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Bigraphs are a universal computational modelling formalism for the spatial and temporal evolution of a system

in which entities can be added and removed. We extend bigraphs to probabilistic bigraphs, and then again

to action bigraphs, which include non-determinism and rewards. �e extensions are implemented in the

BigraphER toolkit and illustrated through examples of virus spread in computer networks and data harvesting

in wireless sensor systems. BigraphER also supports the existing stochastic bigraphs extension of Krivine et al.,
and using BigraphER we give, for the �rst time, a direct implementation of the membrane budding model

used to motivate stochastic bigraphs.
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1 INTRODUCTION
Bigraphical reactive systems (BRSs) [Mil09] are a universal computational modelling formalism for

systems that evolve in time and space. �ey consist of bigraphs, a graph based formalism that models

entity relationships, both spatially and through (global) links, and a rewriting framework that allows

models to evolve over time via a set of reaction (rewrite) rules. Applying a reaction rule, L I R,

replaces an occurrence of bigraph L (in a bigraph) with bigraphR. BRSs can represent a diverse range

of phenomena including mixed-reality games [BCRS16], network management [CKSS14], wireless

communication protocols [CS14], biological processes [KMT08], cyber-physical security [TPGN18],

and indoor environments [WW12].

In practice, the systems we wish to model may be probabilistic, stochastic, or explicitly make

non-deterministic choices. Standard BRSs have no notion of the �rst two concepts, and are implicitly

non-deterministic in that if there is a match to L then any rule can be applied.

Previously, Krivine et al. [KMT08] extended bigraphs to stochastic bigraphs, by associating rates

(rather than weights) with reaction rules. We build on that work, utilising similar ideas to create

probabilistic bigraphs – a discrete variant. We then take the theory further to allow explicit non-

determinism with action bigraphs that encode Markov decision processes [Bel57], by adding actions
and rewards.
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For each of the three types of system – probabilistic, stochastic, and action based – we provide

an implementation of the theory in the BigraphER toolkit [SC16]. �is allows, for the �rst time,

an implementation and analysis of the Krivine et al stochastic bigraph example [KMT08] without

requiring a separate PRISM [KNPV09] model.

We make the following contributions:

• we extend standard BRSs with probabilistic reaction rules, to create probabilistic BRSs,

• we extend probabilistic BRSs with non-deterministic actions and reward structures, to

create action BRSs,

• we provide an implementation
1
, in BigraphER [SC16] of probabilistic, stochastic, and action

BRSs,

• we illustrate the new modelling capability through examples of virus spread through

computer networks, the membrane budding example of [KMT08], and data harvesting in

wireless sensor networks with mobile sinks. Full models are available [ASC].

Outline. �e paper is structured as follows. Bigraphs and BRSs are introduced in Sections 2.1

and 2.2, with emphasis on the important notion of matching/occurrence; probabilistic systems are

introduced in Section 2.3. In Section 3 we introduce probabilistic BRSs by adding relative weights
to reaction rules. Section 4 extends probabilistic bigraphs further by adding explicit actions that

represent non-deterministic choice. We evaluate the approaches through a set of further examples,

implemented in an extended BigraphER, in Section 5. We conclude in Section 6 with a discussion

of the limitations of the approaches, how they relate to other probabilistic modelling frameworks,

and future work.

2 BACKGROUND
2.1 Bigraphs
We introduce bigraphs by example, formal de�nitions can be found elsewhere [Mil09]. Although we

restrict ourselves to Milner’s original formulation of bigraphs (standard bigraphs), the probabilistic,

stochastic, and non-deterministic variants are also applicable to, and implemented for, bigraphs

with sharing [SC15] – an extension supporting overlapping spatial regions.

Bigraphs are a universal computational model for representing both the spatial con�guration

of entities, and their non-spatial interactions. A bigraph consists of two orthogonal structures:

the place graph, that represents topological space in terms of containment, and the link graph, a

hypergraph that expresses non-spatial relationships among entities. Each entity has a type that

determines its (�xed) arity, i.e. number of links, and whether it is atomic, i.e. if it cannot contain

other nodes.

Bigraphs have an equivalent diagrammatic and algebraic notation. �roughout this paper we

use the intuitive diagrammatic notation where possible. An example bigraph is shown in Figure 1a.

Entities are drawn as (coloured) shapes, with the label, e.g. A, B, . . . determining the type. Where it

is clear from the context we will o�en omit the labels. Entities may be nested, e.g. A is inside B,

and non-atomic entities can have any (�nite) number of children. �e green hyperlinks represent

non-spatial links between entities, such as between the two A’s in di�erent B’s. Entities have �xed

arity, so the rightmost A in Figure 1a must have a single link, but in this case it is closed.

Bigraphs are compositional in nature, that is, we may combine smaller bigraphs to create larger

models. To achieve this compositionality, alongside entities, bigraphs may contain regions, shown

by clear dashed rectangles, which represent adjacent parts of a system; sites, shown by �lled dashed

rectangles, represent abstraction, i.e. an unspeci�ed bigraph (possibly the empty bigraph) exists

1
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(c) Occurrences of G in B. Note that it is possible to rename links as required.

Fig. 1. Example bigraph B (a), pa�ern bigraph G (b), and occurrences (c).

there; a set of inner names, e.g. {z}, allows names to be connected from below; and a set of outer
names, e.g. {x ,y}, allows these links to connect with a wider context. Capabilities to interact with an

external environment are recorded formally in the interface of a bigraph. For example, in Figure 1a

we write B : 〈1, {z}〉 → 〈2, {x ,y}〉 to indicate that B has one site and inner name z (wri�en 〈1, {z}〉)
and, two regions and outer names x ,y (wri�en 〈2, {x ,y}〉). We use X ,Y and K , I , J to denote sets

of names and interfaces, respectively.

Composition of two bigraphs F : K → I and G : I → J is wri�en

G ◦ F : K → J

and operates by placing the regions on F inside the sites of G and linking like outer names from

F with inner names from G. When the name sets are disjoint, bigraphs may also be combined

horizontally by placing regions, which may contain any other bigraph, side-by-side. �is is denoted

by

F0 ⊗ F1 : 〈m0 +m1,X0 ∪ X1〉 → 〈n0 + n1,Y0 ∪ Y1〉

with Fi : 〈mi ,Xi 〉 → 〈ni ,Yi 〉 and i = 0, 1.

We write idX for the identity bigraph that maps like-names to like-names. We call bigraphs

with no sites or inner names, e.g. those that cannot be composed with others, ground. In general,

we de�ne reactive systems over ground bigraphs, since these represent fully formed models. We

use lowercase le�ers f ,д,д0, . . . to denote ground bigraphs and uppercase for arbitrary bigraphs

(including those that may be ground).

When constructing bigraph models we use abstract bigraphs, where entities are identi�ed using

their types, e.g. an entity A. However, when rewriting models, to identity speci�c entities, we work

instead with concrete bigraphs, F̃ , G̃, . . . , д̃, where entities and closed links have distinct identi�ers,

e.g. v,u, e, . . .. For a bigraph G, we assign an arbitrary concretion G̃ by giving distinct labels to

entities/closed links. We say two concrete bigraphs F̃ and G̃ are support equivalent, denoted F̃ l G̃ ,

if they are equal under a renaming of entities and links. A bigraph is trivially support equivalent to

, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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itself. An abstract bigraph B is a l-equivalence class of concrete bigraphs
2
, B = [B̃]l with B̃ an

arbitrary concretion of B. An example of support equivalence is in Section 3.

2.2 Bigraphical Reactive Systems
A bigraph represents a system at a single point in time. To encode the dynamics of a system we

create a Bigraphical Reactive System (BRS) using a set of reaction rules of the form L I R, where

L and R are bigraphs. Intuitively, a BRS operates by �nding occurrences of L within a larger model

and replacing these with R.

