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Abstract. We investigate how biomolecular processes are modelled in
process algebras, focussing on chemical reactions. We consider various
modelling styles and how design decisions made in the definition of the
process algebra have an impact on how a modelling style can be applied.
Our goal is to highlight the often implicit choices that modellers make in
choosing a formalism, and illustrate, through the use of examples, how
this can affect expressability as well as the type and complexity of the
analysis that can be performed.

1 Introduction

Much recent research has considered the problem of providing suitable abstract
models to allow biologists to construct mechanistic models to enhance under-
standing of biomolecular processes. Process algebras, formal modelling languages
originally conceived for modelling concurrent computations, have been widely
applied, most notably in the area of signalling pathways [RSS01,CGH06,TK08].
This is experimental science and we are currently evaluating the hypothesis
that such formal models can add value to the mathematical analysis that is al-
ready undertaken within systems biology in terms of ordinary differential equa-
tion (ODE) models or stochastic simulations directly. In exploring this goal,
even within work on process algebras, several different styles of modelling have
emerged. Ultimately we hope to be able to give guidance on how to choose among
these modelling styles, or on how to map molecular components and their inter-
actions to processes, process communication and process composition. However,
in the first instance we investigate how design decisions made in the definition
of the language have an impact on how a modelling style can be applied, and
highlight the often implicit choices that modellers make in choosing a formalism.

Recent research effort on process algebras for biomolecular processes, e.g.
[CGH06,CVOG06,CH08,Car08], has focussed on defining alternative semantics,
such as discrete-state (stochastic) or continuous-state (ODE) semantics. These
provide important links with the work where mathematical representations are
used directly and establish a valid foundation for process algebra models. Based
on these semantics, analysis may be carried out by model-checking, stochastic



simulation based on Gillespie’s algorithm or ODE simulations. Our emphasis in
this paper is different. Here we consider the forms of abstraction supported by
process algebra and how the abstraction and the process algebra chosen affect
the expressiveness of the model with respect to the biological processes, as well
as the type and complexity of the analysis that can be performed.

We focus on one of the most important types of interaction between molecular
components: chemical reactions. In chemical notation, these may be first order
reactions, for example A degrades to B: A

k1−→B, or second order reactions, for ex-
ample A and B combine to form C or C and D: A + B

k2−→C, or A + B
k3−→C + D.

Typically, k1 . . . k3 are rate constants for kinetic laws (e.g. mass action).

A fundamental aspect of the abstraction used in modelling is the nature of
the process mapping. In the literature on process algebras for systems biology
we find predominantly the molecule-as-process [RSS01,Car08] abstraction, but
the species-as-process and reaction-as-process mappings have also been proposed
[CGH06,CH08,BP08]. The distinction between the first two can be understood
by appealing to ecology: the former is essentially individuals-based, whereas
the latter is population-based. We note that this distinction is less common in
distributed computing system modelling, the origins of process algebra, where
population-based models are rarely considered.

Further stylistic differentiation was identified in [CGH06] where the concepts
of reagent-centric and pathway-centric models are introduced, in the context of
population-based modelling. Reagent-centric models map all reagents in a re-
action to processes, whose variation reflect decrease through consumption and
increase through product formation (consumers and producers). Reagents such
as modifiers that do not vary species amounts can also be modelled in this ap-
proach. Reagent-centric models provide a fine-grained, distributed view of a sys-
tem. Pathway-centric models provide a more abstract view of a system, tracking
serialisations of events, which are then composed concurrently. Here, processes
vary according to their biological state rather than their quantity. Whereas in a
reagent-centric approach the processes may be molecules or molecular species, in
the pathway-centric approach the processes are molecules or sub-pathways. Thus
the interactions between processes are between flows of events corresponding to
producers, i.e. components on the left hand sides of a reactions.

Most modelling approaches map chemical reactions to events in a straightfor-
ward way, and map (possibly a subset of) the chemical components to processes.
Bortolussi and Policriti’s work on sCCP, using the reaction-as-process abstrac-
tion, is an exception to this. When chemical components are mapped to processes
within the reagent-centric approach there is a further choice: between associat-
ing processes with all components or only with the reagents on the left hand
side of equations, i.e. those reagents that are the reactants of the reaction. To
distinguish these two cases, we call the former reagent-centric and the latter
reactant-centric. This modelling choice is often influenced by the form of syn-
chronisation available within the algebra: binary or multi-way. If we have only
the former, then only the reactant-centric approach is possible and we are left



with an interesting dilemma when there are fewer components on the right hand
side of the equation than on the left hand side, e.g. A + B

k2−→C.
In summary, a number of factors will influence the structure of a process

algebra model of a biomolecular process:

– population-based or individuals-based,
– reagent-centric, reactant-centric, pathway-centric or reaction-centric,
– the form of synchronisation available in the algebra.

In this paper we investigate the interplay between these three factors. Our
motivation is to explore the extent to which we can build clear and faithful
models using current algebras and analysis techniques, and how design decisions
with respect to the process algebra determine the mappings available to the
modeller. We consider different combinations, investigating their advantages and
disadvantages.

We will use five process algebras for illustration: π-calculus, Beta-binders,
PEPA, Bio-PEPA, and sCCP; these are briefly outlined in the next section.
These are chosen as they represent a spectrum of different modelling style, in-
cluding languages that have been adapted (π-calculus, PEPA and sCCP) and
designed (Beta-binders and Bio-PEPA) for biological modelling. This is by no
means a comprehensive list of process algebras used in systems biology. In par-
ticular we do not include any of the process algebras designed to consider spatial
aspects of biomolecular processes [CPR+04,Car04,V07,BMMT06,CG09] as they
are beyond the scope of this paper.

The remainder of the paper is organised as follows. Section 2 gives an overview
of the process algebras and Section 3 describes the example pathway used through-
out for illustration and comparison. In Sections 4 to 8 we consider modelling in
PEPA, Bio-PEPA, π-calculus, Beta-binders and sCCP. We discuss the results in
Section 9 and give our conclusions in Section 10.

