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1 Introduction

This chapter considers a different and novel application for quantitative for-
mal methods, biochemical signalling pathways. The methods we use were de-
veloped for modelling engineered systems such as computer networks and
communications protocols, but we have found them highly suitable for mod-
elling and reasoning about evolved networks such as biochemical signalling
pathways.

Biochemical signalling pathways are communication mechanisms for the
control and coordination of cells in living organisms. Cells “sense” a stimulus
and then communicate an appropriate signal to the nucleus, which makes a
response. The response depends upon the way in which the signals are commu-
nicated in the pathway. Signalling pathways are complicated communication
mechanisms, with feedback, and embedded in larger networks. Understanding
how these pathways function is crucial, since their malfunction results in a
large number of diseases such cancer, diabetes, and cardiovascular disease.
Good predictive models can guide experimentation and drug development for
pathway interventions.

Historically, pathway models either encode static aspects, such as which
components in a pathway (proteins) have the potential to interact, or provide
simulations of system dynamics using either ordinary differential equations
(ODEs) [dJ02, Vo0i00] or stochastic simulations of individuals using Gillespie’s
algorithm [Gil77]. Here, we introduce a novel approach to analytic pathway
modelling. The key idea is that pathways have stochastic, computational con-
tent. We consider pathways as distributed systems, viewing the components as
processes which can interact with each other, via biochemical reactions. The
reactions have duration, defined by (performance) rates; therefore we model
using high level formal languages whose underlying semantics is continuous
time Markov chains (CTMCs). A distinctive aspect of our work is that we
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do not model individual molecules, but species of molecules, i.e. we model
molecular concentrations.

Biological modelling is complex and error-prone. We believe that high-
level stochastic modelling languages can complement the efficient numerical
methods currently in widespread use by computational biologists. Process al-
gebras have a comprehensive theory for reasoning and verification. They are
also supported by state-of-the-art tools for analysis which realise the theory
mechanically and support ambitious modelling studies which include the es-
sential representational detail demanded for physically accurate work.

We have developed models using two different high level formal languages:
PEPA [Hil96] and PRISM [KNP02]. These languages allow us to concentrate
on modelling behaviour at a high level of abstraction, focusing on compo-
sitionality, communication and interaction, rather than working at the low
level detail of a CTMC or system of ODEs. Both languages have extensive
toolsets and both are suited to modelling and analysis of biochemical path-
ways, but in different ways. The former is a process algebra, and so the models
are easily and clearly expressed, using the built-in operators. Markovian anal-
ysis is supported by the toolset. The PRISM language represents systems
using an imperative language of reactive modules. It has the capability to ex-
press a wide range of stochastic process models including both discrete- and
continuous-time Markov chains and Markov decision processes. A key feature
of both languages is multiway synchronisation, essential for our approach.

In the next section, we give a brief overview of background material, pre-
senting only the essential details of stochastic process theory needed to ap-
preciate what follows. In Section 3 we give an introduction to our modelling
approach. In Section 4 we present the syntax and semantics of the stochastic
process algebra which we use, PEPA, and discuss how individual reactions and
reaction pathways are modelled. In Section 5 we present an example, the ERK
signalling pathway. Biochemical pathways are commonly modelled using ODE
models; we compare with these in Section 6. We relate the above to a method
based on model checking properties in temporal logic in Section 7. Section 8
contains a discussion. Further and related work is presented in Section 9 and
we conclude in Section 10.

Parts of the present work were previously presented in the papers [CGHO05,
CGHO06, CVOGO6].

2 Preliminaries

In this section we present background material on the stochastic processes
which we use in our work, particularly Markov processes. The literature
on Markov processes is vast but as introductory texts we would recom-
mend [KS60] and [Nor97]. Introductions to the application of stochastic pro-
cesses in the physical sciences include [Gil91] and [Gar04]. In this brief in-
troduction we attempt to explain some of the fundamental assumptions on
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which Markovian analysis is based, such as “memorylessness”. By doing this
we hope to guide the reader towards an understanding of the applicability of
our results and their scope.

2.1 Continuous time Markov chains

A fundamental kind of quantitative model is a Continuous-Time Markov
Chain (CTMC), a finite-state stochastic process which evolves in continuous
time. CTMCs are widely used in quantitative modelling because the numerical
procedures for working with them are widely-known [Ste94].

Such a system can be easily thought of as a labelled transition system
(LTS) where the labels describing the transitions from one state to another
record information such as the rate at which this transition can occur. Log-
ically, one might think of such an LTS as a graph where the presence of an
arc from vertex i to vertex j with label r indicates the possibility of moving
from state i to state j with rate » and the absence of an arc indicates that
it is impossible for the system to move directly from state i to state j. Al-
gorithmically, it is more productive for numerical purposes to represent this
information instead as a matrix where an entry r in position ij records the
rate information and a zero at position ¢j indicates the impossibility of moving
directly from state 7 to state j. In practice, for typical models these matrices
are usually sparse with the zero entries greatly outnumbering the non-zeros.
If the model of the system is expressed in this way then the calculation of
performance measures such as availability and utilisation can be obtained by
using procedures of numerical linear algebra to compute the steady-state prob-
ability distribution over the states of this finite-state system and calculating
the measure of interest from this. More complex measures such response time
require more sophisticated analysis procedures.

CTMCs associate an exponentially distributed random variable with each
transition from state to state. The random variable expresses quantitative
information about the rate at which the transition can be performed. Formally,
a random variable is said to have an exponential distribution with parameter A
(where A > 0) if it has the probability distribution function

l—e*forz>0
F(m)_{O forz <0

The mean, or expected value, of this exponential distribution is 1/A. The time
interval between successive events is e,

The memoryless property of the exponential distribution is so called be-
cause the time to the next event is independent of when the last event oc-
curred. The exponential distribution is the only distribution function which
has this property.

A Markov process with discrete state space (x;) and discrete index set
is called a Markov chain. The future behaviour of a Markov chain depends
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only on its current state, and not on how that state was reached. This is the
Markov, or memoryless, property. Every finite-state Markov process can be
described by its infinitesimal generator matriz, Q). @Q;; is the total transition
rate from state i to state j.

Stochastic models admit many different types of analysis. Some have lower
evaluation cost, but are less informative, such as steady-state analysis. Steady-
state analysis tells us only about the stationary, or equilibrium, probability
distribution over all of the states of the system. This contains no information
about probabilities of states near to the start of the time evolution of the
system. Other types of analysis have higher evaluation cost, but are more
informative, such as transient analysis. This tells us about the probability
distribution over all of the states of the system at all time points, and measures
such as first passage times can be computed from this. Passage times are
needed for the calculation of response times between an input stimulus and
its associated output response.

We will be dealing with time-homogeneous Markov processes, where time
does not influence probability. These processes will also be irreducible, mean-
ing that it is possible to get to any state from any other. Finally, the states
of these processes will be positive-recurrent, meaning that every state can
be visited infinitely often. A stationary probability distribution, 7 (-), exists
for every time-homogeneous irreducible Markov process whose states are all
positive-recurrent [KS60]. At equilibrium the probability flow into every state
is exactly balanced by the probability flow out so the equilibrium probability
distribution can be found by solving the global balance equation

Q=0

subject to the normalisation condition

Z?T(J?z) =1

i

From this probability distribution can be calculated performance measures of
the system such as throughput and utilisation.