To determine if a bigraph L is present in a bigraph B we need the following de�nition, which

applies to both concrete and abstract bigraphs.

De�nition 2.1 (occurrence). A bigraph L occurs in bigraph B if the equation B = C ◦ (L ⊗ idX ) ◦D
holds for some set of names X and bigraphs C and D. Two occurrences are equal if they di�er only

by a permutation or a bijective renaming on the composition interfaces; otherwise they are distinct.

�e use of the identity bigraph idX allows links to pass betweenC and D. An important property

is that it is possible to determine an abstract occurrence starting from a concrete one. In other

words, a bigraph L occurs in B only if an arbitrary concretion L̃ occurs in an arbitrary concretion B̃.

In a given bigraph, there may be multiple occurrences of another bigraph. For example, in Figure 1c,

bigraph G occurs three times within bigraph B.

In general, the decomposition corresponding to the occurrence of a given bigraph might not

be unique. To ensure distinct decompositions, following Krivine et al. [KMT08], we introduce the

following class of bigraphs.

De�nition 2.2 (solid). A bigraph is solid if:

• All regions contain at least one node, and all outer names are connected to at least one link.

• No two sites or inner names are siblings

• No site has a region as a parent

• No outer name is linked to an inner name.

�is de�nition is important when determining a suitable probability to apply a rule.

De�nition 2.3 (reaction rule). A reaction rule R is a pair of bigraphs R = (L,R), wri�en L I R,

where R and L have the same interface and L is solid.

We also say R : L I R is applicable to д i� L occurs in д. In general, we are interested in applying

a reaction rule within a larger bigraph and as such provide the following reaction relation.

De�nition 2.4 (reaction relation). Given a reaction rule R : L I R, the reaction relation BR over

ground bigraphs is de�ned by

д B
R
д′ i� д = C ◦ (L ⊗ idX ) ◦ d and д′ = C ◦ (R ⊗ idX ) ◦ d

for some bigraph C , ground bigraph d , and set of names X .

De�nition 2.5 (bigraphical reactive system (BRS)). A bigraphical reactive system is a pair (B,R),
where B is a set of ground bigraphs and R is a set of reaction rules de�ned over B. It has reaction

relation

B
R
=

⋃
R∈R

B
R

which will be wri�en B when R is understood.

2
In [Mil09], lean-support equivalence (m) is used instead. It corresponds to support equivalence (l) a�er discarding idle

links, i.e. links connecting zero entities or names.
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We indicate the set of reaction rules applicable to д and yielding д′ with Rд Bд′ . We also

introduce the following notation to count the concrete occurrences of a reaction rule R from д to д′

σR[д,д′] = |{д̃′′ | д̃ B
R
д̃′′ and д̃′′ l д̃′}|

that is, we count how many concrete д̃′′ that are support equivalent to a concretion of д′ can be

obtained by applying R to a concretion of д.

De�nition 2.6 (transition system). A BRS with distinguished initial bigraph д0 ∈ B forms a

transition system with bigraphs as states and state transitions de�ned by generating all possible

rewrites (reactions) in B from д0 until we hit a �xed point (the set of all states B).

�is transition system view is useful for de�ning probabilistic, stochastic, and non-deterministic

BRSs, where the transitions are assigned, for example, speci�c probabilities.

Finally, we allow states to be labelled by bigraph predicates which are also speci�ed as bi-

graphs [BCRS16]. A state д satis�es a predicate bigraph P if P occurs in д. �ese can be used to, for

example, identify invalid states for use in logical statements when performing veri�cation.

2.3 Probabilistic Models
In the following we assume basic familiarity with probability theory, see for example [Bil12].

Probabilistic systems can be described using Markov models/processes, where the probability/rate

of moving to a new state is based (strictly) on the current state [KNP10]. A discrete time Markov

chain (DTMC) labels each state transition with a probability 0 ≤ p ≤ 1 such that the sum of all

outgoing edges from a state is equal to 1. �at is, a DTMC draws the next state from a probability

distribution of all possible states.

De�nition 2.7 (Probability Distribution). A probability distribution over a countable set S is a

function µ : S → [0, 1] satisfying

∑
s ∈S µ(s) = 1

We use the notation µ = [s0 7→ p0, s1 7→ p1, . . . ] to denote the distribution that chooses s0 with

probability p0, and so on. We assume all other states are chosen with probability 0. To denote a

set of probability distributions over S we use DS , dropping the subscript S if it is clear from the

context. For veri�cation purposes, we usually work with �nite probability distributions with S
�nite.

De�nition 2.8 (Discrete Time Markov Chain (DTMC)). A DTMC is a tuple (S, s0, P) where S is a set

of states, s0 ∈ S a distinguished initial state, and P : S → DS is a function assigning to each state

s ∈ S a probability distribution µs such that µs (s ′) : [0, 1] is the transition probability from s to s ′.

As distributions cannot be empty, each state s ∈ S has at least one transition. For terminal states

st , we have µst = [st 7→ 1] – the delta distribution.

To model continuous processes, we use continuous time Markov Chains (CTMCs) that assign

stochastic rates, rather than probabilities, to state transitions.

De�nition 2.9 (Continuous Time Markov Chain (CTMC)). A CTMC is a tuple (S, s0,R) where S is

a set of states, s0 ∈ S a distinguished initial state, and R : S × S → R≥0 the transition rate matrix

matrix assigning a rate to each pair of states.

A transition between s and s ′ can only occur if R(s, s ′) > 0, and if so the probability of the

transition occurring within time t is modelled as an exponential distribution, i.e. 1 − e−R(s,s
′)t

.

Unlike DTMCs, a CTMC allows terminal states where there is a 0 rate of transitioning.

Markov decision processes [Bel57, How60] model decision making in situations with both

probabilistic outcomes and non-deterministic decision making. Intuitively, an MDP extends a

, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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DTMC by allowing a choice of possible actions at each sate. Unlike a DTMC that provides a single

probability distribution per state, the choice of action allows the multiple probability distributions

per state.

De�nition 2.10 (Markov decision process (MDP)). An MDP is a tuple (S, s0,A, Step) where S is a

set of states, s0 ∈ S a distinguished initial state, A a set of actions, and Step : S → 2
A×DS

a function

assigning to each state a set of possible actions with associated probability distributions.

Unlike a DTMC, we allow states with no outgoing transitions, i.e. S → ∅. When the choice of

action for each step is �xed an MDP is a DTMC.

To allow practical analysis of probabilistic models it is useful to de�ne rewards associated with

being in a particular state.

De�nition 2.11 (state reward function). For a DTMC, CTMC, or MDP, a state reward function
rs : S → R≥0 assigns to each state a reward. For states where rewards are not required rs maps the

state to 0.

When working with bigraphs we associate rewards with bigraph predicates, allowing state

rewards to be de�ned as simply the sum of the rewards of all matching predicates (0 if no predicates

occur).

For MDPs we can also associate a reward for choosing a particular action.

De�nition 2.12 (action reward function). An action reward structure for an MDP (S, s0,A, Step) is

a function ra : S × A→ R≥0 that assigns to each state, action pair a reward for performing that

particular action. For actions where rewards are not required ra maps the action to 0.

Although we call these rewards, they are o�en used to model costs associated with states/actions.

3 PROBABILISTIC BIGRAPHS
Given a state (bigraph), we want to control the probability of moving into a given next state (i.e. a

bigraph). In other words, we require a DTMC where the states resulting from reactions are drawn

from a probability distribution.

Our approach is similar to that of Bournez and Hoyrup [BH03] who consider abstract probabilistic

rewrite systems. Here a weight is assigned to each rewrite rule which is then normalised based on

which rules are applicable to a given state. Other approaches to modelling probabilistic systems are

possible, for example, probabilistically determining which entities appear in the right-hand-side of

a rule. We discuss these further in Section 6. Our approach allows re-use of existing probabilistic

model checking tools such a PRISM [KNP11] or Storm [DJKV17a] for analysis/veri�cation.

