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Abstract— The major problem with model checking concurrent
programs is the inability to prove that properties scale up I aining neighbo
do results that hold for all systems of sizen say, hold for
a system of sizeN, where N > n? This problem is known
as the parameterised model checking problef@MCP) which is
in general undecidable [1]. Model checking alone is unable to ndb
satisfy the need to answer questions about systems of any size. o become_child remaining neighbours
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But it is essential that techniques for scaling and generalising child_handshak
results are available. In this paper we develop two approaces to
generalisation (one based on abstraction, the other on induction) e
and illustrate their applicability in the domain of software oo Ltojtack | manor™
verification, specifically in protocol analysis. (st )

|. INTRODUCTION Fig. 1. The tree Identify protocol for process

In this paper we discuss methods for generalising model
checking results to systems of any size. Attempts to overcoin&se casdor our argument but it ensures that the model upon
the PMCP are not new. For example, in [2] a classificatiomhich our proof is based is reasonable.
of systems into subclasses for which methods are available
for generalisation is suggested and examples given. One of ||, THE TREE IDENTIFY PHASE OF THHEEE TREE
the most widely used approaches to tackling the PMCP when IDENTIFY PROTOCOL(TIP)
processes of a system asemorphic(that is, they are identical
up to labelling) is the synthesis of netwarkvariants[3]—[6].
In [7] a similar approach is used to show how certain properti
of a modifiedversion of the tree identifition stage of the IEEé
FireWire protocol (the MTIP) can be proven for any size of
network — provided that the processes have a star topolorg

This approach involves a combination of model-checking a .
bp 9 has received at leagt- 1 be my parentrequests. (Hence a leaf

the construction of a\bstractprocess. g . .
. . . node is immediately able to progress). Contention occurs when
In this paper we consider two ways to generalise properties

of the tree identification stage of the IEEE FireWire protoccﬁ pair O.f nodeg serid&r_ny_parentrequests to egch _other atthe
same time. Figure 2 illustrates the communication sequence

(TIP), for any size of network. In section Il we briefly describef‘or one possible exectution of the TIP for a specific, acyclic

the TIP and in section Ill we summavise previous attempt%nﬁ uration oré nodes. For convenience abbreviations of the
to formalise the behaviour of the TIP, for a fixed size oo g i

; : [nessages are used in the figures. Note that in figude|[4]
network. In section IV we show how abstraction can be applie ; ) .
: ; I IS the first to send an acknowledgement and terminate. The size
when there is a star topology. The major contribution o o
. L . . . . : of the network decreases as the protocol progresses. This is an
this paper is given in section V in which we introduce a . : . . .
. . . Important observation and will be discussed further in section
novel approach to generalisation, based on induction, whig,
exploits the degenerative behaviour of the protocol — processes
eventually terminate and play no further part in the protocol.
We use our method to infer properties of the TIP &ory size I1l. FORMAL APPROACHES TO VERIFYING THETIP
of network, with any topology. The TIP has been specified via a variety of different
Model checking plays an essential part in our proofs. Oformalisms, e.g. E-LOTOS [8], /0O automata [9], [10] and
abstraction technique relies on the verification of a fixedCTL [11]. For a summary of specification only approaches
Abstractprocess using model cheking. In our induction teclsee [12]. Verification of the TIP for fixed confugurations of

nique, not only does model checking enable us to establisipracesses has been achieved via model-checking (using SPIN

In figure 1 we give a diagrammatic representation of the
gytomaton for a node process (N@dlecommunicating via the
ree identify protocol (TIP). For a specific nodedenotes the
umber of neighbours of the node. The messages that are sent
ring the protocol arbe.my_parent bemy.child andack A
ocess can not progress to tbigild_handshakestate until it