An alternative is to find the transient state probability row vector 7(t) =
[mo(t), ..., mn—1(t)] where m;(t) denotes the probability that the CTMC is in
state ¢ at time ¢.

2.2 Continuous stochastic logic

CSL [BaHKO00, ASSBO00] is a continuous time logic that allows one to express
a probability measure that a temporal property is satisfied, in either tran-
sient behaviours or in steady state behaviours. We assume a basic familiarity
with the logic, which is based upon the computational tree logic CTL [CE81].
Properties are expressed by state or path formulae. The operators include the
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usual propositional connectives, plus the binary temporal operator until oper-
ator U. The until operator may be time bounded or unbounded. Probabilities
may also be bounded. *p specifies a bound, for example P,,[¢] is true in a
state s if the probability that(state property) ¢ is satisfied by the paths from
state s meets the bound *p. Examples of bounds are > 0.99 and < 0.01. A
special case of xp is no bound, in which case we calculate a probability.

Properties are transient, that is, they depend on time; or they are steady
state, that is, they hold in the long run. Note that in this context, steady
state solutions are not (generally) single states, but rather a network of states
(with cycles) which define the probability distributions in the long run. Table
1 gives an overview of CSL, ¢ is a state formula.

We use the PRISM model checker [KNP02] to check the validity of CSL
properties. In PRISM, we write P—_2[¢], to return the probability of the tran-
sient property ¢, and S—-[¢], to return the probability of the steady state
property ¢. The default is checking from the initial state, but we can apply
a filter thus: P—7[{¢}], which returns the probability, from the (first) state
satisfying ¢, of satisfying 1.

Operator CSL Syntax
True true

False false
Conjunction NP
Disjunction ¢V P
Negation —¢
Implication o= ¢

Next P [X¢]

Unbounded Until| Py, [¢p U]
Bounded Until [Py, [¢pU=!¢)
Bounded Until |P,,[¢U="¢)
Bounded Until |P,,[pU!*1:2l¢]
Steady-State S.pl@]

]

]

Table 1. Continuous Stochastic Logic operators

3 Modelling biochemical pathways

Biochemical pathways consist of proteins, which interact with each other
through chemical reactions. The pathway is a sequence of reactions, which
may have feedback and other dependencies between them. The signal is a
high concentration, or abundance, of particular molecular species, and by the
sequence of reactions the signal is carried down the pathway. In modelling
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terms, a reaction is an activity between reactants to produce products; so,
reactants play the role of producer(s), and products the role of consumer(s).

From the description above we can see that we can view a pathway as a
distributed system: all stages of the pathway may be activated at once. We
associate a concurrent, computational process with each of the proteins in the
pathway. In other words, in our approach proteins are processes and in the
underlying CTMC, reactions are transitions. Processes (i.e. proteins) interact,
or communicate with each other synchronously, by participating in reactions
which build up and break down proteins. The availability of reactants plays
a crucial role in the progress of the pathway. This is usually expressed in
terms of the rate of reaction being proportional to the concentration of the
reactants. In basic terms, a producer can participate in a reaction when there
is enough species for a reaction, a consumer can participate when it is ready to
be replenished. A reaction occurs only when all the producers and consumers
are ready to participate.

It is important to note that we view the protein species as a process, rather
than each molecule as a process. Thus the local states of each process reflect
different levels of concentration for that species. This corresponds to a popu-
lation type model (rather than an individuals type model) and more readily
allows us to reflect the dynamics of the reactions. In traditional population
models, species are represented as real valued molar concentrations. In our
approach, the concentrations are discretised, each level representing an inter-
val of concentration values. The granularity of the discretisation can vary; the
coarsest possible being two values (representing, for example, enough and not
enough, or high and low). Time is the only continuous variable, all others are
discrete.

4 Modelling pathways in PEPA

We assume some familiarity with process algebra; a brief overview of the
stochastic process algebra PEPA is below, see [Hil96] for further details.

4.1 Syntax of the language

As in all process algebras, PEPA describes the behaviour of a system as a set
of processes or components, which undertake activities. All activities in PEPA
are timed. In order to capture variability and uncertainty, the duration of each
action is assumed to be a random variable which is exponentially distributed.
For example, using the prefix combinator, the component («, r).S carries out
activity (o, r), which has action type « and an exponentially distributed du-
ration with parameter r (average delay 1/r), and it subsequently behaves as
S. The component P + @ represents a system which may behave either as P
or as ). The activities of both P and @ are enabled. The first activity to
complete distinguishes one of them: the other is discarded. The system will
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behave as the derivative resulting from the evolution of the chosen compo-
nent. The expected duration of the first activities of P and @ will influence
the outcome of the choice (the race policy), so the outcome is probabilistic.

It is convenient to be able to assign names to patterns of behaviour associ-
ated with components. Constants are components whose meaning is given by
a defining equation. The notation for this is X = E. The name X is in scope in
the expression on the right hand side meaning that, for example, X £ (a, 7). X
performs « at rate r forever. PEPA supports multiway cooperations between
components: the result of synchronising on an activity « is thus another «,
available for further synchronisation. We write P DLQ @ to denote cooperation
between P and (Q over L. The set which is used as the subscript to the cooper-
ation symbol, the cooperation set L, determines those activities on which the
cooperands are forced to synchronise. For action types not in L, the compo-
nents proceed independently and concurrently with their enabled activities.
We write P || @ as an abbreviation for P Bf] Q when L is empty. PEPA was
developed originally for performance modelling of computer and communica-
tion systems. In this context it is assumed that sychronised activities respect
the notion of bounded capacity: a component cannot perform an activity at a
rate greater than its own specification for the activity. Therefore in PEPA the
rate for the synchronised activities is the minimum of the rates of the syn-
chronising activities. For example, if process A performs « with rate A1, and
process B performs « with rate Ao, then the rate of the shared activity when
A cooperates with B on « is min(A1, A\2). We use the distinguished symbol
T, to indicate that a component is passive with respect to an activity, i.e. for
all rates k, min(k, T) = k.

4.2 Semantics of the language

PEPA has a structured operational semantics which generates a labelled
(multi-)transition system for any PEPA expression. It is a multi-transition
system because the multiplicity of activities is important and may change
the dynamic behaviour of the model. Via the structured operational seman-
tics, PEPA models give rise to CTMCs. The relationship between the process
algebra model and the CTMC representation is the following. The process
terms (P;) reachable from the initial state of the PEPA model by apply-
ing the operational semantics of the language form the states of the CTMC.
For every set of labelled transitions between states P; and P; of the model
{(a1,71),..., (an, )} add a transition with rate r where r is the sum of
T1,...,Tn. The activity labels («;) are necessary at the process algebra in or-
der to enforce synchronisation points, but are no longer needed at the Markov
chain level.

Algebraic properties of the underlying stochastic process become algebraic
laws of the process algebra. We obtain an analogue of the expansion law of
untimed process algebra [Mil89]:
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(r).P || (8,9).Q = (,r)(P || (8,8).Q) + (B,5).((a,7).P | Q)

only if the exponential distribution is used. Due to memorylessness we do not
need to adjust the rate s to take account of the time which elapsed during
this occurrence of o (and analogously for r and f3).