3.1 Probabilistic Bigraphical Reactive Systems
A probabilistic BRS adds weights to standard reaction rules to determine transitions probabilities

when de�ning the reaction relation. �is is, given a bigraph д0 with д0 Bд1 and д0 Bд2 (for

arbitrary rules) we wish to choose д1 and д2 from a probability distribution µ = [д1 7→ p1,д2 7→ p2],
i.e. choose д1 with probability p1.

To account for multiple occurrences of a rule, we do not directly specify probabilities for rules

but instead assign a weight which is then normalised to a probability.

De�nition 3.1 (weighted reaction rule). A weighted reaction rule assigns to a reaction rule L I R

a weight w ∈ R≥0. We write weighted reaction rules as L
w
I R.

�e weight determines how likely a particular rule is to be applied relative to all other (applicable)

rules. Rules with weight w = 0 are never applied. In the following, we write BR to indicate that a

, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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set of weighted reaction rules R is treated as a set of standard reaction rules (see De�nition 2.5) by

dropping all the weights.

De�nition 3.2 (total weight). Given a set of weighted reaction rules R, the total weight from д to
д′ is

ω[д,д′] =
∑

R∈Rд Bд′

wR · σR[д,д′]

where wR is the weight of reaction rule R. Given a set of ground bigraphs B, the total weight from
д is

ω[д, ] =
∑
д′∈B

ω[д,д′]

De�nition 3.3 (reaction probability distribution). Given a set of ground bigraphs B, a set of

weighted reaction rules R and д ∈ B, the reaction probability distribution from д is

µд = [д0 7→ p0,д1 7→ p1, . . .] with pi =
ω[д,дi ]
ω[д, ]

for every дi ∈ B such that д BR дi . If there are no such дi s, then µд = [д 7→ 1].

Reaction probability distributions are then used to de�ne a probabilistic reaction relation over

ground bigraphs.

De�nition 3.4 (probabilistic bigraphical reactive system (PBRS)). A probabilistic BRS is a pair (B,R),
where B is a set of ground bigraphs, and R is a set of weighted reaction rules. It has probabilistic
reaction relation de�ned by

д
p
Bд′ i� µд(д′) = p

with д,д′ ∈ B.

�e correspondence between PBRS and DTMC is as follows:

Lemma 3.5. A PBRS (B,R) is a DTMC (S, s0, P : S → DS ).

Proof. Take S = B, s0 = д0 ∈ B, and P(s) = µд (�eorem 3.3) for s ∈ S , д ∈ B, and s = д. �

From a practical standpoint, the use of weighted reaction rules allows modelling only the relative
probability a particular rule is executed. Unfortunately, this makes it di�cult to specify an exact
probability between states. Doing so is o�en impractical, requiring signi�cant e�ort to control

the applicable rules and number of occurrences such that the normalised probabilities are exact.

Usually the relative outcomes are what is important, and so far we have not encountered any

situation where this is a particular issue (see Section 6.2).

3.2 Example PBRS
Consider a Wireless Sensor Network (WSN) with three sensor nodes (S) and a base-station (BS),

as shown in Figure 2. �e base station is represented by the rectangle and the three sensors are

represented by circles. �ere is a link between the base station and the sensors. Due to hostile

deployment environments, sensors o�en fail. We model failure using the reaction rule fail that

marks a
3

sensor as failed (red circle) and unlinks it from the base-station. �e rule recover allows

a failed sensor (red circle) to re-connect with the base-station. fail (b) has weightwf and recover
(c) has weight wr . Note that while fail and recover are behaviourally inverse rules, their weights

di�er.

, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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wf Ifail:
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x
wwr Irecover:
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Fig. 2. Wireless sensor networks as bigraphs. (a) Bigraph representing a WSN with base-station BS and three
sensors S. (b) Probabilistic reaction rule modelling failure of a sensor. (c) Probabilistic reaction rule modelling
recovery of a sensor.
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wf
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Fig. 3. DTMC for bigraph model of Figure 2. States are bigraphs g0 . . . g3 from le� to right.

�e resulting transition system for this WSN is in Figure 3. From the initial state g0 , we determine

the distribution of next states µg0 . In this case, reaction rule recover is not applicable and we can

only apply fail. It may be surprising that even though there are three sensors, the probability

of transitioning to д1 is µд0
(д1) = 1. �is is because support equivalent (concrete) bigraphs are

combined when computing the states resulting from the application of a reaction rule. To see this

more clearly, we show explicitly the three concrete occurrences of fail from д0 to д1 in Figure 4.

�e key observation is that through renamings v2 → v1 and v3 → v1, these concrete bigraphs are

support equivalent and therefore they correspond to the single abstract state д1. Hence, we have

σfail[д0,д1] = 3, ω[д0,д1] = 3wf , and ω[д0, ] = 3wf , giving the overall reaction probability of 1.

In state д1, with one failed sensor, we have σfail[д1,д2] = 2 and σcon[д1,д0] = 1. Normalising

this over the total weight ω[д1, ] = 2wf +wr we obtain a

2wf
2wf +wr

probability that another sensor

fails, and a probability
wr

2wf +wr
that the failed sensor recovers.

Importantly, due to support equivalence, transition probability corresponds to the probability

that any sensor fails rather than the probability that a particular sensor fails (i.e. wf
2wf +wr

).

�is process of normalising weights to probabilities continues until we obtain the full DTMC as

shown.

4 ACTION BIGRAPHS
PBRSs allow a single distribution of possible next states de�ned over all rules R. However, for

systems such as controllers, we want actions taken by the controller to a�ect the possible evolution

of the system, e.g. by restricting the reaction rules. �at is, we want multiple distributions that are

3
�is rule only allows one sensor to fail per rewrite. If concurrent failures are required then additional rules are needed

(explicitly matching on n sensors).
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Fig. 4. Concrete occurrences of reaction rule fail from д0 to д1 (see Figure 2).

determined by the action taken. To this end, we introduce action bigraphical reactive systems (ABRS),

where the resulting transition system is a Markov decision processes (MDP – �eorem 2.10).

ABRSs extend PBRSs by allowing a choice of probability distributions at each step. We call such

choices actions.

De�nition 4.1 (Action). An action is a non-empty set of weighted reaction rules (�eorem 3.1)

that determines the rewrites that can be performed if the action is chosen. We say an action is

applicable to a bigraph д if at least one rule from the action is applicable to д.

As actions are simply sets of rules, the same reaction rule may appear in multiple actions if

required, e.g. if two di�erent control actions allow updating of the same state. We use the notation

�A to restrict de�nitions to consider only rules in A. For example ω[д,дi ] �A is the total weight

between states д and дi when considering only rules in A ⊆ R rather than in R.

To move from weighted to probabilistic rules, we apply, individually for each action, the normal-

isation procedure from PBRSs, i.e.

pi =
ω[д,дi ]�A
ω[д, ]�A

A�er normalising, we obtain a set of probability distributions; one for each applicable action,

allowing us to construct the MDP transition function Step : S → 2
A×DS

.

We then de�ne an Action BRS as follows.

De�nition 4.2 (Action BRS (ABRS)). An Action BRS is a triple (B,R,A), where B is a set of

(ground) bigraphs, R is a set of weighted reaction rules over B, and A = {A0 ⊆ R, . . . ,An ⊆ R} is

a set of actions. It has a reaction relation de�ned by

д
(Ai , p)

Bд′ i� µд(д′)�Ai= p

for each applicable action Ai ∈ A with д,д′ ∈ B.

Just as a PBRS is a DTMC, an ABRS is an MDP:

Lemma 4.3. An ABRS (B,R,A) is an MDP (S, s0,A, Step : S → 2
A×DS ).