2 Process algebras

Process algebras were originally defined to give semantics to concurrent processes
in a computing context and have enjoyed considerable success over the three
decades since they emerged. Classical process algebras such as CCS [Mil80] and
CSP [Hoa85] focus on the functional capabilities of processes and all actions are
atomic with only relative timing of actions captured. Subsequently there have
been many extensions of process algebras to capture more information about the
system being modelled, for example the relative probability of alternative actions
(probabilistic process algebras) and the expected duration of actions (stochastic
process algebras).

Each of the process algebras that we consider is based on three fundamental
binary operators: action prefix, choice, which is associative and commutative,
and synchronous composition, which is also associative and commutative. Note
that in the following we omit the cooperation sets for composition in PEPA
and Bio-PEPA and assume them to be the intersection of the alphabets of the



processes involved (denoted ��
∗

). We disregard quantitative aspects of actions,
since the representation of kinetics is orthogonal to the expressiveness we con-
sider here. Therefore in our examples, we will assume that the reaction rate for
each considered reaction is unique and use this as the name of the corresponding
reaction event, i.e. the reaction A + B

r1−→C + D in chemical notation maps to
the process algebra event r1.

In seminal work, Regev and Shapiro [RS01] suggested an abstraction of cell-
as-computation and proposed that models formerly used in the study of interact-
ing computational entities, such as Petri nets, process algebras and automata,
could be usefully employed for the study of biological processes. In particu-
lar they focussed on the π-calculus [Mil99], and subsequently the stochastic
π-calculus [Pri95] based on the molecule-as-process abstraction. This work has
been hugely influential with many other authors following the same abstraction
in their own work, even when the details of the process algebra differ.

However, the π-calculus has some particular characteristics that are indepen-
dent of the molecule-as-process abstraction that also shape the style in which
models are expressed. In this section we give a brief introduction to process
algebras, focussing on the features which lead to different modelling paradigms.

2.1 Forms of synchronisation

The original process algebras, CCS and CSP, differ in their interpretation of
actions and consequently the meaning of synchronisation. In CCS all actions
are assumed to be communications, and therefore conjugate, i.e. actions are
paired, corresponding to an input and an output. An action cannot be carried
out without its partner, and the pairing of an input and an output becomes a
private τ action. This has the consequence that the interaction, or synchroni-
sation, between processes is strictly binary as once an input has been paired
with an output both become unavailable for further interaction. In contrast, in
CSP no distinction is made between inputs and outputs and there is no notion
of complementarity between actions. Instead action type denotes ownership of
a channel and synchronisation is assumed to take place whenever processes un-
dertake actions of the same type, i.e. communication over the named channel.
This is termed multiway synchronisation as there is no restriction on the num-
ber of processes that may own a channel and thus join a synchronisation. Note
that in both these cases the parallel composition operator is generic: in CCS
any complementary actions which are on either side of the parallel composi-
tion may synchronise; in CSP, processes composed by the parallel operator must
synchronise on common actions.

Synchronisation in PEPA is a subtle variation of the CSP scheme. Here the
parallel composition operator, termed cooperation, is decorated by a set of ac-
tion types (the cooperation set) and processes are only forced to synchronise on
action types within this set, being able to act concurrently and individually on
other action types. Thus the parallel composition is not generic, but a family
of parameterised operators. The characteristics of this multiway synchronisa-
tion are important in the biological context as they allow one copy of a process



(molecule) within a set of identical processes to undertake a reaction individually,
something that would not be possible in CSP.3

2.2 π-calculus

The π-calculus [Mil99] (and its stochastic form [Pri95]) was designed to express
mobility, represented by the passing of channel names. It evolved from CCS
[Mil80] and includes the operations of a constant, action prefix, choice, parallel
composition, communication and scope restriction. There are variants of the
syntax, here we use the following form with events π and processes P :

π ::= τ | x | x | x(y) | x〈y〉
P ::= 0 | π.P | P |P | P + P | νxP

Following CCS [Mil80], τ is the unobservable event. All other events are observ-
able and paired, e.g. x(y) with x〈y〉, with x(y) denoting input y on channel x,
and x〈y〉 denoting output y on channel x. 0 is the inactive process and νxP
restricts the scope of the name x to P . In the stochastic form, rates are bound
to channels, but as with the other process algebras, we will omit rates here.

A structural congruence, denoted ≡, determines when two syntactic expres-
sions are equivalent, and an operational semantics is given by a set of reaction
rules that define how a system evolves following communication. We do not give
the full definitions of the congruence and reaction rules, but note two distin-
guishing features. First, the constant, 0, is an identity for parallel composition,
i.e. there is a syntactic equality P | 0 ≡ P . Second, interaction only occurs
when there is a complementary pair of input and output events. The relevant
reduction rule is (. . . + x〈y〉.Q) | (. . . + x(z).P )→ Q | P{y/z}.

There have been numerous applications of the π-calculus to biomolecular
processes, starting with the work of Regev et al. [RSS01]. An interesting aspect
of the application of π-calculus is that it was designed to facilitate modelling
mobility and name passing, thus in the original π-calculus events are parame-
terised, e.g. x(y). Yet, most biological applications do not exploit mobility —
the parameter is not relevant, except when modelling compartments, or internal
communications. So, in many models unparameterised events are also permitted,
e.g. x and x, and we have also included them here. We note the recent work of
Cardelli [Car08] on translations between process algebra and chemical reactions
that introduces a subset of the π-calculus and CCS suitable for modelling chem-
ical reactions. It is similar to the syntax above, but excludes event parameters
and the ν operator. Additionally, it includes an expression of initial components.