The strong equivalence relation over PEPA models is a congruence rela-
tion as is usual in process algebras and is a bisimulation in the style of Larsen
and Skou [LS91]. It coincides with the Markov process notion of lumpability
(a lumpable partition is the only partition of a Markov process which pre-
serves the Markov property [KS60]). This correspondence makes a strong and
unbreakable bond between the concise and elegant world of process algebras
and the rich and beautiful theory of stochastic processes.

The fact that the strong equivalence relation is a semantics-preserving con-
gruence has practical applications also. The relation can be used to aggregate
the state space of a PEPA model, accelerating the production of numerical
results and allowing larger modelling studies to be undertaken [GHRO1].

4.3 Reactions

As an example of how reactions are modelled, consider a simple single, re-
versible reaction, as illustrated in Fig. 1. This describes a reversible reaction
between three proteins: Protl, Prot2 and Prot3, with forward rate k1, and

reverse rate k2.

k1/k2

:

Fig. 1. Simple biochemical reaction

In the forward reaction (from top to bottom), Protl, and Prot2 are the
producers, Prot3 is the consumer; in the backward reaction, the converse is
true. Using this example, we illustrate how proteins and reactions are repre-
sented in PEPA.

Consider the coarsest discretisation. We refer to the two values as high
and low and subscript protein processes by H and L respectively. Thus when
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there are n proteins there are 2n equations. Assuming the forward reaction is
called r1, and the reverse reaction r2, the equations are given in Fig. 2. We
set the rate of consumers to be the passive rate T.

Protly ¥ (r1,k1).Protly Protly, & (r2, T).Protly
Prot2g & (r1,k1).Prot2g, Prot2;, & (r2, T).Prot2yu
Prot3u < (r2,k2).Prot3y, Prot3;, 2 (r1, T).Prot3u

Fig. 2. Simple biochemical reaction in PEPA: model equations

The model configuration, given in Figure 3, defines the (multi-way) syn-
chronisation of the three processes. Note that initially, the producers are high
and the consumer is low.

Protly {Ei%} Prot2y {7E$]2} Prot3r,

Fig. 3. Simple biochemical reaction in PEPA: model configuration

The model configuration defines a CTMC. Fig. 4 gives a graphical repre-
sentation of the underlying CTMC, with the labels of the states indicating

protein values.
e - e
k2

Fig. 4. CTMC for PEPA model of a simple biochemical reaction

4.4 Pathways and discretisation

A pathway involves many reactions, relating to each other in (typically) non-
linear ways. In PEPA, pathways are expressed by defining alternate choices
for protein behaviours using the + operator. Consider extending the simple
example. Currently, Prot3 is a consumer in r1. If it was also the consumer in
another reaction, say r3, then this would be expressed by the equation:

def

Prot3g, = (r1, T).Prot3g + (r3, T).Prot3g

It is possible to model with finer grained discretisations of species, for
example processes can be indexed by any countable set thus:
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Protly & (r1, N x k1).Protln_q
Protly_1 < (r1,(N — 1) % k1).Protly_o + (2, T).Protly
Protl; Z (r1,k1).Protlg + (r2, T).Protly

Protly & (r2, T).Protl,

Note that the rates are adjusted to reflect the relative concentrations in differ-
ent states/levels of the discretisation. N need not be fixed across the model,
but can vary across proteins, depending on experimental evidence and mea-
surement techniques.

In a model with two levels of discretisation we specify non-passive rates
(the known rate constant) for each occurrence of a reaction event in a producer
process; since PEPA defines the rate of a synchronisation to be the rate of the
slowest synchronising component, the rate for a given reaction will be exactly
that rate constant. In the simple example, this means that initially, the three
occurrences of r1 will synchronise, with rate k1 = min(k1, k1, T).

Finally, we note that for any pathway, in the model configuration, the syn-
chronisation sets must include the pairwise shared activities of all processes.
In the example configuration shown in Fig. 3, the two synchronisation sets are
identical. This is rarely the case in a pathway, where each protein is typically
involved in a different set of reactions.

5 An example: ERK signalling pathway

Cells are the fundamental structural and functional units of living organisms.
We are interested in eukaryotic cells, which have an outer membrane and inner
compartments including a nucleus. Cell signalling is the mechanism whereby
cell behaviour is controlled and coordinated: signalling molecules are detected
at the outer membrane of a cell, signals are conveyed to the nucleus via a
pathway, and the cell makes a response.

Our example is one of the most important and ubiquitous cell sig-
nalling pathways: the ERK pathway [EE02] (also called Ras/Raf, or Raf-
1/MEK/ERK pathway). This pathway is of great interest because abnormal
functioning leads to uncontrolled growth and cancer. The overall, basic, be-
haviour of the pathway is signals are conveyed to the nucleus through a “cas-
cade” of proteins (protein kinases) called Raf, MEK and ERK. The simple
cascade is illustrated in Fig. 5.

When the first protein Raf is activated by the incoming signal, the key
subsequent activity is the conveyance of the signal along the pathway; in this
case the signal is conveyed by phosphorylation. Phosphorylation is the addi-
tion of a phosphate group to a protein, the source of the phosphoryl groups is
ATP (adenosine triphosphate), which becomes ADP (adenosine diphosphate);
fortunately ATP is in such abundance that we do not need to consider it ex-
plicitly. The Raf, MEK and ERK proteins are called kinases because they
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Raf

MEK

N

ERK

V

activated ERK enters nucleus

Fig. 5. Simpified ERK signalling pathway

transfer phosphoryl groups from ATP to each other. Proteins called phos-
photases have the inverse function. Fig. 6 gives a high level overview of the
process of phosphorylation.

Phosphorylation brings about a change in protein activity; in the context of
a pathway, phosphorylation/dephosphorylation represents on/off behaviour,
or the presence/absence of a signal. In the ERK pathway, the protein kinases
become progressively phosphorylated, or activated, as the signal is conveyed
to the nucleus.

dephosphorylated
protein
protein J/ protein ATP —>> ADP
phosphotase kinase
phosphorylated source of phosphoryl
protein groups

Fig. 6. Signalling

A phosphorylated protein is indicated by a (single or double) suffix, for
example, ERK-P is singly phosphorylated ERK whereas ERK-PP is doubly
phosphorylated ERK. Activated Raf is indicated by a “*” suffix.

The full behaviour of the ERK pathway is complex, here we focus on a
portion of pathway behaviour: how an additional protein, called RKIP (Raf
kinase inhibitor protein) inhibits, or regulates, the signalling behaviour of the
pathway. Namely, RKIP interferes with the cascade by reacting with activated
Raf.

The effect of RKIP is the subject of ongoing research, we have based on
our model on the recent experimental results of Cho et al [CSKT03].

A graphical representation of the pathway, taken from [CSKT03] (with a
small modification, see section 5.2) is given in Fig. 7. Each node is labelled by
a protein species, that is, a molar concentration. The particular form of Raf
in this investigation is called Raf-1; MEK, ERK and RKIP are as described
above, and RP is an additional protein phosphotase. There are numerous
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Rat-1* RKIP
MEK @\ /@
(m) I
-~ I
o ]
(o] ) *
2 Raf-1*/RKIP

T
@ RKIP-P/RP

I Raf-1*-RKIP/ERK-PP

l

MEK-PP ERK-P RKIP-P RP

Fig. 7. RKIP inhibited ERK pathway

additional complex proteins built up from simpler ones; the complexes are
named after their constituents. For example, Raf-1* /RKIP is a protein built
up from Raf-1* and RKIP.