, Vol. 1, No. 1, Article 1. Publication date: January 2022.
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BS S

(a)

BS S BS Swf Isend fail :

BS S BS Sws Isend suc :

(b)

BS S BS S1

Iwait :

(c)

BS S BS S1

Ireset :

(d)

Fig. 5. Non-Deterministic Bigraph Example. (a) Initial bigraph. (b) Asend – A�empt send, fails (orange) or
succeeds (green). (c) Await – do nothing. (d) Areset – Get ready to send again.

Proof. Take S = B, s0 = д0 ∈ B, A = A, and for s = д with s ∈ S and д ∈ B de�ne

Step(s) =
{
{(Ai , µд �Ai ), . . . , (An , µд �An )} for all Ai ∈ A applicable to д

∅ if no action applies to д

�

As with MDPs, we can assign rewards (�eorem 2.12) for choosing a particular action to allow

optimisation of decision processes.

Like MDPs, ABRS allow terminal states (the empty set of distributions) if there is no applicable

action, however, for practical analysis, e.g. in PRISM, we usually require at least one action per state.

In a similar manner to PBRS, in the case no action applies, we can add an trivial action containing

the identity reaction for the current state.

4.1 Example ABRS
As an example, consider the model in Figure 5 representing another simple WSN. In this case, data

can be sent between the sensor (S) and base-station (BS), and there is a non-deterministic choice
whether the sensor should send data or wait.

�ere are three actions: Asend = {send suc, send fail}, Await = {wait}, and Areset = {reset}.
�e resulting Markov decision process is shown in Figure 6. From the initial state д0 the system has

a choice of two actions: Asend or Await . If the system chooses to send then the distribution of states

is µд0
�Asend= [д1 7→ ws

ws+wf
,д2 7→

wf
ws+wf

], while on a wait it is µд0
�Await= [1 7→ д2]. In the case the

send fails an additional action, Areset reinitialises the state to allow another a�empt.

5 EXTENDED BIGRAPHER IMPLEMENTATION AND FURTHER EXAMPLES
BigraphER

4
[SC16] is an open source toolkit for bigraphs. It provides a language for describing

bigraphs and reaction rules algebraically (as a .big �le) and support for simulating the resulting

BRS or generating the transition system in PRISM [KNP11] input format, which is also employed by

other model checkers. We have extended BigraphER to support standard, probabilistic, stochastic,

and action bigraphical reactive systems, which enables quantitative model checking for probabilistic

(DTMC), stochastic (CTMC) and action (MDP) BRSs. �e extensions are included in the main

BigraphER release from version 1.3.4 onwards and are openly available
4
.

4
Available online: h�ps://uog-bigraph.bitbucket.io/
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v0 v1

v0 v1

v0 v1

Await

1

Areset

1

wf
wsucc+wf

wsucc
wsucc+wf

Asend

Fig. 6. Markov Decision Process for the example of Figure 5. State д0 le�, д1 bo�om and д2 top.

Bigraph

Model

(.big)

BigraphER

Transition

System

Simulation

Traces

PCTL/CSL

Properties

Model

Checker

Results

(State Probabilities)

Fig. 7. Overview of probabilistic, stochastic and action BRS analysis.

�e export is fully general and requires no additional simpli�cation steps a�er the transition

system in built. A diagrammatic overview is in Figure 7.

�e transition system is generated by a breadth �rst search from a given initial state, new states

are generated from successful reaction rule applications (respective priorities etc.). Equivalent

states are merged and so it is possible to generate transition systems for some in�nite systems. For

non-terminating or looping systems we allow a bounded number of states to be generated.

We present examples of probabilistic (DTMC), stochastic (CTMC), and action (MDP) BRSs,

showing selected BigraphER implementation details and simulation and PRISM results. Section 5.1

gives a probabilistic BRS model of virus spread through a computer network where �rewalls are

breached probabilistically, Section 5.2 gives a stochastic BRS model of membrane budding, and in

Section 5.3 we give an action BRS that models decisions in wireless sensor networks with mobile

sinks: sensors decide whether to send immediately, or wait in the hope the sink moves closer.

�e model in Section 5.2 follows the example presented in the original de�nition of Stochastic

Bigraphs [KMT08]. But at that time there was no tool support to analysis, instead requiring a

manual translation to a PRISM model. Here, we revisit this model and for the �rst time, giving a

direct implementation in bigraphs.

In the following we introduce the syntax of BigraphER by example, highlighting the new language

constructs. A full reference is available [SC16]. Model �les are available [ASC].
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I S I A
wa�ack I

(a) attack

A Iwinfect I

(b) infect

A Swdetect I

(c) detect

Fig. 8. Virus spread with entities S = Safe, I = Infected, A = A�acked. (a) A�empt to a�ack an uninfected
neighbour. (b) Firewall fails, node becomes infected. (c) Firewall succeeds.

5.1 Probabilistic Bigraphs – Virus Spread in a Network
Viruses spread through computer networks in a probabilistic manner. �e probability of infection

may di�er between nodes, depending on the e�ectiveness of �rewalls. �is example is based on an

existing PRISM model [KNPV09].

�e problem we address is in an arbitrary computer network, with the infection starting at a

speci�ed node, we wish to determine the likelihood of a virus infecting a particular node. We model

the following infection process. Infected nodes a�ack, spreading the virus to uninfected neighbours.

All (uninfected) neighbours are equally likely to be targets, i.e. the rule has �xed weight wa�ack. A

node that has been a�acked is either protected by a �rewall with weight wdetect, or become infected

with weight winfect. As we do not directly specify the probabilities, the important measure is the

ratio of wdetect to winfect. �is di�ers from the example PRISM model that adopts the more common

approach of se�ing pdetect = 1 − pinfect.
�e bigraph model is in Figure 8. An infected node a�acks a neighbouring (through the green

link) safe node (S, clear circle) with weight wa�ack. An a�acked node (A, indigo circle) enters the

a�acked state and from there has a winfect weight of becoming infected (I, red circle), or wdetect of

the �rewall breaking the infection a�empt.

Unlike Safe-Infected-Recovered (SIR) models [Het00], infected nodes remain infected for the

entire run, i.e. there is no recovery, and there is no resistance buildup, i.e. if a �rewall stops an

infection the same node may still be infected later.

5.1.1 Syntax. A model (snippet) in BigraphER syntax is shown in Listing 1. Entities are de�ned

in lines 2-3 using keyword ctrl where the number a�er the equality symbol is the arity (number

of links). Rewrite rules are speci�ed using keyword react and a name followed by a rule in the

form B --> B′ where B,B′ are arbitrary bigraphs (wri�en in a form closely resembling the bigraph

algebra).

For probabilistic/stochastic rules we extend the notation --> to -[l]-> where l is a label for the

rule, e.g. a weight or a rate (a positive �oat expression). For example the rule infect in line 9 says

that a bigraph matching A rewrites to I with weight w infect.

A PBRS is de�ned by construct begin pbrs ... end which also speci�es the initial state,

the state predicates (e.g. all infected that labels a state with at least 9 I entities), and the set of

reaction rules (omi�ed).

5.1.2 Model analysis. Following the original PRISM model, we consider nine nodes connected in

a square grid layout (Figure 9b), using BigraphER to export the full (probabilistic) transition system

for analysis in PRISM. Figure 9a shows the probability that all nine nodes of the system are infected

within the �rst n timesteps (reactions), i.e. the results of checking P=?

