the model of a network of
n processes with configuration�n.

Theorem 2:If � is a property that is not indexed by any
process id andMN is a model of a network ofN processes
following the TIP, then ifM�n0

j= �, for all configurations
�n for all n � n0, for some2 � n0 � N , and ifM�n j= �

for all star configurations�n wheren � N , MN j= �.

It is easy to prove some properties for a star topology of any
size. For example, if� is property2 we can show that, for any
N , if MN is a model relating to a star topology,MN j= � for
anyn � 2. The paths (of states) relating to such a model can
be divided into3(N � 1)+1 types. AssumingNode[0] is the
central node the types are:Type0 andTypej;A, Typej;B and
Typej;C , for 1 � j � N�1. In Type0 paths,Node[0] receives
N � 1 be my parent requests, sendsbe my child requests to
all N � 1 children, recievesack responses from all children
and becomes leader.

In Typej;A, Typej;B and Typej;C paths, Node[0] re-
ceivesbe my parent requests from all neighbours apart from
Node[j], and sendsbe my child requests to itsN�2 children.
The difference between these3 sets of path is if and when
Node[j] sends abe my parent request and, if contention
arises, the result of the coin toss.

Considering each type of path in detail, it can be shown
that property 2 holds along every type of path, and hence for
all paths. Let us assume therefore that we have an acyclic
topology that is not a star. Below we give a brief outline of
the proof of theorem 2 for such a topology.

For any topology (network configuration or graph)�N on
N nodes, we say that a node,Node[i] say, is alevel 1 node
if Node[i] is not a leaf node andNode[i] has precisely one
neighbour that is not a leaf node.

Using basic graph theory one can show that, if�N is acyclic
and not a star, then�N has at least one level1 node. If�N is
not a star, for all paths inMN , some level1 node must be the
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first to reach thechild handshakestate (see figure 1), and have
receivedbe my parentrequests from all of its leaf neighbours.
For every level1 node,Node[j], let us defineclipj(�N ) to
be the graph formed by removing all of the leaf neighbours of
Node[j] from �N andMclipj (�N ) the corresponding model.

Let AP be the set of atomic propositions ofMN . It can be
shown that every path in whichNode[j] is the first to reach
child handshakeis stuttering equivalent [25], with respect to
a reduced set of atomic propositionsAP 0 � AP to a path
in M(clipj(�N )). The setAP 0 does not include propositions
relating to the channels betweenNode[j] and its leaf neigh-
bours or to variables associated with the leaf neighbours of
Node[j]. This is an important point, and precludes properties
which are indexed by process ids from the theorem.

It follows that if � is invariant under stuttering and, for all
level 1 nodesNode[j], M(clipj(�N )) j= �, thenMN j= �.
Now, for all level1 nodesNode[j], clipj(�N ) is either a star,
in which caseM(clipj(�N )) j= � (by the assumption of the
theorem), or is not a star, and so has at least one level1 node.
In this case our previous argument applies and the graph can
be further reduced. Continuing in this way, we continue to
generate smaller graphs, such that the validity of� for the
corresponding models implies validity of� for MN . In all
cases, we eventually arive at a star or a graph�n of size
n � n0 in which case validity of� is assumed, and theorem
2 follows.

A. Limitations of this approach

The major limitation of this type of generalisation is that it
applies to very specific types of systems, namely degenerating
systems. We can only prove properties that are invariant under
stuttering. (Since none of our properties involve the next
time operator (X) they are all invariant under stuttering). As
theorem 2 only applies to properties that do not depend on any
process id, of our properties property 2 is the only property to
which this approach applies. However, as all of the conditions
of theorem 2 hold in this case (we have shown that property
2 holds for all acyclic networks of size� 6 and for star
topologies of any size). Hence property 2 holds for all acyclic
networks of any size (> 2).

VI. CONCLUSIONS

We have proved some important generalisation results for
a well-known, ubiquitous protocol. We have applied currently
known techniques to prove one generalisation result using ab-
straction, and exploited the degenerative nature of the protocol
to prove another using a novel application of induction.

Whilst the results are largely specific to the TIP, we believe
that the methods used can be widely applied to other domains.
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