In Fig. 7 species concentrations for Raf-1* etc. are given by the variables
m1 etc. Initially, all concentrations are unobservable, except for my, meo, my,
mg, and myo [CSK103]. Note that in this pathway, not all reactions are re-
versible, the non-reversible reactions are indicated by uni-directional arrows.

5.1 PEPA model

Fig. 8 gives the PEPA equations for the coarsest discretisation of the pathway,
with the model configuration in Fig. 9.

There are two equations for each protein, for high and low behaviour. The
pathway is highly non-linear, as indicated by numerous occurrences of the
choice operator. For example, when Raf-1* is high, it can react with RKIP in
the klreact reaction, or it can react with MEK in the k12react reaction. Some
choices simply reflect the reversible nature of some reactions; for example
RKIP is replenished by the k2react reaction, which is the reverse of klreact.

Unlike our simple reaction example, in the pathway model, the synchro-
nisation sets in the model configuration are all distinct. Although we derived
the synchronisation sets by hand, it would be possible to do so algorithmically,
by inspection of the model equations.
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Raf-1f
Raf-17,

RKIPy
RKIPy,

MEKH
MEKj,

MEK /Raf-1%;
MEK /Raf-1},

MEK-PPy
MEK-PPy,

ERK-PPy
ERK-PPq,

ERK-Py
ERK-Py,

MEK-PP/ERK-Py
MEK-PP/ERK-Py,

Raf-1"/RKIPx
Raf-1"/RKIPy,

Raf-1"/RKIP/ERK-PPy

Raf-1"/RKIP/ERK-PP,

RKIP-Py
RKIP-Pr,

RPu
RPL

RKIP-P/RPy
RKIP-P/RPy,

Y (kireact, k1).Raf-17, + (k12react, ki2). Raf-1;
Y (k5product, T).Raf-15; + (k2react, T).Raf-1;
+ (k13react, T).Raf-15; + (k14product, T).Raf-15

% (ktreact, k1).RKIPy,

def

= (k11product, T).RKIPyu + (k2react, T).RKIPx

Y (k12react, k12). MEKy,

= (k18react, T).MEKgy + (k15product, T).MEKgy
= (k14product, k14).MEK /Raf-1}, + (kl3react, ki3). MEK /Raf-1},
Y (k12react, T).MEK /Raf-15

= (k6react, ke). MEK-PPy, + (k15product, k15). MEK-PP,

def

= (k8product, T).MEK-PPyu + (k7react, T).MEK-PPy
+ (k14product, T).MEK-PPy

= (k3react, ks).ERK-PPr,
- (k8product, T). ERK-PPu + (k4react, T). ERK-PPy

X (k6react, ke). ERK-Py,
= (k5product, T).ERK-Py + (k7react, T). ERK-Py

def

Y (k8product, ks).MEK-PP/ERK-Py, + (k7react, k7).MEK-PP /ERK-Py,
Y (kbreact, T).MEK-PP/ERK-Py

Y (k3react, ks).Raf-1"/RKIPy, + (k2react, k2 ) Raf-1*/RKIPr,
Y (ktreact, T).Raf-1"/RKIPy + (kfreact, T).Raf-1*/RKIPy

& (k5product, ks).Raf-1*/RKIP/ERK-PPr,
+ (k4react, ks).Raf-1"/RKIP/ERK-PPy,
Y (k3react, T).Raf-1*/RKIP/ERK-PPy

Y (k9react, ko) . RKIP-Py,
% (k5product, T).RKIP-Px + (kl0react, T).RKIP-Py

X (k9react, ko) .RPL,
“ (k11product, T).RPy + (kl0Oreact, T).RPu

def

= (kl1product,ki1).RKIP-P/RPy, + (k10react, k10).RKIP-P/RPr,
Y (k9react, T).RKIP-P/RPy

Fig. 8. PEPA model definitions for the reagent-centric model
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(Raf_lﬁ {kireact,k2react,ki2react, ki3react, ksproduct, k1jproduct}
(RKIPy {kireact,k2react,kl1product}
(Raf-1"/RKIPL {k‘?rea%react}
(Raf-1*/RKIP/ERK-PPr,)
(ERK_PL {kSproduct, k6react, kTreact}
(RKIP-Pr, {kgreafgm-gaa}
(RKIP-P/RPy

{k3react,kjreact,k5product}

{k9react,k10react,k11product}

(RPw ||
(MEKL {k12react,k13react,k15product’}
(MEK/Raf-13, , P
(MEK-PPyu - ;
{ k8product,kbreact,k7react}
(MEK-PP/ERK-P;, <
k8product}
(ERK-PPw))))))))))))

Fig. 9. PEPA model configuration for the reagent-centric model

5.2 Analysis

There are two principal reasons to apply formal languages to describe systems
and processes. The first is the avoidance of ambiguity in the description of
the problem under study. The second, but not less important, is that formal
languages are amenable to automated processing by software tools. We used
the PEPA Workbench [GH94] to analyse the model.

First, we used the Workbench to test for deadlocks in the model. A dead-
locked system is one which cannot perform any activities (in many process
algebras this is denoted by a constant such as exit or stop). In our con-
text, signalling pathways should not be able to deadlock, this would indicate
a malfunction. Initially, there were several deadlocks in our PEPA model:
this is how we discovered an incompleteness in the published description of
[CSK03], with respect to the treatment of MEK. After correspondence with
the authors, we were able to correct the omission and develop a more complete,
and deadlock free model.

Second, when we had a deadlock-free model, we used the Workbench to
generate the CTMC (28 states) and its long-run probability distribution. The
steady-state probability distribution is obtained using a number of routines
from numerical linear algebra. The distribution varies as the rates associated
with the activities of the PEPA model are varied, so the solution of the model
is relative to a particular assignment of the rates. Initially, we set all rates to
unity (1.0). Our main aim was to investigate how RKIP affects the production
of phosphorylated ERK and MEK, i.e. if it reduces the probability of having
a high level of phosphorylated ERK or MEK.
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Fig. 10. Plotting the effect of k1 on kl4product
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Fig. 11. Plotting the effect of k1 on k8product

We used the PEPA state-finder to aggregate the probabilities of all states
when ERK-PP is high, or low, for a given set of rates. That is, it aggre-
gated the probabilities of states whose (symbolic) description has the form
*x] ERK-PPy where % is a wildcard standing for any expression. We then
repeated this with a different set of rates and compared results. We observed
that the probability of being in a state with ERK-PPy decreases as the rate
k1 is increased, and the converse for ERK-PPy, increases. For example, when
k1 = 1, the probability of ERK-PPy is .257, when k1 = 100, it drops to
.005. We can also plot throughput (rate x probability) against rate. Fig. 10
and Fig. 11 show two sub-plots which detail the effect of increasing the rate
k1 on the kldproduct and k8product reactions — the production of (doubly)
phosphorylated MEK and (doubly) phosphorylated ERK, respectively. These
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are obtained by scaling k1, keeping all other rates to be unity. The graphs
show that increasing the rate of the binding of RKIP to Raf-1* dampens down
the kldproduct and k8product reactions, and they quantify this information.
The efficiency of the reduction is greater in the former case: the graph falls
away more steeply. In the latter case the reduction is more gradual and the
throughput of k8product peaks at k1 = 1. Note that since kbproduct is on
the same (sub)pathway as k8product, both ERK-PP and ERK-P are similarly
affected. Thus we conclude that the rate at which RKIP binds to Raf-1* (thus
suppressing phosphorylation of MEK) affects the ERK pathway, as predicted
(and observed); RKIP does indeed regulate the ERK pathway.