B. Model checking a fixed configuration of node processes

@ ®— @ ® —
gl @7 @’ @+ ¢ Model checking is an automatic technique for verifying
finite state concurrent systems. Systems are specified using
@ Bop @ Bp a mod_elling_ Iangugge a_md the Kripke stru_cturfa [19] associ-
\:® G \/@/ ® ated W|_th this specification checked to verify given temporal
ar’ @ % @’ prope_rug_s. . N
Definition 1: Let AP be a set of atomic propositions. A
Kripke structure overd P is a tupleM = (S, Sy, R, L) where
@ f’g/@\\\‘z @ f’gz@\t\A S is a finite set of states§, is the set of initial statesk C
@ ®— & e S x S is a transition relation and : S — 247 is a function
@ @ that labels each state with the set of atomic propositions true
in that state.
@ PO Q\pc® Qnp A9 In [7] a set of properties of the TIP are verified using SPIN
7;®” — gi@’ — /y,@ — [20]. SPIN is a generic verification system that supports the
@Pp @ @ verification of asynchronous process systems. A specification
is written in the verification language Promela (PROcess MEta
CONG O @\\f ® LAnguage) and correctness claims specified in the syntax of
©—> ®—> @ leader linear temporal logic (LTL). The Promela description of the

concurrent system consists of one or more process templates or
proctypedefinitions plus a process instantiation. Each template
is translated by SPIN into a finite automaton and the global
behaviour of the concurrent system is obtained by computing
[7] and SMV [13] for example) and thorough analysis of théhe asynchrounous interleaving product of the automata. This
RCP achieved using probablistic techniques (see section IHterleaving product is often referred to as the state space of the
A below). Many of these and other verification approachaystem (or global reachability graph). We do not give details
appear in [14] together with a full comparative case study. here of how SPIN performs LTL model checking (see [20]).
For our purposes it is sufficient to note that verification of
a property¢ for a given Promela specification using SPIN
implies that¢ holds for the Kripke structure representing (the
A. Root Contention state graph of) our Promela specification.
The model of the TIP described in [7] consists of a param-
The root contention protocol (RCP) is an important suleterised specification of a Node processay, based on the
protocol of the TIP. The RCP involves complicated timinglescription of the protocol given in figure 1. Communication
parameters and the random selection of waiting periods. Thgsasynchronous and takes place via channels of leigth
in order to model this part of the protocol realistically, notion$his is a good reflection of the physical case - wires only
of real-time, randomization and timing must be taken into copenvey one “message” in a given direction at a time. (SPIN)
sideration. Attempts to model check the TIP using real-timeerification of a given propertyy entails running a number
have concentrated solely on the RCP, leaving the verification(@) of instantiations ofp (with a chosen configuratior()
the rest of the TIP for non real-time methods (see section IBay) concurrently against an LTL formula representifg
B below). As only two nodes are ever involved in contentiorSuccessful verification implies that holds for the specific
verification of the RCP only involves considering the paralldonfigurationC' on N processes.
composition of two processes - unlike the verification of |n the model described in [7] contention is modelled as
the whole TIP, where fixed networks of a given size arg simple coin toss (in which the first process to reach the
considered. contentiorstate wins the toss). There is no concept of real-time
Various attempts have been made to verify the RCP fiir SPIN, although the notions alwaysandeventuallycan be
a fixed size of network [15]-[17]. In the more general casé#)corporated into the LTL properties via tfjeand() operators.
Kwiatowska et al [18] use probabilistic timed automata basdle can only assert that contention ésentuallyresolved —
on classic timed automata [16] to study deadline propertiesfft that it is resolved within a given time-limit. Because of
the RCP. Finite-state Markov decision processes are obtairileél time parameters and random selection of waiting times
from the automata via a property-preserving discrete-tintieat is involved in the RCP it is not possible to model
semantics. The minimal probablilty that RCP elects a leadepntention realistically within our framework. Therefore we
within a given deadline is then computed. The results aleave the proof of the RCP to the real-time/probablilistic real-
highly convincing — given a long enough deadline contentidiine community (see section Ill-A above) who have proved
will eventually be resolved. (The probability of electing 418] that contention will eventually be resolved, and work
leader converges tb as the deadline approches). This is under this assumption.
equivalent to proving that contention will always eventually A set of properties were checked for all configurations
be resolved. of N nodes, wher& < N < 6. The Promela description