A further distinctive aspect of the π-calculus/CCS paradigm for biomolecular
modelling is the underlying assumption of two-way synchronous communication.
This means that a a binary chemical reaction, e.g. of the form A + B →r C, is
modelled by processes A and B offering events r and r, whereas a unary chemical
reaction, e.g. of the form A→r B, must be modelled by an unobservable τ event.
3 This might explain why, to the best of our knowledge, there has been no work

applying CSP to biomolecular modelling.



2.3 Beta-binders

Beta-binders [DPPQ06] is a process algebra based on the π-calculus, designed
for modelling and simulation of biological processes. A biological process is mod-
elled by a bio-process, which is a π-calculus process encapsulated in a box with
interaction capabilities expressed as beta-binders. Each communication channel
has a set of associated types and there are three kinds of binder: visible, hid-
den, and complexed. Additionally, there are rates, but these are omitted here.
A bio-process is either a constant or pair of encapsulated π-calculus processes
composed with a synchronous parallel operator.

The language has evolved over a number of years, here we use the following
syntax for boxes B and beta-binders B, assuming π-calculus processes P :

B ::= Nil | B[P ] | B ‖ B

B ::= β(x, Γ ) | βh(x, Γ ) | βc(x, Γ )

Further, there is a additional syntactic category for events, which include func-
tions on boxes to join, split, create and destroy boxes; these are called join, split,
new and delete, respectively. These functions are only applied when a condition,
defined over binders and π processes, is fulfilled.

Interaction is two-way and is either intra-box, in which case it is standard
π-calculus interaction, or it is inter-box in which case it is specified by the
beta-binders and it is between (visible) input/output pairs, but now the types
have only to be compatible (rather than identical). There are additional actions
(within boxes) that include changing the status of binders (e.g. unhide or change
type). There are three structural congruences: ≡p, the standard congruence on
π processes, ≡b, a congruence on boxes (e.g. ‖ is associative, commutative), and
≡e, a congruence on events (e.g. join, split have substitution property).

2.4 PEPA

Performance Evaluation Process Algebra (PEPA) was introduced in the early
1990s as a formalism for building Markovian-based performance models of com-
puter and communication systems [Hil96]. All actions in PEPA consist of an
action type and a rate, which specifies the average duration of the action as an
exponentially distributed random variable. The language has a small set of com-
binators (prefix, choice, parallel composition/cooperation, hiding and constant).
Recursive behaviour is specified by mutually recursive definitions. As PEPA
was designed for specifying ergodic continuous time Markov chains (CTMC), a
restriction is often placed on model construction via a two level syntax, mean-
ing that models consist of parallel compositions of sequential components (con-
structed using only prefix and choice):

S := α.S | S + S | C

P := P ��
L

P | P/L | S



where S denotes a sequential component, P a model component and C is a
constant defined by a declaration such as

C
def= S

α.S carries out activity α (with an exponentially distributed duration, but omit-
ted here), and it subsequently behaves as S. As discussed above, PEPA supports
multi-way cooperations between components: the result of synchronising on an
activity α is thus another α, available for further synchronisation. We write
P ��

L
Q to denote cooperation between P and Q over L. The set which is used

as the subscript to the cooperation symbol, the cooperation set L, determines
those activities on which the cooperands are forced to synchronise. For action
types not in L, the components proceed independently and concurrently with
their enabled activities. We write P ‖ Q as an abbreviation for P ��

L
Q when

L is empty. P/L denotes the component P in which all actions with types in L
are hidden meaning that their type is no longer visible but is replaced by the
distinguished type τ . We do not consider hiding in the remainder of this paper.

The stochastic nature of the actions means that the choice becomes a prob-
abilistic choice governed by a race condition between the involved actions. Sim-
ilarly actions of parallel components that are not forced to cooperate are also
subject to a race condition. When components cooperate on actions but have
different definitions of the rate of the action, the rate of the synchronised action
is defined to be that of the slowest of the components. While these dynamic
considerations do not concern us in this paper, and PEPA has been used for
modelling a number of biological examples, we note that the form of the dy-
namics of synchronisation (the rate of the slowest component) is not always
appropriate in this context.

2.5 Bio-PEPA

Bio-PEPA [CH08] is a newly defined modification of the PEPA formalism that
has been specifically designed for modelling biochemical networks. It shares many
features with PEPA but also has some characteristics to tailor it to the biological
application.

Functional rates: In contrast to PEPA, individual processes are not able to
define their own rates for actions. Instead the rate associated with an action
is specified once, independently of the processes in which the action occurs.
The value of this rate can be specified to be a function that depends on the
current state of the system.

Stoichiometry: For each action, as well as its type, the stoichiometry or degree
of involvement is also specified.

Parameterised processes: Bio-PEPA has been designed to support the population-
based reagent-centric style of modelling and so a model consists of a number
of sequential components each representing a distinct species which evolve
quantitatively (increasing or decreasing amounts). Thus in order to capture
the state of a system each component is parameterised recording its current
level.



Differentiated prefix: For each action (reaction) that a component is involved
in it records its role within that reaction, e.g. reactant, product, inhibitor
etc. This enables the appropriate values to be used in the functional rate
associated with this reaction.

As with PEPA, Bio-PEPA has a two level grammar. The syntax of the se-
quential (species) components is defined as:

S ::= (α, κ) op S | S + S | C op ::= ↓ | ↑ | ⊕ | 	 | �.

In the prefix term (α, κ) op S, α is an action name and can be viewed as
the name or label of a reaction, κ is the stoichiometry coefficient of the species
and the prefix combinator op represents the role of the element in the reaction.
Specifically, ↓ denotes the role of reactant, ↑ product, ⊕ activator, 	 inhibitor
and � generic modifier. The operator + expresses the choice between possible
actions and the constant C is defined by an equation C

def= S.
The syntax of model components is defined as:

P ::= P ��
L

P | S(x)

The process P ��
L

Q denotes the synchronisation between components P and
Q and the set L specifies those activities on which the components must syn-
chronise. In the model component S(x), the parameter x ∈ R represents the
initial concentration by default, although according to the analysis to be carried
out the parameter may also be interpreted as number of molecules or molecular
level after appropriate conversion.