In the next section we give an overview of traditional pathway models,
and how they relate to our approach.

6 Modelling pathways with differential equations

The algebraic formulation of the PEPA model makes clear the interactions
between the pathway components. There is a direct correspondence between
topology and the model, models are easy to derive and to alter. This is not
apparent in the traditional pathway models given by sets of ODEs. In these
models, equations define how the concentration of each species varies over
time, according to mass action kinetics. There is one equation for each pro-
tein species. The overall rate of a reaction depends on both a rate (constant)
and the concentration masses. Both time and concentration variables are con-
tinuous. ODEs do not give an indication of the structure, or topology of the
pathway, and consequently the process to define them is often error prone.
Set against this, efficient numerical methods are available for the numerical
integration of ODEs even in the difficult quantitative setting of chemically
reacting systems which are almost always stiff due to the presence of widely
differing timescales in the reaction rates.

Fortunately, the ODEs can be derived from PEPA models — in fact, from
models which distinguish only the coarsest discretisation of concentration.
The high/low discretisation is sufficient because we need to know only when
a reaction increases or decreases the concentration of a species. Moreover the
PEPA expressions reveal which species are required in order to complete an
activity.

An example illustrates the relationship between ODEs and the PEPA
model. In the PEPA equations for the ERK pathway, we can easily observe
that Raf-1* increases (low to high, second equation) with rates (from syn-
chronisations) ks, ko, k13 and ki4; it decreases (high to low, first equation)
with rates k1 and kq2. Mass action kinetics shows how the rates and masses
affect the amount of Raf-1*. The equation for Raf-1*, given in terms of the
(continuous) concentration variables my etc. is
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% = (k5-ma)+(k2-m3)+(k13-m13)+(k1a-mi3)—(k1-m1-ma)—(k12-m1-mi2)
(1)

This equation defines the change in Raf-1* by how it is increased, i.e. the
positive terms, and how it is decreased, i.e. the negative terms. These differ-
ential equations can be derived directly and automatically from the PEPA
model. Algorithms to do so are given in [CGHO5].

While the style of modelling in the stochastic process algebra approach
embodied by PEPA is concise and elegant, the bounded capacity, min style
semantics for synchronisation means we have not been able to represent ac-
curate rates for mass action kinetics. For example, in a PEPA model for a
reaction between two producers and one consumer, the overall rate of a syn-
chronised transition is the minimum of the three given rates. In mass action
kinetics, the rate would be a (function of the) product of the given rates. We
could overcome this by defining a very large number of constants, represent-
ing every possible rate x mass product combination; alternatively, we turn to
the PRISM high level language for CTMCs, which implements synchronisa-
tion rates by products. This formalism, which is state based, is less concise
for modelling, but it affords additional analysis by way of model checking
properties expressed using continuous stochastic logic (CSL).

7 Modelling pathways in PRISM

The PRISM language [KNP02| represents systems using an imperative lan-
guage of reactive modules. It has the capability to express a wide range
of stochastic process models including both discrete- and continuous-time
Markov chains and Markov decision processes. A key feature is multiway syn-
chronisation, essential for our approach. In (CTMC) PRISM models, activities
are called transitions. (Note, the PRISM name denotes both a modelling lan-
guage and the model checker, the intended meaning should be clear from
the context.) These correspond directly to CTMC transitions and they are
labelled with performance rates and (optional) names. For each transition,
like PEPA, the rate is defined as the parameter of an exponential distribu-
tion of the transition duration. PRISM is state-based; modules play the role
of PEPA processes and define how state variables are changed by transitions.
Like PEPA, transitions with common names are synchronised; transitions with
distinct names are not synchronised.

7.1 Reactions

Similar to our PEPA models, proteins are represented by PRISM modules
and reactions are represented by transitions. Below, we give a brief overview
of the language, illustrating each concept with reference to the simple reaction
example from Fig. 1; the reader is directed to [KNP02] for further details of
PRISM.
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The PRISM model for the simple example is given in Fig. 12. The first
thing to remark is that in the PRISM model, the discretisation of concentra-
tion is an explicit parameter, denoted by N. In this example, we set it to 3.
K is simply a convenient abbreviation for N~1.

Second, consider the first three modules which represent the proteins
Protl, Prot2 and Prot3. Each module has the form: a state variable which
denotes the protein concentration (we use the same name for process and vari-
able, the type can be deduced from context) followed by a nondeterministic
choice of transitions named r1 and r2. A transition has the form precondition
— rate: assignment, meaning when the precondition is true, then perform
the assignment at the given rate, i.e. rate is the parameter of an exponential
distribution of the transition duration. The assignment defines the value of a
state variable after the transition. The new value of a state variable follows
the usual convention — the variable decorated with a single quote.

In this model, the transition rates have been chosen carefully, to corre-
spond to mass action kinetics. Namely, when the transition denotes consumer
behaviour (decrease protein by 1) the protein is multiplied by K, when the
transition denotes producer behaviour (increase protein by 1), the rate is sim-
ply 1. These rates correspond to the fact that in mass action kinetics, the
overall rate of the reaction depends on a rate constant and the concentra-
tions of the reactants consumed in the reaction. (We will discuss this further
in Section 7.2.) Note that unlike PEPA where the processes are recursive,
here PRISM modules describe the circumstances under which transitions can
occur.

The fourth module, Constants, simply defines the constants for reaction
kinetics. These were obtained from experimental evidence [CSK™03]. the mod-
ule contains a “dummy” state variable called z, and (always) enabled transi-
tions which define the rates.

The four modules run concurrently, as given by the system description in
Fig. 13. In PRISM, the rate for the synchronised transition is the product of
the rates of the synchronising transitions. For example, if process A performs
« with rate A1, and process B performs o with rate Ao, then the rate of & when
A is synchronised with B is A1 - Ao. To illustrate how this determines the rates
in the underlying CTMC, consider the first reaction from the initial state of
the example, i.e. reaction r1. There are four enabled (i.e. precondition is true)
transitions with the name r1. They will all synchronise, and when they do,
the resulting transition has rate

(Protl - K) - (Prot2- K)-1- (k1- N) 2)

Since Protl and Prot2 are initialised to N (Prot3 is initialised to 0), this
equates to