Fig. 2. Example behaviour of TIP o nodes



varies depending on the configuration and the property to ban use this model to verify any of the properties described
verified. An example Promela model for the TIP for a giveim section IlI-B for any small, fixed number of processes. An
acyclic configuration o016 nodes can be found on our websiteexample of such a model (simplified star modglused to
[21]. Four of the properties with their LTL descriptions areverify property4 with i = 1 for a 6-node star configuration
given below. The LTL descriptions rely on a variabdéegted) can be found on our website [21].

that appears in the Promela description. This variable is usedn the simplified star model the “coin toss” procedure is less
to record the id of the current leader. The default value @bmplicated because communication only occurs between the
elected is N, the number of processes {n our case) - the Central_node process and théeaf processes (not between
ids of the processes taking values betwéeand N — 1. The the Leaf processes themselves).
proposition(node[proci]|@start) states that node with idis

at the labelstart (i.e. reached thaetart state). All properties

which contain a free variable)(are said to bendexed byi B. The abstracted star configuration

and must be verified for all instantiatiossof i, 0 < i’ < 5.
In this section we introduce a technique based on ab-

Property 1 (Under the assumption of weak-faimess) procesgraction and induction to prove safety properties of the TIP
@ will not wait for a “be_my_parent” request for an infinitely (for example our property 4) for a star topology for any

long t'ime. . ) number of processes. One can not hope to prove the properties
That is [](()—p) wherep is (node[proci|Q@start). using induction alone [4], [6], because the behaviour of the
Central_node process depends upon the total number of

Property 2 A leader will always be elected . oo
That is (()q) whereq is ~(elected == N). processes. However, an important observation is that for a star

topology consisting ofV processes, much of the behaviour
Property 3 (Under the assumption of weak-fairness) it i®f the Central_node processes depends upon whether the
possible for process to be elected leader number of messages that have at arrived at its ports (channels
That is—()r is violated, where- is (elected == 1). from neighbours) is less thaN — 2, equal toN — 2 or equal
to V — 1, rather than the specific number of messages.
Another important observation is that in order to verify
property depending only on processhe internal behaviour of
Property 1 represents the loop detection aspect of the TPprocesses other tharcan be ignored. Assume for the time
(which we do not describe here) and holds for all acyclieeing that: # 0. Without loss of generality, we may assume
configurations and no cyclic configurations. Weak fairnesstigat i = 1. Our abstraction approach involves modelling
a feature of the type of paths that are to be considered. We & f[1] as before and modifying the communication between
only interested in paths for which no enabled process fails @entral_node[0] and all leaf nodes witlid # 1. We refer to
make a transition indefinitely. SPIN hasvaak fairnes®ption leaf processes with idg 0 or 1 as abstractprocesses. The
which restricts a search only to the paths of interest. Propertigsdified Central_node process,Central_node'[0] commu-
2—4 hold for all acyclic configurations, for @ll< i < 6. (See nicates withLea f[1] as before. However, instead of reading
[7] for experimental results of SPIN verification for examplenessages from an abstract proa€sptral_node’[0] makes a
configurations or6 nodes.) non-deterministic choice over the set of messages (or whether
the number of messages is less thér- 2, equal toN — 2, or
IV. USING ABSTRACTION TO VERIFY PROPERTIES OF THE €qual toN —1) which may (or may not) have arrived at that
TIP EOR A STAR TOPOLOGY OF ANY SIZE pOint. Unlike C’entral_node[O], Central_node’[O] does not
write messages to any abstract process, apart from sending an

We are now ready to discuss generalisation.
i : y . 9 i ; ack message to an abstract process wligmitral_node’[0]
In this section we consider star configurations of processes

as become a child of an abstract process. In all other
following the TIP. That is, networks consisting of a central

InstancesCentral_node’'[0] makes a dummy moveskKip)
node proces<entral-node(0) say, which is connected to and no message is sent. Thus all communication between
N — 1 other leaf noded.eaf[1], Leaf[2],..., Leaf[N — 1] g

First we discuss a simplified star model for a fixed numbca(’;entral -node’[0] and abstract processes, apart from the send-

of processes. Our abstraction will be based on this S|mpI|f|eog of ack from Central-node'[0] to an abstract process,
model. c¢an be thought of as beingrtual. Our approach is sum-

marised in figure 3Central_node[0] and Central_node'[0]

are represented by and ¢’ and, forl < i < N — 1, p;
A. A simplified star model for fixety representd.ea f[i]. The cloud labelled\bstractrepresents all