[
F≤nall infected

]
. �e

predicate all infected is de�ned on line 13 of Listing 1 matching all nine infected nodes. big
is a keyword and the iterated operator par allows us to place concisely n bigraphs side-by-side

inside the same region
5
. We vary the detection weight wdetect of the �rewalls (5, 10, and 15) and,

5
�is corresponds to the iterated merge product operator in the algebraic form of bigraphs.
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Listing 1. Probabilistic rules for virus spread in BigraphER (snippet).
1 # Defines entities with 0 arity (links)
2 ctrl A = 0;
3 ctrl I = 0;
4

5 float w_infect = 5.0;
6

7 # Probabilistic rule with weight w_infect
8 # Fig Figure 8b
9 react infect = A -[w_infect]-> I;

10

11 # Predicate
12 # par(n,B) = B | B ... | B (n times)
13 big all_infected = par(9, I);
14

15 begin pbrs
16 . . .
17 end

wdetect
Max Steps 5 10 15

50 4.47 · 10
−2

1.22 · 10
−3

9.59 · 10
−5

100 6.09 · 10
−1

8.03 · 10
−2

1.18 · 10
−2

250 1 · 10
0

8.88 · 10
−1

5.24 · 10
−1

500 1 · 10
0

9.97 · 10
−1

9.88 · 10
−1

(a)
(b)

Fig. 9. (a) Probability of full infection in n steps. (b) Initial topology.

A S

wdetectBasic IBasicFW BasicFW

(a) detect basic

A S

wdetectAdv IAdvFW AdvFW

(b) detect advanced

Fig. 10. Modified detect rule accounting for firewall types

as expected, increasing wdectect , i.e. adding be�er �rewalls, reduces the probability that all nodes

become infected within a given time period.

We now consider extending the model in two ways: adding new behaviour and allowing dynamic

topologies.

5.1.3 Adding new behaviour. As shown, be�er �rewalls reduce the time to whole system infection.

However, this can be prohibitively expensive in a deployed system. Alternatively, we may wish

to improve the �rewalls on speci�c nodes. To test this, we add new entities BasicFW (light green

squares) and AdvFW (yellow squares) representing a basic and more advanced (and expensive)

�rewall. We then split the detect rule into two rules, as shown in Figure 10 to account for the

type of �rewall. Because the sites abstract away internal node structure, the other rules remain

the same. �e only other change is to place the �rewalls in the starting topology – in this case we

place advanced �rewalls in the nodes of the middle row.
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Table 1. Probability of full infection in n steps when using 3 improved firewalls. In all caseswdetectBasic = 5.

wdetectAdv
Max Steps 5 10 15

50 4.47 · 10
−2

1.19 · 10
−2

4.7 · 10
−3

100 6.09 · 10
−1

3.12 · 10
−1

1.67 · 10
−1

250 1 · 10
0

9.88 · 10
−1

9.29 · 10
−1

500 1 · 10
0

9.99 · 10
−1

9.99 · 10
−1

S S
L L

S S
wtopo I

(a) create neighbour (conditional bigraphs un-
shown)

L L

S S
S Swtopo I

(b) remove neighbour

Fig. 11. Reaction rules for dynamic topologies.

�e results of re-running the analysis are in Table 1. As expected, whenwdetectBasic = wdetectAdv the

results match the previous experiment. Results like these can be used in a cost-bene�t analysis, e.g.

when determining how many advanced �rewalls to deploy.

An advantage of bigraphs is this extension is more straightforward than the equivalent in PRISM.

�is is because sites abstract away from internal node structure, whereas the PRISM model has

to encode the internal structure explicitly in modules: one for each type of node, e.g. corner (2

neighbours), edge (3 neighbours), and middle (4 neighbours). Each module has to be modi�ed to

add the new behaviour, and then instantiated as appropriate, in the starting topology.

5.1.4 Dynamic Topologies. �e lack of abstraction over node structure in the PRISM model has

further implications because model complexity scales with the topology complexity. For example,

if we require a node with 5 neighbour links, then we need an additional module.

Because the modules have a �xed neighbourhood linking structure, and there is a �xed number of

modules, it is not possible to easily model dynamic topologies, e.g. where either the neighbourhood

linking structure, or the number of nodes, changes. In bigraphs we have no such constraints: sites

allow rules to apply in a variety of speci�c instances, and nodes can be dynamically added/removed

as the model evolves.

We illustrate by extending our virus model to allow dynamic neighbourhood changes. Speci�cally,

we allow neighbour links to be broken or created at any time, provided neither of the nodes is

currently under a�ack or infected, e.g. the a�acker has (partial) control so can block changes. �is

is expressed by two new rules: create neighbour and remove neighbour, given in Figure 11. For

simplicity, we assume both creating and removing a neighbour link is equally likely by giving

them the same shared weight w topo. Further analysis could be performed with di�erent weights

if required. Not shown here, we also have conditions on the creation rule expressing what is/is not

within the sites, to ensure: i) that no pair of nodes connects with more than one neighbour link,

and ii) that there is a maximum of n neighbours per node (other than nodes that start withm > n
neighbours). For readability we do not show the conditions explicitly here (conditional bigraphs

and the BigraphER extension are de�ned elsewhere [ACS20]).

Note that since topology changes are possible at every step and we only change neighbour links

between safe nodes, it is possible that the system never becomes fully infected, i.e. it is possible to
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Table 2. Simulated (up-to 1000 rewrite step) virus spread model with dynamic topology based on Max
neighbours and w topo. Based on 100 runs per configuration. Mean Inf Steps is the number of non-topology
change steps needed to fully infect the system.

Max Neighbours w topo All Inf Mean Inf Steps
2 0.01 92 129

2 0.1 40 110

2 0.5 21 129

3 0.01 91 127

3 0.1 70 117

3 0.5 63 126

4 0.01 97 125

4 0.1 89 117

4 0.5 92 126

evolve into disconnected networks. �is can occur when a safe node is only connected to infected

nodes and is a�acked before it can reconnect to the safe network (before create neighbour �res).

Consider analysis of the new model. Given the high number of possible states i.e. all possible

neighbourhood topologies for all possible node states, instead of performing full model checking

we use the simulation capabilities of BigraphER to gain insight into the model. We vary two

parameters: i) the weight w topo assigned to topology changes, and ii) the maximum number of

(newly created) neighbours we allow for a node.

Consider the implications of each. First, a higher weighting for topology changes, i.e. w topo,

would increase the amount of disruption in the initial topology. �is is because more topology

changes increase the likelihood of a node being connected to only infected nodes just before an

a�ack, which means greater likelihood of disconnected networks and thus an overall safer system

Second, by changing the maximum number of neighbours for a node, we essentially change the

width of the network. We expect wider networks (those with more neighbours) to propagate

infections more easily and overall be less safe
6
.

Table 2 shows how w topo and max links a�ect the likelihood of full infection. Results are based

on 100 simulations of, up-to 1000 rewrite steps, per con�guration. �e results are as we expect: for

low values of w topo, i.e. less network randomisation, given the initial state is well connected, in

most cases (more than 90 from 100) the network is fully infected. As we increase the weight, and

so the expected number of new con�gurations, the likelihood of fully infecting the network lowers

(assuming a low enough network width). Likewise, as expected, reducing the maximum number of

(new) links we allow for each node, increases the likelihood the network becomes disconnected.

�e mean infection steps, which include non-topology rewrites only, are fairly constant throughout.

�is is not unexpected, as a minimal number of steps are required to infect a 9 node connected

topology, regardless of the speci�c setup.

�e main point of this extension is not the actual analysis results, but to illustrate the ways in

which bigraphs o�er advantages over existing formalisms.

5.2 Stochastic Bigraphs – Membrane Budding
Stochastic Bigraphs were �rst introduced by Krivine, Milner, and Troina [KMT08], and allow a

CTMC (�eorem 2.9) as the underlying transition system. Instead of assigning weights to reaction

6
In practice there are key trade-o�s between safety and performance to be made.
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Bud

Coat

x

Bud

Coat

x

rc
I

Fig. 12. coat (recreated from [KMT08])

rule (as in PBRS), they assign a rate to each reaction rule. Because these rates are de�ned over rules,

not states, similar to PBRS, a normalisation procedure is required to calculate a �nal exit rate based

on the number of occurrences of each (applicable) rule.