(N-K)-(N-K)-1-(kl1-N)=k1-N (3)
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const int N = 3;
const double K = 1/N;

module Protl
Protil: [0..N] init N;
[r1] (Proti1>0) -> Proti*K: (Protl’ = Protl - 1);
[r2] (Proti<N) -> 1: (Protl’ = Protl + 1);
endmodule

module Prot2
Prot2: [0..N] init N;
[r1] (Prot2>0) -> Prot2*K: (Prot2’ = Prot2 - 1);
[r2] (Prot2<N) -> 1: (Prot2’ = Prot2 + 1);
endmodule

module Prot3
Prot3: [0..N] init O;
[r1] (Prot3 < N) -> 1: (Prot3’ = Prot3 + 1);
[r2] (Prot3>0) -> Prot2*K: (Prot3’ = Prot3 - 1);
endmodule

module Constants
x: bool init true;
[r1] (x=true) -> k1x*N: (x’=true);
[r2] (x=true) -> k2*N: (x’=true);

endmodule

Fig. 12. Simple biochemical reaction in PRISM: modules

system
Protl || Prot2 || Prot3 || Constants
endsystem

Fig. 13. Simple biochemical reaction in PRISM: system

The reaction r1 can occur N times, until all the Protl and Prot2 has
been consumed. Fig. 14 gives a graphical representation of the underlying
CTMC when N = 3. Again, the state labels indicate protein values, i.e. z12x223
denotes the state where Protl = x1, Prot2 = x5, etc. Note that the transition
rates decrease as the amount of producer decreases.
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1.3k1
O=0=0=0

Fig. 14. CTMC for PRISM model of simple biochemical reaction

7.2 Reaction kinetics

In this section we show how the PRISM model implements mass action kinet-
ics. Consider the mass action kinetics for Prot3 in the simple example, given
by the ODE

dm3

dt

The variables my etc. are continuous, denoting concentrations of Protl,

etc. Integrating equation 4 by the simplest method, Euler’s method, defines
a new value for mg thus:

= (kl M 'mg) — (k?g -m3) (4)

my =mgz + (k1-my -mg - At) — (kz - m3 - At) (5)

In our discretisation, concentrations can only increase in units of one molar
concentration, i.e. 1/N, so

1
At = 6
N-((k}l'ml'mg)—(kig'mg)) ( )
Recall that PRISM implements rates as the memoryless negative expo-
nential, that is for a given rate A, P(t) = 1 — e~*" is the probability that the
action will be completed before time t. Taking A as ﬁ, in this example we
have

)\:(Nklmlmg)—(Nkag) (7)

The continuous variables m; etc. relate to the PRISM variables Protl etc.,
as follows:

my = Protl - K (8)

= Prot2- K 9)

etc.
So, substituting into equation (7) yields

A= (N-kl1-(Protl-K)-(Prot2-K))— (N -ky - (Prot3-K)) (10)

Given the initial concentrations of Protl, Prot2 and Prot3, this equates to



Formal Methods for Biochemical Signalling Pathways 21

A=(N-kl-(N-K)-(N-K))— (N -k (0-K)) (11)

which simplifies to the rate specified in the PRISM model, equation (3) in
Section 7.1.

Comparison of ODE and CTMC models

It is important to note that the ODE model is deterministic, whereas our
CTMC models are stochastic. How do the two compare? We investigated sim-
ulation traces of both, over 200 data points in the time interval [1...100],
using MATLAB for the the former. While PRISM is not designed for simu-
lation, we were able to derive simulation traces, using the concept of rewards
(see [KNPO2]).

When comparing the two sets of traces, the accuracy of the CTMC traces
depends on the choice of value for N. Intuitively, as N approaches infinity, the
stochastic (CTMC) and deterministic (ODE) models will converge. For many
pathways, including our example pathway, N can be surprisingly small (e.g.
7 or 8), to yield very good simulations, in reasonable time (few minutes) on a
state of art workstation. The two are indistinguishable for practical purposes.
More details about simulation results and comparison between the stochastic
and deterministic models are given in [CVOGO6].

One advantage of our approach is the modeller chooses the granularity of
N. Usually this will depend on the accuracy of and confidence in experimental
data or knowledge. In many cases, it is sufficient to use a high/low model,
particularly when the data or knowledge is incomplete or very uncertain.

The full PRISM model for the example pathway is given in the Appendix.
We now turn our attention to analysis of the example pathway using a tem-
poral logic.

7.3 Analysis of example pathway using the PRISM model checker

Temporal logics are powerful tools for expressing properties which may be
generic, such as state reachability, or application specific in which case they
represent application characteristics. Here, we concentrate on the latter,
specifically considering properties of biological significance.

The two properties we consider are: what is the probability that a protein
concentration reaches a certain level, and then remains at that level there-
after, and what is the probability that one protein “peaks” before another?
The former is referred to as stability (i.e. the protein is stable), the latter as
activation sequence.

Since we have a stochastic model, we employ the logic CSL (Continu-
ous Stochastic Logic) (see section 2.2) and the symbolic probabilistic model
checker PRISM [PNKO04] to compute steady state solutions and check validity.
Using PRISM we can analyse open formulae, i.e. we can perform experiments
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Fig. 15. Stability of Raf-1* at levels {2,3} and {0,1}

as we vary instances of variables in a formula expressing a property. Typically,
we will vary reaction rates or concentration levels. We consider two properties
below, the first is a steady state property and we vary a reaction rate, the
second is a transient property and we vary a concentration. All properties
were checked within a few minutes on a state of art workstation; hence run
times are omitted.

Protein stability

Stability properties are useful during model fitting, i.e. fitting the model to
experimental data. As an example, consider the stability of Raf-1* as the
reaction rate k1 (the rate of r1 which binds Raf-1* and RKIP) varies over the
interval [0...1]. Let stability in this case be defined as concentration 2 or 3.
The stability property is expressed by:

S_s[(Raf-1* > 2) A (Raf-1* < 3)] (12)

Now consider the probability that Raf-1* is stable at concentrations 0 and 1;
the formula for this is:

S—-[(Raf-1* > 0) A (Raf-1* < 1)] (13)

Fig. 15 gives results for both these properties, when N = 5. From the
graph, we can see that the likelihood of property (12) (solid line) is greatest
when k1 = 0.03 and then it decreases; the likelihood of property (13) (dashed
line) increases dramatically, becoming very likely when k1 > 0.4.
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We note that the analysis presented in section 5.2 is for stability. For
example, assuming N = 1, the probability that ERK-PP is high would be
expressed in PRISM by S—-[ERK-PP > 1)].

Activation sequence

As an example of activation sequence, consider the two proteins Raf-1*/RKIP
and Raf-1"/RKIP/ERK-PP, and their two peaks C' and M, respectively. Is it
possible that the (concentration of the) former peaks before the latter? This
property is given by:

P_y[(Raf-1*"/RKIP/ERK-PP < M) U (Raf-1/RKIP = C)]  (14)

The results, for C ranging over 0, 1,2 and M ranging over 1...5 are given
in Fig. 16: the line with steepest slope represents M = 1, the line which
is nearly horizontal is M = 5. For example, the probability Raf-1*/RKIP
reaches concentration level 2 before Raf-1*/RKIP /ERK-PP reaches concen-
tration level 5 is more than 99%, the probability Raf-1*/RKIP reaches con-
centration level 2 before RAF1/RKIP/ERK-PP reaches concentration level 2
is almost 96%.

0.95

=L

0.85

PNWhO

0.8

[E=N
N

Fig. 16. Activation sequence
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7.4 Further properties

Examples of further temporal properties concerning the accumulation (or
diminution) of proteins, illustrate the use of bounds. Full details of their anal-
ysis can be found in [CVOGO06].