It is fairly straightforward to create a model of the TIP foof the abstract processes. Solid arrows represent communi-

such a configuration for a fixed value &f using Promela. cation between processes and dotted arrows represent virtual
Indeed one could use the general Promela model of themmunication.
TIP given in [7]. However, for simplicity we use a less Another feature of the abstractedv{process) model is
general description (specific to star topologies) consisting thfat contention between th@entral_node process and any
an instantiation of aCentral_node proctype (withid = 0) abstract process now involves a non-deterministic choice over
together withV — 1 intanitations of aLeaf proctype. We the result of a coin toss.

Property 4 Only one process will be elected leader
That is[](p — ([Jp)) wherep is (elected == i).



and M 4y, . For modelsM and M!, M’ = ¢ implies that
M = ¢. Proof of theorem 1 follows.
Wheng; is property 4, we can show, using model checking,
that M aps, = o @andM s, = ¢1. In addition we can prove
% that, in this caseM 455, = ¢1 if and only if Maps, = ¢,
\. for all ¢ > 1. Hence Corollary 1 follows from theorem 1.
concrete abstract

N nodes with star topology processes processes

C. Limitations of this approach

Fig. 3. Abstraction technique faV-process model, star topology We can only use this abstraction when we have a star topol-
ogy. In addition, we can only prove properties thnatld for
) the abstracted modeDue to the additional non-determinism
Let us refer to (the Kripke structure) in the abstracted model, many properties that should hold for
My = M(Central_node||Leaf[1]]| ... ||Leaf[N — 1]) a concrete model of any size can r_10t be shown to do so. For
example, property 2 does not hold in the abstracted model, so
as the concrete model of si2é. Note that in figure 3 processescan not be shown to hold for the concrete model using this
p1 andq’ are referred to asoncrete processe$his is because approach.
they are, like the processes of the concrete model, fixed, finite
processes. (The abstract process is also fixed and finite, bt USING INDUCTION TO EXPLOIT THE DEGENERATIVE

representghe behaviour of any number of processes.) NATURE OF THETIP
Let us define In this section we use the degenerative behaviour of the
Maps, = M(Central_node'|| Leaf[1]|| Abstract) TIP together with induction (on network size) to prove the

following theorem. HereMr is the model of a network of
to be theabstracted; model. Correspondingly we can definer processes with configuratidr,.
a family of models{ M 4y, ﬁiﬁl — the abstracted_i models

— where, forl <i < N — 1, Theorem 2:If ¢ is a property that is not indexed by any

process id and\U  is a model of a network ofV processes
Abs; = Central_node'|| Leaf[i]|| Abstract following the TIP, then ifMr, | ¢, for all configurations
T, for all n > ng, for some2 < ng < N, and if Mr, E ¢
and for all star configuration¥',, wheren < N, My = ¢.

Absy = Central_node'|| Abstract. _ _
It is easy to prove some properties for a star topology of any

We show, using abstraction that properties that hold for tlseze. For example, ip is property2 we can show that, for any
abstracted_i models hold for all concrete models of si2g N, if My is a model relating to a star topology{ x = ¢ for
for all N greater than a specified minimal size. That is, wanyn > 2. The paths (of states) relating to such a model can
show be divided into3(N — 1) 4+ 1 types. AssumingVode[0] is the
central node the types ardype, and Type; 4, Type; p and
. i L A . Type; o, for1 < j < N—1.1In Type, paths,Node[0] receives
" > 0 let ¢; be the instantiation of; with i =4, then, if 7 he my narentrequests, sendse.my.child requests to
M is the concrete model (for a star topology) of sixe all N — 1 children, recievesick responses from all children

1) ff M(Abso) = do then My |= ¢o for all N >3 and  and becomes leader.

2) If M(Abs1) = ¢1 then My | ¢y for all i' > 1, for In Type; 4, Type; p and Type; - paths, Node[0] re-

all N > min(i',4). ceivesbe.my_parentrequests from all neighbours apart from
Nodelj], and sendbe.my.child requests to itsV — 2 children.