2.6 sCCP

In the Concurrent Constraint Programming (CCP) process algebra, rather than
components and actions, there are components and constraints [BJG96]; there
are also variables. The components evolve by adding constraints to a constraint
store (tell) or checking the current state of the constraint store (ask). This leads
to an asynchronous form of communication between components (via global vari-
ables in the constraint store) and there is no direct synchronisation. In addition
to tell and ask components may also have choice, parallel composition, procedure
call and local variables. In the stochastic form of CCP, sCCP [Bor06], a stochas-
tic duration is associated with the ask and tell operators in a manner analogous
to the durations of actions in other stochastic process algebras.

sCCP has been proposed as a modelling formalism for biological networks,
and stochastic, deterministic and hybrid semantics have been associated with
models in this context [BP08]. The style of modelling is similar to that of Bio-
PEPA in that a population-based view is taken, although here explicit variables
record the quantitative state of species, rather than parameterised components.
At a high level the abstraction is that measurable entities (molecules etc.) are
associated with stream variables, logical entities are associated with processes
or control variables and reactions are associated with processes. In general a



reaction is modelled as a sequence of interactions with the constraint store: first
checking that there is sufficient amount of the substrates and then updating the
amounts of the products. For mass action reactions the ask step of this sequence
will be given a rate equal to the product of the kinetic constant and the amounts
of the substrates; the tell step is assumed to be instantaneous. Thus an arbitrary
mass action reaction

R1 + . . . + Rn −→k P1 + . . . + Pm

will be represented as

reaction(k, [R1, . . . ,Rn], [P1, . . . ,Pm]) : −

askrMA(k,R1,...,Rn)

( n∧
i=1

(Ri > 0)
)
.(

‖ni=1 tell∞(Ri $= Ri − 1) ‖mj=1 tell∞(Pj $= Pj + 1)
)

Here Ri and Pj are stream variables and rMA is a predefined function with
the obvious definition.

3 Example pathway

We refer to a small synthetic pathway when exploring how design decisions with
respect to the the process algebra determine the mappings available to the mod-
eller. The pathway consists of five representative reactions. The reactions are
given in chemical notation in Figure 1, and presented graphically in Figure 2.
While the pathway is a synthetic example, it is based on behaviour we have ob-
served in various pathways, including the ubiquitous Raf/MEK/ERK signalling
pathway.

A + B →r1 C
C →r2 A + B
B →r3 D
D + E →r4 B

→r5 E

Fig. 1. Example pathway in chemical notation

The equations exhibit various combinations of increasing/decreasing/preserved
reagents between the left and right hand sides. Specifically, r1 and r4 have a de-
creasing number of reagents, r2 and r5 have an increasing number of reagents,
and r3 has the same number of reagents on the left and right hand sides. Note
that r5 has no reagent on the left hand side; we might use a reaction like this
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Fig. 2. Example pathway

to indicate that E is plentiful, or that it is produced by another pathway that
is irrelevant to this abstraction. We will find it useful to refer to the degree of a
chemical reaction, meaning the number of reactants that it has i.e. the number
of reagents on the left hand side.

We have not included a homeo-reaction [Car08], where the components on
the left hand side are identical, as it is only relevant to distinguish this case when
rates are determined. In the example pathway, we assume initial concentrations
of A, B and E, unless stated otherwise.

4 PEPA models

4.1 Reagent-centric style

In the reagent-centric view, first proposed in [CGH06], species concentrations are
discretised into levels; the granularity of the system is determined by the number
of levels n and the concentration step size h, where there is a given maximum
concentration max, h = max/n. As the number of levels increases/step size
decreases, the granularity of the model increases.

For each species, there is a family of processes, each defining the behaviour
for that (abstraction of) concentration. The system is defined by the parallel
composition of a number of initial components.

The simplest abstraction is obtained when the number of levels is two, so
that for each species there are two processes, denoting behaviour in the presence
and absence of that species, respectively. We often refer to this kind of model
as the high/low model. For example, for species A, AH denotes presence and
AL denotes absence (alternatively A1 and A0, respectively). Figure 3 gives the
PEPA high/low model for the example pathway, consisting of a set of equations
and a system definition. Figure 4 illustrates the state space for this model.

As an example of a model with a different granularity, Figure 5 contains
a reagent-centric model with n = 3 (i.e. levels 0, 1, and 2). The state space
is in Figure 6. Note that regardless of the number of levels, the number of
(system) components is constant during system evolution, i.e. there are always
five components (the number of species).



AH
def
= r1.AL DH

def
= r4.DL

AL
def
= r2.AH DL

def
= r3.DH

BH
def
= r1.BL + r3.BL EH

def
= r4.EL

BL
def
= r2.BH + r4.BH EL

def
= r5.EH

CH
def
= r2.CL

CL
def
= r1.CH

System
def
= AH ��

∗
BH ��

∗
CL ��

∗
DL ��

∗
EH

Fig. 3. Example pathway: PEPA reagent-centric high/low model
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Fig. 4. State space of the PEPA high/low model. Note that we use
(AX , BX , CX , DX , EX) to denote the state since the number of components is
fixed and the synchronisation structure does not change.

A0
def
= r2.A1 D0

def
= r3.D1

A1
def
= r1.A0 + r2.A2 D1

def
= r4.D0 + r3.D2

A2
def
= r1.A1 D2

def
= r4.D1

B0
def
= r2.B1 + r4.B1 E0

def
= r5.E1

B1
def
= r1.B0 + r3.B0 + r2.B2 + r4.B2 E1

def
= r4.E0 + r5.E2

B2
def
= r1.B1 + r3.B1 E2

def
= r4.E1

C0
def
= r1.C1

C1
def
= r2.C0 + r1.C2

C2
def
= r2.C1

System
def
= A2 ��

∗
B2 ��

∗
C0 ��

∗
D0 ��

∗
E2

Fig. 5. Example pathway: PEPA reagent-centric model with n = 3
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Fig. 6. State space of the PEPA reagent-centric model with n = 3. To avoid clutter in
the diagram reaction labels are omitted, but r1 and r2 are shown in solid lines, r3 in
dashed lines and r4 and r5 in dotted lines.