The (accumulation) property

P_s[(true) US20 (Protein > C){(Protein = C)}] (15)

expresses the possibility that Protein can reach a level higher than C, within
a time bound, once it has reached concentration C.
The (diminution) property

Psq[(true) U ((Protein = C) A (P>0.95|X(Protein = C — 1)]))] (16)

expresses the high likelihood of decreasing Protein, i.e. the concentration
reaches C and after the next step it is very likely to be C' — 1.

8 Discussion

Modelling biochemical signalling pathways has previously been carried out
using sets of nonlinear ordinary differential equations (ODEs) or stochastic
simulation based on Gillespie’s algorithm. These can be seen as contrasting ap-
proaches in several respects. The ODE models are deterministic and present
a population view of the system. This aims to characterise the average be-
haviour of large numbers of individual molecules of each species interacting,
capturing only their concentration. Alternatively, in Gillespie’s approach each
molecule is modelled explicitly and stochastically, capturing the probabilities
with which reactions occur, based on the likelihood of molecules of appro-
priate species being in close proximity. This gives rise to a CTMC, but one
whose state space is much too large to be solved explicitly. Hence simulation
is the only option, each realisation of the simulation giving rise to one possible
behaviour of the system. Thus the results of many runs must be aggregated
in order to gain insight into the typical behaviour.

Our approach represents a new alternative which develops a representa-
tion of the behaviour of the system which is intermediate between the previous
techniques. We retain the stochastic element of Gillespie’s approach but the
CTMC which we give rise to can be considerably smaller because we model
at the level of species rather than molecules. Keeping the state space man-
ageable means that we are able to solve the CTMC explicitly and avoid the
repeated runs necessitated by stochastic simulation. Moreover, in addition to
the quantitative analysis on the CTMC, as illustrated here with PEPA, we
are able to conduct model checking of stochastic properties of the model. This
provides more powerful reasoning mechanisms than stochastic simulation.
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In our models the continuous variable, or concentration, associated with
each species is discretised into a number of levels. Thus each component rep-
resenting a species has a distinct local state for each level of concentration.
The more levels that are incorporated into the model, i.e. the finer the gran-
ularity of the discretisation, the closer the results of the CTMC will be to the
ODE model. However, finer granularity also means that there will be more
states in the CTMC. Thus we are faced with a trade-off between accuracy and
tractability. Since not all species must have the same degree of discretisation
we may choose to represent some aspects of the pathway in finer detail than
others.

8.1 Scalability

Whilst being of manageable size from a solution perspective, the CTMCs we
are dealing with are too large to contemplate constructing manually. The use
of high level modelling languages such as PEPA and PRISM to generate the
underlying CTMC allows us to separate system structure from performance.
Our style of modelling, focussed on species, or molar concentrations thereof,
rather than molecules, means that most reactions involve three or more com-
ponents. The multi-way synchronisation of PEPA and PRISM is ideally suited
to this approach. Ultimately, we will encounter state space explosion, arising
from either the granularity of the discretisation or the number of species, but
it has not been a problem for the pathways we have studied thus far (with up
to approx. 20 species).

8.2 Relationship between PEPA and PRISM

PEPA and PRISM have provided complementary formalisms and toolsets for
modelling and reasoning with CTMCs. While models are easily and clearly
expressed in PEPA, it is difficult to represent reaction rates accurately. This
is not surprising, given PEPA was designed for modelling performance of
(bounded capacity) computer systems, not biochemical reactions. PRISM pro-
vides a better representation of reaction rates and the facility to check CSL
properties. A key feature of both languages is multiway synchronisation, es-
sential for our approach. To some extent the source language is not important,
since a PRISM model can be derived automatically from any PEPA model,
using the PEPA workbench, though it is necessary to handcode the rates (be-
cause PEPA implements synchronisation by minimum, PRISM by product).
Here, we have handcoded the PRISM models, to make the concentration vari-
able explicit. This has enabled us to perform experiments easily over a wide
range of models.
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9 Related and Further Work

Work on applying formal system description techniques from computer sci-
ence to biochemical signalling pathways was initially stimulated by [GP98,
Reg02, RSS01, PRSS01]. Subsequently there has been much work in which
the stochastic m-calculus is used to model biological systems, for example
[CCDMO04] and elsewhere. This work is based on a correspondence between
molecules and processes. Each molecule in a signalling pathway is represented
by a component in the process algebra representation. Thus, in order to rep-
resent a system with populations of molecules, many copies of the process
algebra components are needed. This leads to underlying CTMC models with
enormous state spaces — the only possible solution technique is simulation
based on Gillespie’s algorithm.

In our approach we have proposed a more abstract correspondence, be-
tween species and processes (c.f. modelling classes rather than individual ob-
jects). Now the components in the process algebra model capture a pattern
of behaviour of a whole set of molecules, rather than the identical behaviour
of thousands of molecules having to be represented individually. From such
models we are able to generate underlying models, suitable for analysis, in a
number of different ways. When we consider populations of molecules, consid-
ering only two states for each species (high and low) we are able to generate
a set of ODEs from a PEPA model. With a moderate degree of granularity in
the discretisation of the concentration we are able to generate an underlying
CTMC explicitly. This can then be subjected to steady state or transient nu-
merical analysis, or model checking of temporal properties expressed in CSL,
as we have seen. Alternatively, interpreting the high/low model as establishing
a pattern of behaviour to be followed by each molecule, we are able to derive
a stochastic simulation based on Gillespie’s algorithm.

In the recent work by Heath et al. [HKNT06, KNPT06], the authors use
PRISM to model the FGF signalling pathway. However, they model individ-
uals and do not appear to have a representation of population dynamics.

10 Conclusions

Mathematical biologists are familiar with applying methods based on reaction
rate equations and systems of coupled first-order differential equations. They
are familiar too with the stochastic simulation methods in the Gillespie fam-
ily which have their roots in physically rigorous modelling of the phenomena
studied in statistical thermodynamics. However, the practice in the field of
computational biology is often either to code a system of differential equa-
tions directly in a numerical computing platform such as Matlab, or to run a
stochastic simulation.

It might be thought that differential equations represent a direct mathe-
matical formulation of a chemical reacting system and might be more straight-
forward to use than mathematical formulations derived from process algebras.
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Set against this though is the absence of a ready apparatus for reasoning
about the correctness of an ODE model. No equivalence relations exist to
compare models and there is no facility to perform even simple checks such as
deadlock detection, let alone more complex static analysis such as liveness or
reachability analysis. The same criticisms unfortunately can also be levelled
at stochastic simulation.

We might like to believe that there was now sufficient accumulated exper-
tise in computational biological modelling with ordinary differential equations
that such mistakes would simply not occur, or we might think that they would
be so subtle that modelling in a process algebra such as PEPA or a state-based
modelling language such as PRISM could not uncover them. We can however
point to at least one counterexample to this. In a recent PEPA modelling
study we found an error in the analysis of a published and widely cited ODE
model. The authors of [SEJGMO02] develop a complex ODE model of epider-
mal growth factor (EGF) receptor signal pathways in order to give insight
into the activation of the MAP kinase cascade through the kinases Raf, MEK
and ERK-1/2. Our formalisation in [CDGHO06] was able to uncover a previ-
ously unexpected error in the way the ODEs had been solved, which led to
the production of misleading results. In essence, the error emerged because
through the use of a high-level language, we were able to compare different
analyses of the same model, and then do some investigations to discover the
cause of discrepencies between them.