Krivine et al [KMT08], present as an example, a stochastic model of membrane budding that

describes a biological mechanism for particles to move between cells. Coat proteins form on the

surface of a membrane and, given enough coat proteins, a bud can form, accept some particles, and

�nally break o� to carry particles out of a cell. Stochasticity derives from rates of coating, particle

movement (into/out of the bud), and �ssion (breaking away).

No implementation of stochastic bigraphs was available when the example was developed, and

analysis was given using a hand-coded PRISM model. As BigraphER now supports stochastic

bigraphs, we revisit this example to recreate their analysis directly in bigraphs. We show a snippet

of the model here, and refer the reader to the original source for full details of the model. Support

for stochastic bigraphs is additionally shown by an analysis of the 802.11 CSMA protocol in [CS14]

We focus on the rule coat (rule 2 [KMT08]) that allows free Coat proteins to form on a Bud. �e

rule is shown in Figure 12. Free Coat proteins are distinguished from those already forming on a

bud by the use of a closed link. �e site abstracts over the particles within the Bud.

�e rate rc determines how quickly Coats form on the bud. Although it looks constant, because

of the normalisation procedure, it in fact depends on the number of free coats, i.e. the number of

occurrences increases and, in turn, so does the rate the rule applies. �is is similar to the example in

Section 3.2 where the probability any sensor failed was much higher than the probability a speci�c

single sensor failed.

BigraphER code for the coat rule is given in Listing 2. Stochastic rules are speci�ed in a similar

way to probabilistic rules in BigraphER by placing a �oat expression between the le� and right-hand

side of a rule (i.e. rc on line 13; as described in Section 5.1.1). Similarly, the initial state and the

reaction rules of an SBRS are de�ned by construct begin sbrs ... end. �e use of fun big
de�nes a family of bigraphs, in this case one for each value of the parameter n (allowing states to

be labelled with the number of particles currently in the bud).

For large models e.g. those with 50 free Coat entities, it is time consuming to count occurrences.

To overcome this, we use a population model (a counter abstraction) that groups free coats etc. into

a single entity Coats representing the number bound, and Fcoats representing the number that

are still free. �is allows coat to be alternatively wri�en as shown in Figure 13. Entities such

as Coats(c) are parameterised entities that can be seen as de�ning a family of Coats entities, one

for each possible value of c . To calculate the number of free coats (Fcoats), we use the constant

cmax – the total number of coat proteins (free or bound); in our case 50. Coats are de�ned in the

BigraphER language by the fun ctrl keywords. Similarly we augment the other rules to, for

example, count the number of Proteins in the Bud. In this case we cannot rely on the occurrence

count to determine the correct rate, so instead we explicitly scale the rate based on the number of

remaining free coats.

For analysis, we de�ne a family of bigraph predicates particles(n), with 0 ≤ n ≤ 40, that match

a Bud with exactly n particles inside, allowing the probability that we end with n particles in a bud
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Listing 2. Specifying stochastic rules in BigraphER (snippet).
1 ctrl Bud = 1; # Arity 1
2 ctrl Coat = 1;
3 ctrl Gate = 1;
4 ctrl Particle = 0; # No links
5

6 # Coating rate
7 float rc = 1.0;
8

9 # Stochastic reaction rule
10 # Fig Figure 12
11 react coat =
12 Bud{x}.id | /y Coat{y}
13 -[rc]->
14 Bud{x}.id | Coat{x};
15

16

17 # Predicate used for plotting.
18 # Determines the number of particles that have been transferred from a membrane when the bud

breaks free
19 # par(n, b) = b | ... | b (n times)
20 fun big particles(n) = Bud{x}.(par(n, Particle));
21

22 begin sbrs
23 . . .
24 end

Bud

Coats(c )

Fcoats(cmax − c )

x

Bud

Coats(c + 1)

Fcoats(cmax − c − 1)

x

rc · (cmax -c)
I

Fig. 13. coat – population model.

(that has broken o�) to be determined through the CSL formula: P=? [ F particles(n) ]. �is is

de�ned in line 20 of Listing 2 by using the fun keyword.

We exported the BigraphER model to PRISM, where we successfully reproduced the “Particles in

the formed bud” results from the appendix of stochastic bigraphs [KMT08], as shown in Figure 14.

�is �gure shows the number of particles that are in the bud a�er �ssion, where rd is the rate of

di�usion of particles between the membrane and the bud (rule 3 [KMT08]). As expected, increasing

the di�usion rate increases the expected number of particles in the formed bud. �e rate of �ssion

depends on the number of coat proteins (more coat proteins implying higher �ssion rates), and

hence for rc = 2 the overall e�ect is to have less expected particles in the bud.

5.3 Action Bigraphs – Mobile Sinks in Wireless Sensor Networks
We use action bigraphs to model a well known decision problem in wireless sensor networks [BT08].

Traditionally, WSNs use multi-hop communication to move data between sensors and �xed sink

(base-station). An alternative approach is for a moving sink to collect data directly from the sensors.

Such an approach can be used, for example, when robots obtain information as they move through

a space.

Given limited ba�ery and memory capabilities of a sensor, when the sink moves into range a

decision must be made: should the sensor send immediately, with high transmit power, or should it

wait in the hope the sink moves closer, risking losing data by exhausting memory if the sink moves

out of range before transmission can occur? Such decisions can be modelled as actions.
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Fig. 14. Reproducing “Particles in the formed bud” figure from [KMT08] directly in BigraphER.

0

0

(a) Initial Bigraph

Mobile Sink

b
Node containing bu�er with b elements

Distance Boundary

(b) Entities

Fig. 15. Send now or later: entities and initial bigraph.

Model entities are shown in Figure 15. �ere are three types: a (unique) Sink; a sensor Node (that

we refer to as nodes) that includes a Bu�er with the number of slots �lled; and Distance boundaries

abstractly representing how close a sensor is to the sink, e.g. close, mid-range, or far. Nodes outwith

the last Distance entity are considered out-of-range and cannot send. In our example we assume

the initial setup given in Figure 15a with 3 distances (close, mid, far), one sink, and two nodes with

initially empty bu�ers. A bene�t of the modelling approach is the initial state can be changed, e.g.
to include nodes with preexisting data, without requiring rule changes.

�e model updates in two phases: movement, where Nodes (possibly) move between Distance
entities, and act, where Nodes non-deterministically decide whether to send or wait and receive

data. Phases are scheduled in a round-robin fashion with each Node taking an action before moving

onto the next phase. Phases are modelled using the turn taking technique described in [ACS20]

where additional entities (placed in their own parallel region) determine the current phase, e.g.
Send Phase, Move Phase. �at is, for a rule L I R, we extend to L ‖ PhaseX I R ‖ PhaseY for

two phases (possibly equal) X and Y . Sometimes additional rules are added that only change phase,

e.g. when no other rule applies. For clarity we do not describe the turn-taking in detail, but it is

available in the online models [ASC].

Sink movement is modelled by moving Nodes between Distance boundaries, as shown in the

reaction rules of Figure 16a. Recall an action is a set of rules (shown here one per line). �ese rules

models movement relative to the Sink, i.e. a Node moving to a closer Distance boundary implies

a physical Sink move towards the Node. Additional rules (unshown) move Nodes in/out of the

outermost Distance boundary.
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wmove I

wmove I

(a) Amove

b + 1b b + 1

wsuc I

b + 1b bb + 1

wfail I

(b) Areceive (b ≤ bmax )

bmax bmax
wsuc I

(c) Areceive full; Cost = 1

b 0
1

I

(d) Asend close; Cost = 1

b 0
1

I

(e) Asend mid; Cost = 2

b 0
1

I

(f) Asend far; Cost = 3

Fig. 16. Send now or later: actions, associated reaction rules (one per line, shown above the action label), and
costs.