Theorem 1:If ¢; is a property indexed by and, for all

In particular, The difference between thesesets of path is if and when
Corollary 1: If ¢; is property4 then Node[j] sends abemy_parent request and, if contention
1) My k= ¢ for all N > 3 and, arises, Fhe result of the coin toss. . .

2) foralli >1, My ':Bi for all N > maz(i, 4). Considering each type of path in detail, it can be shown

that property 2 holds along every type of path, and hence for
We can not give a full proof of theorem 1 here, for spacall paths. Let us assume therefore that we have an acyclic
reasons. However below we give a brief outline of the proadfopology that is not a star. Below we give a brief outline of

In order to prove Theorem 1 we first define two reducetthe proof of theorem 2 for such a topology.

forms of the modelMy, namely M and M%. These For any topology (network configuration or graghy, on
reduced structures are constructed via data abstraction [22] &hdhodes, we say that a nod®ode]i] say, is alevel 1 node
(by a result proved in [23]), any property that can be shown tb Node[i] is not a leaf node andode[i] has precisely one
hold for a reduced model, holds for the concrete model. It careighbour that is not a leaf node.
be shown that for anyv > 3 there is a simulation preorder Using basic graph theory one can show thalif is acyclic
[24] betweenM™ and M 435,. Similarly, for alli > 1, for all and not a star, theliy has at least one levélnode. IfT'y is
N > maz(i,4), there is a simulation preorder betwedt™ not a star, for all paths iM , some levell node must be the



first to reach thehild_handshaketate (see figure 1), and have [3]

receivedbe my parentrequests from all of its leaf neighbours.

For every levell node, Nodelj], let us defineclip;(I'n) to

(4]

be the graph formed by removing all of the leaf neighbours of

Nodelj] from T'x and M, (ry) the corresponding model.

Let AP be the set of atomic propositions 8fl . It can be
shown that every path in whiclWodelj] is the first to reach

child_handshakas stuttering equivalent [25], with respect to

a reduced set of atomic propositiods®’ C AP to a path

(5]
(6]

(7]

in M(clip;(T'~)). The setAP' does not include propositions

relating to the channels betweé¥ode[;j] and its leaf neigh-

(8]

bours or to variables associated with the leaf neighbours of
Nodelj]. This is an important point, and precludes properties

which are indexed by process ids from the theorem.

(9

It follows that if ¢ is invariant under stuttering and, for all

level 1 nodesNode[j], M(clip;(Tn)) = ¢, then My = ¢.
Now, for all level1 nodesN ode[j], clip;(I'n) is either a star,

(20]

in which caseM(clip;(I'n)) |= ¢ (by the assumption of the ;4

theorem), or is not a star, and so has at least one lemetle.
In this case our previous argument applies and the graph
be further reduced. Continuing in this way, we continue
generate smaller graphs, such that the validitydfor the
corresponding models implies validity ¢f for M. In all
cases, we eventually arive at a star or a graphof size

i)

(23]

[14]

n < ng in which case validity ofp is assumed, and theorem

2 follows.

A. Limitations of this approach
The major limitation of this type of generalisation is that

[15]
[16]

it

applies to very specific types of systems, namely degeneratﬂ'lﬂ
systems. We can only prove properties that are invariant ungey
stuttering. (Since none of our properties involve the next

time operator X) they are all invariant under stuttering). As[19

theorem 2 only applies to properties that do not depend on any
process id, of our properties property 2 is the only property ]
which this approach applies. However, as all of the conditio[ﬁ]
of theorem 2 hold in this case (we have shown that property

2 holds for all acyclic networks of siz&l 6 and for star

topologies of any size). Hence property 2 holds for all acycl[?:z]

networks of any sizex{ 2).

VI. CONCLUSIONS
We have proved some important generalisation results

(23]
[24]

95

a well-known, ubiquitous protocol. We have applied current

known techniques to prove one generalisation result using

&sl

straction, and exploited the degenerative nature of the protocol

to prove another using a novel application of induction.

Whilst the results are largely specific to the TIP, we believe7]
that the methods used can be widely applied to other domains.
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