High-level modelling languages rooted in computer science theory add sig-
nificantly to the analysis methods which are presently available to practicing
computational biologists, increasing the potential for stronger and better mod-
elling practice leading to beneficial scientific discoveries by experimentalists
making a positive contribution to improving human and animal health and
quality of life. We believe that the insights obtained through the principled
application of strong theoretical work stand as a good advertisement for the
usefulness of high-level modelling languages for analysing complex biological
processes.

Appendix: PRISM model of example pathway

The system description is omitted - it simply runs all modules concurrently.
The rate constants are taken from [CSKT03].

const int N = 7;
const double M = 2.5/N;

module RAF1
RAF1: [0..N] init N;
[r1] (RAF1 > 0) -> RAF1xM: (RAF1’ = RAF1 - 1);
[r12] (RAF1 > 0) -> RAF1xM: (RAF1’ = RAF1 - 1);
[r2] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
[r5] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
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[r13] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
[r14] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
endmodule

module RKIP
RKIP: [0..N] init N;
[r1] (RKIP > 0) -> RKIP*M: (RKIP’ = RKIP - 1);
[r2] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);
[r11] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);
endmodule

module RAF1/RKIP
RAF1/RKIP: [0..N] init O;
[r1] (RAF1/RKIP < N) -> 1: (RAF1/RKIP’ = RAF1/RKIP + 1);
[r2] (RAF1/RKIP > 0) -> RAF1/RKIPx*M:
(RAF1/RKIP’ = RAF1/RKIP - 1);
[r3] (RAF1/RKIP > 0) -> RAF1/RKIPx*M:
(RAF1/RKIP’ = RAF1/RKIP - 1);
[r4] (RAF1/RKIP < N) -> 1: (RAF1/RKIP’ = RAF1/RKIP + 1);
endmodule

module ERK-PP
ERK-PP: [0..N] init N;
[r3] (ERK-PP > 0) -> ERK-PP*M: (ERK-PP’ = ERK-PP - 1);
[r4] (ERK-PP < N) -> 1: (ERK-PP’ = ERK-PP + 1);
[r8] (ERK-PP < N) -> 1: (ERK-PP’ = ERK-PP + 1);
endmodule

module RAF1/RKIP/ERK-PP
RAF1/RKIP/ERK-PP: [0..N] init O;
[r3] (RAF1/RKIP/ERK-PP < N) -> 1:
(RAF1/RKIP/ERK-PP’ = RAF1/RKIP/ERK-PP + 1);
[r4] (RAF1/RKIP/ERK-PP > 0) ->
RAF1/RKIP/ERK-PP*M:
(RAF1/RKIP/ERK-PP’
[r5] (RAF1/RKIP/ERK-PP > 0) ->
RAF1/RKIP/ERK-PP*M:
(RAF1/RKIP/ERK-PP’

RAF1/RKIP/ERK-PP - 1);

RAF1/RKIP/ERK-PP - 1);
endmodule

module ERK
ERK: [0..N] init O;
[r5] (ERK < N) -> 1: (ERK’ = ERK + 1);
[r6] (ERK > 0) —-> ERK*M: (ERK’ = ERK - 1);
[r7] (ERK < N) -> 1: (ERK’ = ERK + 1);
endmodule

module RKIP-P
RKIP-P: [0..N] init O;
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[r5] (RKIP-P < N) -> 1: (RKIP-P’ =RKIP-P + 1);

[r9] (RKIP-P > 0) -> RKIP-P*M: (RKIP-P’ =RKIP-P - 1);

[r10] (RKIP-P < N) -> 1: (RKIP-P’ =RKIP-P + 1);
endmodule

module RP
RP: [0..N] init N;
[r9] (RP > 0) -> RP*M: (RP’ = RP - 1);
[r10] (RP < N) -> 1: (RP’ = RP + 1);
[r11] (RP < N) -> 1: (RP’ = RP + 1);
endmodule

module MEK
MEK: [0..N] init N;
[r12] (MEK > 0) -> MEK*M: (MEK’ = MEK - 1);
[r13] (MEK < N) -> 1: (MEK’ = MEK + 1);
[r15] (MEK < N) -> 1: (MEK’ = MEK + 1);
endmodule

module MEK/RAF1
MEK/RAF1: [0..N] init N;
[r14] (MEK/RAF1> 0) -> MEK/RAF1xM: (MEK/RAF1’ MEK/RAF1 - 1);
[r15] (MEK/RAF1> 0) -> MEK/RAF1xM: (MEK/RAF1’ MEK/RAF1 - 1);
[r12] (MEK/RAF1 < N) -> 1: (MEK/RAF1’ = MEK/RAF1 + 1);
endmodule

module MEK-PP
MEK-PP: [0..N] init N;
[r6] (MEK-PP 0) -> MEK-PP*M: (MEK-PP’ MEK-PP - 1);
[r15] (MEK-PP 0) -> MEK-PP*M: (MEK-PP’ = MEK-PP - 1);
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[r7] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);
[r8] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);
[r14] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);

endmodule

module MEK-PP/ERK
MEK-PP/ERK: [0..N] init O;
[r7] (MEK-PP/ERK > 0) -> MEK-PP/ERK*M:

(MEK-PP/ERK’ = MEK-PP/ERK - 1);
[r8] (MEK-PP/ERK > 0) -> MEK-PP/ERK*M:
(MEK-PP/ERK’ = MEK-PP/ERK - 1);
[r6] (MEK-PP/ERK < N) -> 1: (MEK-PP/ERK’ = MEK-PP/ERK + 1);

endmodule

module RKIP-P/RP
RKIP-P/RP: [0..N] init O;
[r9] (RKIP-P/RP < N) -> 1: (RKIP-P/RP’ = RKIP-P/RP + 1);
[r10] (RKIP-P/RP > 0) -> RKIP-P/RP*M:
(RKIP-P/RP’ = RKIP-P/RP - 1);
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[r11] (RKIP-P/RP > 0) -> RKIP-P/RP+*M:
(RKIP-P/RP’ = RKIP-P/RP - 1);
endmodule

module Constants

x: bool init true;
[r1] (x) -> 0.53/M: (x’ = true);
[r2] (x) -> 0.0072/M: (x’ = true);
[r3] (x) -> 0.625/M: (x’ = true);
[r4] (x) -> 0.00245/M: (x’ = true);
[r5] (x) -> 0.0315/M: (x’ = true);
[r6] (x) -> 0.8/M: (x’ = true);
[r7] (x) -> 0.0075/M: (x’ = true);
[r8] (x) -> 0.071/M: (x’ = true);
[r9] (x) -> 0.92/M: (x’ = true);
[r10] (x) -> 0.00122/M: (x’ = true);
[r11] (x) -> 0.87/M: (x’ = true);
[r12] (x) -> 0.05/M: (x’ = true);
[r13] (x) -> 0.03/M: (x’ = true);
[r14] (x) -> 0.06/M: (x’ = true);
[r15] (x) -> 0.02/M: (x’ = true);
endmodule
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