Non-determinism in the operation phase comes from the decision to send existing data, through

one of theAsend close,Asend mid,Asend far actions, or to receive new data through one of theAreceive,

Areceive full actions. Using multiple actions to model send/receive allows multiple action reward

structures to be used. Areceive is shown in Figure 16b and consists of two reaction rules representing

receipt or failure of new data with weight wreceive. When the bu�er is full (b = bmax), Areceive is no

longer applicable, and instead Areceive full (Figure 16c) represents a dropped sample and unit cost

is incurred.

Actions/rules for sending data in Figures 16d, 16e and 16f. In each case the bu�er is fully emptied

and a cost is incurred proportional to the distance from the sensor. We assume the cost is constant

regardless of how much data is sent i.e. data always �ts in a single radio packet. A more complex

model could account for this through additional actions. Sending data is always successful but out-

of-range sensors are unable to send any data, i.e. we do not fall back to hop-to-hop communication,

and must always do a receive.

5.3.1 Syntax. To specify ABRSs we extend the BigraphER language to include an explicit

actions declaration within begin abrs ... end blocks, as shown in Listing 3 (line 20). Each action

consists of an identi�er, e.g. receive, receive full, followed by a set of reaction rules, speci�ed
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Listing 3. Specifying actions BigraphER (snippet).
1 ctrl Sensor = 0;
2 fun ctrl Buffer(x) = 0;
3 fun ctrl Iden(i) = 0;
4

5 float w_suc = 5.0;
6 float w_fail = 1.0;
7

8 # Fig Figure 16b (top)
9 fun react receive(x,i) =

10 Sensor .( Buffer(x) | Iden(i))
11 -[w_suc]->
12 Sensor .( Buffer(x + 1) | Iden(i))
13

14 # Fig Figure 16b (bottom)
15 fun react receive_fail(x,i) =
16 Sensor .( Buffer(x) | Iden(i))
17 -[w_fail]->
18 Sensor .( Buffer(x) | Iden(i))
19

20 begin abrs
21 . . .
22 actions = [
23 # Action[cost] = { rules }
24 receive = {receive(x,i), receive_fail(x,i)},
25 receive_full [1] = {receive(bmax ,i)},
26 ];
27 end

by their identi�ers. We may optionally assign a reward to each action, e.g. receive full[1] has

reward/cost 1.

5.3.2 Model Analysis. �e model is analysed by exporting the MDP transition system from

BigraphER. Unfortunately, PRISM does not support importing action rewards from a transition

system, so we encode action rewards through state rewards that are fully supported. To do this

we add additional entities (unshown) to the model when actions are taken, e.g. a SendClose entity

if a sensor sends when the sink is close. �ese entities can be matched using state predicates to

increase the cost. Importantly, this is an implementation detail to overcome tool support, and does

not invalidate the theory.

We assume a single sink, two sensors, and 4 distance boundaries: close-range, mid-range, far-

range, and out-of-range. Both sensors start in far-range of the sink.

First, consider the e�ect of increasing the maximum bu�er size on the total cost, with the

expected result being that an increased bu�er size should reduce the overall cost, since sensors

can wait longer before deciding to send data. Figure 17a shows how increasing the maximum

bu�er size e�ects the minimum possible cost in the �rst 4000 transitions, using the PCTL formula

Rmin=?

[
C≤4000

]
. As expected, the minimum cost reduces as the bu�er size increases as sensors

can now delay sending for longer without incurring a penalty. �e relationship is non-linear and

we can see that increasing the bu�er from 2 to 3 reading is much more bene�cial than from 3 to 4.

Second, consider cost reduction by altering the probability that a sensor receives data when not

sending – essentially reducing the sampling rate. Figure 17b shows how changingwreceive a�ects the

minimum possible cost for a �xed bu�er size. As expected, increasing the likelihood of receiving

data increases overall costs, as the bu�ers are likely to �ll quickly and readings may be missed.

5.3.3 Arbitrary sized bu�ers. As with the virus model (Section 5.1), a key bene�t of bigraphs

is the potential to try out extensions to the model. For example, we could replace the movement

system to have the sink move through a dynamic topology (rather than the sensors moving relative
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Fig. 17. E�ects of bu�er size and data receive weight on cost.

to the sink). As we have shown topologies previously, we instead focus on a model extension that

allows bu�ers of arbitrary size, di�erent types of data within the bu�er, and data-dependent send

costs.

�e main extension is the introduction of bu�ers as a �rst-in-�rst-out queue, i.e. we send the

data in the order we receive it. Data is sent one element at a time, rather than emptying the bu�er

fully as before
7
. For simplicity, we assume two types of data: big, that costs more to send but is

received less o�en, and small.
We show a basic bigraphical queue in Figure 18. �e queue is modelled using bigraph links (as

pointers) between queue elements. Note that queues are parameteried, through the use of sites.

Additionally, for the enqueue rule, we make use of BigraphER’s instantanous rules feature that

means these rewrites do not show up in the �nal transition system. �is feature is helpful for data

structure operations that are not pertinent to analysis.

Within the main model, we replace the �xed sized bu�ers with queues and add new rules such

as Areceive for receiving data of di�erent sizes. Likewise, we add/modify the send rules so they

match explicitly on the head of the bu�er queue. �is results in new actions, e.g. Asend mid small.

�ese new actions allow us to vary the reward a�ached to them based on data size. Key weights

relating to data size are wr eceive biд , wr eceive small , and wr eceive f ail . To illustrate the e�ects of

varying wr eceive biд , Figure 19 shows the e�ects for a bu�er size of 2 elements, wr eceive small = 10

and wr eceive f ail = 1. As expected, increasing the likelihood of receiving big data increases the

expected minimal cost (within 1000 steps).

Simillar to the virus extension, our main point is not the actual results, but to illustrate the

ways in which bigraphs o�er advantages over existing formalisms. Speci�cally, applications that

use data structures are di�cult to model in e.g. PRISM, which only supports a few types (integer,

boolean, �oat). Likewise, it is di�cult to write models that require control-�ow constructs, e.g. loops

or recursion (a key motivator behind the Modest modelling language [BHH21]). In comparison,

Bigraphs allow these to be encoded easily using entities, placement and linking
8
.

7
It is possible to model sending all data at once, in which case we could use multiple counters inside the bu�er instead.

8
We intend to develop a set of basic data structures as a standard library in BigraphER.
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6 DISCUSSION
6.1 Probabilistic Structure
Our approach is to generate probabilistic transition systems from a set of probabilistic reaction

rules. An alternative approach is to keep the rewrite semantics unchanged and instead allow the

bigraphs themselves to be probabilistic.

For example, given a non-ground bigraph, we could initialise it (probabilistically) with di�erent

parameters to simulate probabilistic phenomena andor lack of information. �is is the approach of

term rewriting systems such as PMaude [AMS06], where rewriting can a�ect which variables are

added in the substitution (the equivalent would be the instantiation of bigraph sites). �is scenario

can be modelled in probabilistic bigraphs as a set of rules, one for each possible right-hand side –

where the set of rules act like a probability distribution.

Another approach, due to Syropoulos [Syr20], is to de�ne the structure of bigraphs (i.e. the place

and link graphs) in terms of fuzzy sets [Zad65]. An advantage of this formalisation is to allow a

succinct representation of families of bigraphs. However, it is still an open question how to de�ne

bigraphs dynamics, i.e. matching and rewriting, in this se�ing. �is makes it di�cult to compare it

directly with our approach.