Process as molecule in reagent-centric style The granularity of the
reagent-centric style depends on the step size h. In the limit, the finest grained
model has a step size of one molecule. In general, it is impractical to increase n
to its corresponding limit, but one alternative is to take a reagent-centric model
with n = 1 and interpret each process as denoting the presence or absence of a
molecule. An approach based on this abstraction has been used for studying the
FGF pathway using stochastic model checking in [HKNT06]. For our example,
for species A, AH denotes presence of a molecule and AL denotes absence. So,
the population based high/low model model in Figure 3 can also be interpreted
as an individuals model, with at most one molecule for each species. Similarly, a
model consisting of (at most) two molecules for each species, is given by replacing
the system definition of Figure 3 by the system definition:

(AH ‖ AH) ��
∗

(BH ‖ BH) ��
∗

(CL ‖ CL) ��
∗

(DL ‖ DL) ��
∗

(EH ‖ EH).

Figure 7 illustrates a small portion of the corresponding state space (one
transition step). Notice that this system describes the possible evolution of every
molecule: it is very fine grained. For example, from the initial state there are 8
possible transitions for reaction r1, because there are two possible molecules of
A that can be consumed, two possible molecules of B that can be consumed, and
two possible molecules of C that can be produced (23 combinations). Similarly,
there are 4 possibilities for reaction r3.

(A H A H BH BH C L C L DL DL EH E  )H, , , , , , , , ,

r2r1

(A L A H BL BH C H C L DL DL EH E  )H, , , , , , , , ,

(A H A H BL BH C L C L DH DL EH E  )H, , , , , , , , ,
r

3

...

...

Fig. 7. One transition step in PEPA reagent-centric process-as-molecule model with
two molecules

In many cases this degree of granularity is inappropriate. By appealing to
symmetry (i.e. composition is commutative), we can use a form of counter ab-
straction to represent the molecules AH ‖ . . . ‖ AH︸ ︷︷ ︸

n

by An, AH ‖ . . . ‖ AH︸ ︷︷ ︸
n−1

‖ AL

by An−1, and so on. This counter abstraction involves identifying an equivalence
class of states in a high/low model of m molecules, with a state in a model n
levels, where n = m. In other words, we define the processes as in the high/low
model of Figure 3, then compose multiple copies of each process and interpret
An as representing n molecules. This is illustrated in Figure 8, for the example
pathway with two molecules for each species. States in the fine-grained individu-
als model are quotiented and dashed lines indicate how the quotient class relates
to a state in the counter abstraction model.



(A H A H BH BH C L C L DL DL EH E  )H, , , , , , , , , E  )2D0C 0B2(A 2 ,,,,

r2r1

(A L A H BL BH C H C L DL DL EH E  )H, , , , , , , , ,

(A H A L BL BH C H C L DL DL EH E  )H, , , , , , , , , E  )2D0C 1B1(A 1 ,,,,

r2r1

....

Fig. 8. One transition step in the state space of the PEPA counter abstraction model

4.2 Pathway-centric style

C

B

D

E

A

r

r r

r

r2

1

4 5

3

Fig. 9. Example set of reactions with pathways indicated

An alternative style of modelling that has been proposed in PEPA is the
pathway-centric style. In this style, we specify the sub-pathways that consume
and replenish the initial species, which are the species with significant initial
concentrations. In the example pathway, this involves defining the sub-pathways
starting from A, B, and E. Call these Path1, Path2 and Path3, respectively.
The example pathway is given in Figure 10, with corresponding state space in
Figure 11.

Notice that although the system definition has only 3 components, this space
is isomorphic to the high/low reagent-centric model (Figure 4). Notice also im-
plicitly, the model has two levels. For example, Path1 denotes high concentration
of both A and B. We could make levels explicit in this style, by composing mul-
tiple copies of each pathway (with parallel composition, no synchronisation). For
example the three level model would be:

(Path1 ‖ Path1) ��
∗

(Path2 ‖ Path2) ��
∗

(Path3 ‖ Path3)



Path1
def
= r1.r2.Path1

Path2
def
= r1.r2.Path2 + r3.r4.Path2

Path3
def
= r4.r5.Path3

System
def
= Path1 ��

∗
Path2 ��

∗
Path3

Fig. 10. Example pathway: PEPA pathway-centric model

r1 r2

r4

(r .Path  , r .Path  , r .Path  )2 2 21 5 3

(Path  , r .Path  , Path  )1 4 2 3

(Path  , Path  , r .Path  )321 5

r1 r2

r5

r5

r3

(Path  , r .Path  , Path  )1 24 3

r3

r5

(r .Path  , r .Path  , Path  )2 1 2 2 3

(Path  , Path  , Path  )1 2 3

Fig. 11. Pathway-centric model state space

In this case, similarly to the individuals reagent-centric style, there are more po-
tential interleavings than in the reagent-centric population-based representation,
and so the explicit state space here will be larger. However, again, by appealing
to symmetry, we can work at the aggregate level. Thus for a given number of
levels, the state space size and structure of both the pathway-centric and the
reagent-centric models should be the same, as established in [CGH06]. Note that
tools like the PEPA workbench [TDG09] can automatically detect such symme-
tries. We observe that assuming chemical reactions of at most degree two, we
only require binary synchronisation, for this style of model.

5 Bio-PEPA

The Bio-PEPA formulation [CH08] of the reagent-centric style for the example
pathway is given in Figure 12. This example does not fully exploit the power of
Bio-PEPA, since the stochiometric coefficients are all simple (1) and the func-
tional rates are omitted. However, it does illustrate how the language focuses
on the role of each species, in each reaction. Initial concentrations are denoted
A0 for species A, etc. An integral part of a Bio-PEPA specification (omitted
here) is a definition of h and n, for every species, as well as initial concentrations
(expressed as levels).

The state space of this model depends upon the levels, for example, if the
number of levels is uniformly 2, then the state space is the same as Figure 6.
Note that in the corresponding PEPA model (i.e. Figure 5), the number of levels
is “hardwired” into the equations, whereas in the Bio-PEPA model, it is given
as a parameter offering more flexibility to the modeller. If the number of levels is



A
def
= (r1, 1)↓A + (r2, 1)↑A

B
def
= (r1, 1)↓B + (r2, 1)↑B + (r3, 1)↓B

C
def
= (r2, 1)↑C

D
def
= (r4, 1)↓D + (r3, 1)↑D

E
def
= (r4, 1)↓E + (r5, 1)↑E

System
def
= A(A0) ��

∗
B(B0) ��

∗
C(C0) ��

∗
D(D0) ��

∗
E(E0)

Fig. 12. Example pathway: Bio-PEPA model

set sufficiently high the model has a state space corresponding to an individuals
model (i.e. if n is chosen to be the number of molecules).

6 π-calculus

Models in the π-calculus and its stochastic variants predominantly follow the
reactant style (e.g. [TK08]), based on the molecules-as-processes abstraction.
Thus these are individuals based models. Figure 13 gives the π-calculus model
in this style for the example pathway; since each reagent in the example also
occurs on the left hand side of a chemical equation, there are processes for A . . .
E.

The example pathway highlights an interesting aspect of this style because
in the biochemistry there are

1. equations with a decreasing number of components, and
2. an equation with no left hand side.

Consider the former case. Since synchronisations are between reagents on the
left hand side of an equation only, there is an arbitrary (and inconsequential)
choice between which component is output and which is input. Further, the
components on the left hand side, when translated into processes, evolve into
components on the right hand side. If the number of components decreases, then
we have to nominate one or more to evolve to 0, the null process. For example,
A + B →r C could map to A = r.C and B = r.0; equally, it could map to
A = r.0 and B = r.C, or A = r.0 and B = r.C, etc. Taking the first choice,
A | B evolves to C | 0. This is an example of a “trailing 0”, which is removed
through application of the syntactic equality P | 0 ≡ P , i.e. A | B evolves to C.

Now consider the second case. We cannot model an equation without a left
hand side explicitly, e.g. r5, but since E is present initially, we could represent
the infinite supply of E by a τ event, after offering the output event r4. However,
this would constrain the creation of E to occur only after a molecule has been
consumed in the reaction r4. An alternative, which we use, is to introduce a
representation of the environment Env and define it as follows:

Env = τ.Env | E



This presents the possibility that an unbounded number of E molecules may
be introduced into the system, which is true when we represent the system
only qualitatively. In the biological reality and when quantitative information is
included in the model in the form of rates the system will become pragmatically
bounded meaning that the probability for E to grow unboundedly is extremely
small.

A = r1.C
B = r1.0 + τ.D
C = τ.A | B
D = r4. B
E = r4.0

Env = τ.Env | E

System = A | B | E | Env

Fig. 13. Example pathway: π-calculus model

Figure 14 illustrates possible evolutions for the system with one molecule
of A, B and E initially, i.e. the evolution of A | B | E | Env. We have not
labelled the transitions since events are either unobservable or become so after
synchronisation. Notice that in this state space the number of system compo-
nents fluctuates, it both increases and decreases. Moreover the state space is
infinite due to the potentially unbounded number of E, although a graph iso-
morphic to the state space of the pathway-centric model is embedded within it.
An alternative interpretation of this model is therefore a fine-grained pathway-
centric view based on molecules. Or rather, it is a mixture of two styles: equa-
tions are defined for each reagent, but the system definition has the form of a
pathway-centric model.

While this approach provides a faithful overall system model, it is not com-
positional. Specifically, one equation incorporates aspects of the initial system
and it would be misleading to a reader who inspected the behaviour only of a
process that arbitrarily terminates, e.g. B, which can evolve into 0. Moreover,
some reactions are represented explicitly by named events, i.e. r1 and r4, whereas
the unary or nullary reactions r2, r3 and r5 are represented by the τ event. Thus,
there are no occurrences of the reaction names r2, r3 and r5 in the model.

7 Beta-binders

There are several ways to map a chemical reaction in this formalism. For ex-
ample, we could define a mapping very similar to the π-calculus mapping, with
boxes for the processes that are initial, i.e. the system is given by [A] ‖ [B] ‖ [E],
with suitable beta-binders defined for each box, and each encapsulated process is
defined as in Figure 13. The authors recommend this mapping when the reaction



. . .
. . .

. . .

A | B | E | Env

A | B | Env

A | D | E | Env

A | D | E | E | Env

A | D | Env

A | B | E | E | Env

C | E | E | Env

C | E | Env

C | Env

Fig. 14. π-calculus model state space

denotes a collision of entities, the collision being mapped to (inter-box) commu-
nication. However, if we use this mapping, we are left with boxes containing the
π-calculus constant process (i.e. 0) and we cannot remove them by the structural
congruences: we need to introduce an explicit delete event to remove them.

Alternatively, instead of representing reactions by inter-box communication,
we could represent reactions by events, i.e. by the box operations. In this case,
a reaction such as A + B →r C maps to (A,B) join C, where A, B, and C
are constant bio-processes. Figure 15 gives a Beta-binders model of the example
pathway using events. Notice that there are four events and no communication:
the encapsulated processes are constants, except for process B, which changes its
interaction type (to that of D). The state space is given in Figure 16; the space
is isomorphic to the π-calculus model, though we could bound the occurrences
of new E with a condition. The model is also a mixture of styles: equations are
defined for each reagent, but it is not reagent-centric: there is no communication
and the system definition has the form of a reaction-centric model.

(A, B) join C where A = β(x, ΓA) [nil]
C split (A, B) B = β(x, ΓB) [chtype(x, ΓD). nil]
(D, E) join B C = β(x, ΓC) [nil]
new E D = β(x, ΓD) [nil]

E = β(x, ΓE) [nil]

Fig. 15. Example pathway in Beta-binders

There is a third possible mapping when the reaction denotes a binding (e.g.
ligand to receptor); this is usually written in chemical notation as: A+B →r [A+
B]. In this case we could we use the complex/decomplex beta-binder operations
to create and delete dedicated communication channels between boxes [A] and



.. .
A D E

EC

A D E
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A B E E

A B E

.. .
.. .

A DA B

C

E

Fig. 16. State space of Beta-binders model. Note that following the graphical notation
for Beta-binders, we omit the parallel composition operation ‖ on bio-processes.

[B]. That is, the two boxes [A] and [B] would evolve into a complex of two boxes,
instead of into two separate boxes.

8 sCCP

Our last example is a model in sCCP. This is shown in Figure 17. There are five
processes: one for each reaction, with stream variables representing the species.
Each process has the form ask (check that there is sufficient of a species) followed
by the parallel composition of all the possible effects of the reaction (i.e. produc-
tion or consumption) expressed by tell. The state space of the model is shown in
Figure 18. Unsurprisingly this includes the state space which has been retrieved
from the other models, such as the reagent-centric PEPA models (shown in the
shaded area in the diagram). However note that this model also permits the un-
bounded growth of the population of E (as in the π-calculus model), leading to
an infinite state space unless an explicit guard is inserted which disables reaction
r5 when the population of E reaches a given size.

This model bears some similarity to the state based PRISM model given in
[CVOG06], where species are represented by state variables. This is not surpris-
ing, since the PRISM modelling language is essentially the language of reactive
modules [AH90]. However, in [CVOG06], there is still explicit synchronisation
and commands are grouped by species, rather than by reaction. The reactions-
as-processes models of sCCP can therefore be considered to be reaction-centric
and in that they are similar to other rule-based formalisms such as the κ-calculus
[VFF+07] and BIOCHAM [CRCD+04].



reaction(r1, [A, B], [C]) : −
ask(A > 0 ∧ B > 0). (tell(A $= A− 1) ‖ tell(B $= B− 1) ‖ tell(C $= C + 1))

reaction(r2, [C], [A, B]) : −
ask(C > 0). (tell(C $= C− 1) ‖ tell(A $= A + 1) ‖ tell(B $= B + 1))

reaction(r3, [B], [D]) : −
ask(B > 0). (tell(B $= B− 1) ‖ tell(D $= D + 1))

reaction(r4, [D, E], [B]) : −
ask(D > 0 ∧ E > 0). (tell(D $= D− 1) ‖ tell(E $= E− 1) ‖ tell(B $= B + 1))

reaction(r5, [], [E]) : −
(tell(E $= E + 1))

5 reaction system : −
reaction(r1, [A, B], [C]) ‖ reaction(r2, [C], [A, B]) ‖ reaction(r3, [B], [D])

‖ reaction(r4, [D, E], [B]) ‖ reaction(r5, [], [E])

Fig. 17. Example pathway: sCCP model

C=1B=0(A=0 D=0 E=1),,, ,

C=1B=0(A=0 D=0 E=0),,, ,

C=0B=1(A=1 D=0 E=0),,, ,

C=0B=0(A=1 D=1 E=1),,, ,

C=0B=0(A=1 D=1 E=0),,, ,

C=1B=0(A=0 D=0 E=2),,, ,
r5

r 5

C=0B=1(A=1 D=0 E=1),,, ,

r1 r2

r1 r2

r1 r2

C=0B=1(A=1 D=0 E=2),,, ,

r3

r3 C=0B=0(A=1 D=1 E=2),,, ,

r5

r5

r5

r4

r4

.. .

.. .
.. .

r

r
5
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Fig. 18. State space of the sCCP model of the example



9 Discussion

The three main abstractions for mapping chemical equations to process alge-
bras are molecule-as-process, species-as-process, and reaction-as-process. We have
further defined four styles: reagent-centric, pathway-centric, reactant-centric, and
reaction-centric. We have presented reactant-centric π-calculus and Beta-binders
models, and (individuals-based) reagent-centric PEPA models as examples of the
the molecule-as-process abstraction, (population-based) pathway-centric PEPA
and (population-based) reagent-centric Bio-PEPA models as examples of the
species-as-process abstraction, and a reaction-centric sCCP model as an exam-
ple of the reaction-as-process abstraction.

The styles of modelling supported by a process algebra is strongly influ-
enced by the form of synchronisation available. Whilst languages with multiway
synchronisation are capable of representing models in reagent-centric, reactant-
centric or pathway-centric style, the same is not true for languages with conjugate
actions and binary synchronisation. These languages cannot generally represent
reactions in the reagent-centric style. Only first degree, or unary, reactions could
be modelled in this style in these languages.

In the example considered we have only considered reactions with degree
one and two — indeed there are thermodynamic arguments for restricting con-
sideration to such reactions if we wish to be faithful to biochemistry. However,
abstractions which lead to higher degree reactions are often applied by biologists
for a variety of reasons. For example, consider the enzyme-enabled association
of two smaller molecules (A and B) into a complex C. In terms of elementary
reactions this might proceed as follows:

A + B + E r2←→r1 A + B:E −→r3 C + E

where E is the enzyme and B:E is a complex formed from B and the enzyme.

This could abstracted as A+B
E
−→r C. The abstraction has the advantage that

the number of reagents considered in the transformation is reduced, and that the
number of reaction rates which have to be measured, estimated or fitted is cut
from three to one. Moreover this is typically more consistent with what can be
observed in the lab as r1, r2 � r3. It may not even be known whether the enzyme
binds with A or B, leaving uncertainty about how to model the reaction without
the abstraction. However, representing this in even the reactant-centric style
requires three-way synchronisation, and four-way synchronisation in the reagent-
centric style, assuming that the enzyme is modelled as both a reactant and a
product in the abstracted reaction. In other words, it is not possible to support
modelling such biological abstractions using strictly binary synchronisations.

As with reagent-centric style, reaction-centric style seems to implicitly as-
sume a multi-way synchronisation. However note that in the way that this style
is captured in sCCP, the only process algebra that currently supports reaction-
centric modelling to the best of our knowledge, the requirement is not so strong.
What is needed is atomic multi-way composition of updates to the constraint
store, but this is not necessarily a synchronisation. Whilst sCCP is the only



process algebra supporting reaction-centric, or reaction-as-process, modelling,
conversely it is difficult to see sCCP being used to construct models in any of
the other styles or abstractions.

In process algebras with conjugate actions, each partner in an action/reaction
must be assigned an input/output role. In general this will be rather arbitrary
and somewhat artificial from the perspective of the biochemistry. Consider the
reaction r1 in our example. When A and B form the complex C there does not
appear to be a natural way to choose which of A and B should receive input
and which provide output. Furthermore, reactions of degree one, such as r5 in
the example, must be represented as a τ action. This means that the textual
representation of the model does not clearly articulate the biologists’ notion of
the system. This problem becomes even worse at the level of the state space
where all transitions are labelled τ and information about the reactions that
gave rise to them is lost.

If we consider the contrast between population-based and individuals-based
modelling we can observe that population-based modelling is more compact both
from the point of view of the textual model expression and the underlying state
space. This means that for such models it can be feasible to use explicit state
space representations and the analysis techniques associated with them such
as model checking, equivalence checking and numerical analysis of the contin-
uous time Markov chain. Of course, such techniques reply on the state space
being finite. In contrast individuals-based modelling has a clear association with
stochastic simulation as proposed by Gillespie [GP06]. These models can be used
in association with explicit state space techniques, such as those listed above,
but only for very small systems or in combination with abstractions such as the
assumption of single molecules, as discussed in Section 4.1.

In the PEPA and Bio-PEPA models, as a consequence of the two level gram-
mar used to define these languages as compositions of sequential components,
the number of system components is constant, regardless of whether individuals-
based or population-based. This matches the species-as-process abstraction since
the possible species of the pathway will be known and fixed and is particularly
natural in the population-based modelling where the state of the system is a
count for each species. In contrast, in the π-calculus and Beta-binder models,
which are without the syntactic restriction, the number of system components
fluctuates throughout system evolution. This is in keeping with the molecules-
as-processes abstraction since we would expect the visible molecules within a
system to change as complexes are formed and dissociated etc. In sCCP, based
on the reaction-as-process abstraction, the number of species is fixed as the
variables in the variable store remain fixed. Here as in the PEPA/Bio-PEPA
population-based modelling the state of the system is captured in terms of the
number of each species so each species must always be present, even if to record
that its current count is zero.

The conservative nature of the PEPA/Bio-PEPA models (in terms of number
of components, and fixed number of levels) also means that the state space
underlying such models is necessarily finite. This is not the case in the other



process algebras as we have seen. It can be argued that if we consider the example
as presented there is the potential for unbounded numbers of E via reaction r5

and π-calculus, beta binder and sCCP correctly capture this. But on the other
hand, in a biological system unbounded growth like this will lead to cell death,
and when we introduced the example we explained that this reaction would be
used as an abstraction of some more complex, but bounded, situation. The beta
binders and sCCP formalisms do offer language mechanisms which allow the
number of E to remain bounded by introducing guards on the reaction, but
there is no such possibility in the π-calculus.

In this paper we have focussed on the standard discrete state spaces. How-
ever analysis based on these state spaces is rarely feasible. Therefore for all the
languages there are alternative semantics given by ordinary differential equa-
tions (population-based) and/or Gillespie simulations (individuals-based). The
discrete state space does of course form the basis of the Gillespie simulation but
it is never considered explicitly and the offered semantics avoid the construction.
Additionally, PEPA and Bio-PEPA support an alternative representation, which
is based on an explicit discrete state space but seeks to avoid the state space
explosion. Rather than states representing the count of molecules of each species,
the states represent the current level of concentration for each species. In other
words, the range of possible concentration values is discretised into intervals, and
these intervals constitute the states of the CTMC. In such models the stochastic
element of Gillespie’s approach is retained but the resulting CTMCs can be con-
siderably smaller. Keeping the state space manageable means that the CTMCs
can be solved explicitly and the repeated runs necessitated by stochastic simu-
lation are avoided. Further, in addition to quantitative analysis on the CTMC,
analysis by model checking of stochastic properties is possible, as illustrated in
[CVOG06] or [HKNT06].

10 Conclusions

As highlighted by Regev and Shapiro computational abstractions have already
brought considerable benefit to the study of biological phenomena [RS01]. For
example the DNA-as-string abstraction has been hugely successful and allowed
significant leaps forward. In the context of biomolecular processes the potential
benefit seems equally large. However further work is needed to assess the abstrac-
tions that are on offer, and their suitability to the systems under study. Research
in this direction has been enthusiastically taken up by theoretical computer sci-
entists as witnessed by the plethora of formal languages currently proposed for
modelling such systems. In this paper we have aimed to extract the general
paradigms of expression which underlie process algebras which aim to model
biomolecular processes. We have discovered that there are genuine differences in
the form of expression used, and this can impact on the form of analysis that is
readily applied.

In the long term all research on formal description techniques for biomolecular
systems has the objective of attracting biological users, and contributing to the



growing body of knowledge on how cells function. However in the medium term
we need to develop closer links with biologists, not only as users of our formal
description techniques, but also in the important work of evaluating them.
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