6.2 Weights vs. Exact Probabilities
Our approach to rewriting is based around adding relativeweights (w ∈ R≥0) to rules that determines

how likely a rule is to be applied relative to all other rules that can be applied for a given state,

e.g. a rule with weight 10 should be 10 times as likely to apply as a rule with weight 1. �is
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Listing 4. Specifying exact probabilities through actions
1 ctrl A = 0;
2 ctrl B = 0;
3 atomic control S1 = 0;
4 atomic control S2 = 0;
5 atomic control S3 = 0;
6

7 # Specifying exact probabilities of state changes for A
8 float p_s1_s1 = 0.2;
9 float p_s1_s2 = 0.6;

10 float p_s1_s3 = 0.2;
11

12 react a_s1_s1 = A.S1 -[p_a_s1_s1]-> A.S1;
13 react a_s1_s2 = A.S1 -[p_a_s1_s2]-> A.S2;
14 react a_s1_s3 = A.S1 -[p_a_s1_s3]-> A.S3;
15

16 # Exact probabilities for B
17 float p_b_s1_s1 = 0.3;
18 float p_b_s1_s2 = 0.7;
19

20 react b_s1_s1 = B.S1 -[p_b_s1_s1]-> B.S1;
21 react b_s1_s2 = B.S1 -[p_b_s1_s2]-> B.S2;
22

23 begin abrs
24 . . .
25 actions = [
26 # Action[cost] = { rules }
27 A_change = {a_s1_s1 , a_s1_s2 , a_s1_s3},
28 B_change = {b_s1_s1 , b_s1_s2},
29 ];
30 end

approach di�ers from that of traditional probabilistic modelling languages like PRISM that allow

exact probabilities to be speci�ed as part of the guarded commands, e.g. p1 = 0.3 move to state 1,

p2 = 0.7 move to state 2.

�e main reason for this di�erence is in modelling style. In PRISM a system is described as a

collection of modules that are then combined (composed) to form a single state vector representing

the entire system. At this point the probabilities of each module are normalised (with respect

to any synchronisation actions) to determine the exact probability the system changes state. In

bigraphs, the lack of structured modules means we only have the full system as a state, and updates

are speci�ed through decomposition into smaller matches where the probabilities can then be

determined.

It is not immediately clear that one approach is superior to the other. We have found it useful to

use weights to answer what-if style questions: “what if the topology changes more o�en relative to

the virus movement?” without necessarily focusing on exact quantitative details.

6.2.1 Using Exact Probabilities in Bigraphs. Although in general it is not possible to assign exact

probabilities to system transitions, we can allow limited exact probabilities by using action bigraphs

in place of probabilistic bigraphs. In this case the outcome is still a probabilistic system and actions

are internal actions, not those you �nd in the actual domain. �is approach is used to de�ne

probabilistic graph transformation systems [KG12]. An example showing how to model with exact

probabilities is in Listing 4.

�e main idea here is to write actions that are constrained such that:

(1) All reaction rules in the action share the same le�-hand-side.

(2) �e weights assigned to the reaction rules in an action sum to 1 (allowed as weights are

any positive real).

, Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:24 Blair Archibald, Mu�y Calder, and Michele Sevegnani

For situations where there are, e.g. more than one A entity in the system, an additional unique id

is needed to ensure distinct matches.

Now, instead of determining all applicable rules in the system in order to normalise, we choose an
applicable action (non-deterministically) and then within that action no normalisation takes place

as the probabilities already sum to 1. �is gives an exact probability a speci�c transition is made.

One way to think of this is using actions to decompose the system back into module-like structures.

Although specifying exact probabilities is possible, it is much harder to allow PRISM-like module

synchronisation without adding additional structure to the bigraph. A version of this approach

could be used in the WSN model of Figure 16 to control exact probabilities for Areceive if we extend

the match for sensor ids (to ensure only one sensor is receiving at a time).

6.3 Performance
In order to take advantage of existing model checkers such as PRISM, we support explicit transition

system export. �e complexity of this export depends on the system being analysed, and, as with

all rewriting, there are no general guarantees the system terminates. Analysis of (some) systems

exhibiting in�nite behaviours is possible as BigraphER as it merges isomorphic states (up-to support

equivalence), e.g. as shown in Figure 6, allowing existing states to be revisited.

To show the practical performance of BigraphER for generating probabilistic systems we perform

an empirical analysis using the models presented in Section 5. �e experimental system consists of

an Intel i7-1075H CPU (2.6GHz) and 16GB of RAM, running Linux 5.10.81. We use BigraphER 1.3.4

that features a new matching engine based on an e�cient subgraph-isomorphism solver [ABMS21].

Veri�cation uses PRISM version 4.4. We use the model build time (time to generate all states) as

reported by BigraphER. To account for random e�ects in the runtimes, we take an average build

time for models that result in the same number of states/transitions, i.e. those that di�er only in

weights.

Table 3 shows the time to generate the transition systems for the models given in Section 5.

In all cases BigraphER takes no more than 30s to build the full transition systems, making it a

practical tool for model development tasks. �e number of states is not directly related to the

model build time, this is due to the need to check for isomorphic states (for merging), and this can

be particularly costly for highly symmetric models like that in Section 5.1. We expect symmetry

breaking techniques [MC06] can substantially improve this.

Once the transition system is generated, veri�cation/analysis of properties is fast, taking less

than 0.1s (per property) for virus spread and WSN, and less than 1s per property for Budding.

As budding analyses 50 properties (for the di�erent particles contained in the bud; Figure 14) it

takes longer to analyse than to build the model. As with all models of this form, we should not try

to predict scalability based on previous results as even small changes, e.g. the dynamic topology

of Section 5.1.4, can exponentially increase the number of states. �is is a general problem, not

speci�c to bigraphs.

Overall, with bigraphs there may be trade-o�s between expressability/readability and perfor-

mance, depending on how the modeller employs entities, connections and rules. For example,

digrammatic representation may be more important than tractability of exploring the full state

space. PRISM models are o�en more e�cient to analyse as they can perform techniques like sym-

bolic analysis and bisimulation reductions etc. on the highly structured (modules/variables/actions)

input model. It remains open, and a promising area for future work, if similar techniques can apply

to bigraphs models, especially those that reduce the state space.
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Table 3. Performance of model generating. Runtimes as reported by BigraphER. States and transitions are
those of the final transition system, while occurrences is the total number of rule matches found (as a measure
of the total amount of work done). When transitions are less than occurrences then states have been merged
due to equivalence checking.

Instance Build time (s) States Transitions Occurrences
Virus Single Firewall (Section 5.1) 24.78 809 3972 4694

Virus Multi Firewall (Section 5.1.3) 28.84 809 3972 4694

Budding (Section 5.2) 2.86 3570 9486 9486

WSN (Section 5.3) 10.89 1830 4427 9401

WSN �eue (Section 5.3.3) 120.22 4620 12156 30132

6.4 Comparing Probabilistic/Stochastic Bigraphs and PRISM models
�roughout we have compared bigraphs with the PRISM modelling language. We summarise three

main observations here
9
.

First, the rules based approach allows easy extension of models, such as dynamic topologies

(Section 5.1.4) and addition of non-primitive data types (Section 5.3.3). �is contrasts with PRISM

where the rigid module structure makes it more di�cult to model data types and to modify individual

processes behaviour, the number of processes, and/or their communication topology.

Second, probabilistic bigraphs employ weights instead (Section 6.2) of exact probabilities that

are speci�ed in PRISM modules. In the former, probabilities are assigned to pairs of states of the

entire system, which requires the additional normalisation procedure to account for all possible

(global) transitions. However, PRISM also includes a normalisation procedure to allow multiple

modules to be used in parallel, i.e. it combines states into a tuple and normalises probabilities [PRI].

�is demonstrates the fundamental di�erences in approach: PRISM takes many smaller parts and

combines them to get the total system, whereas probabilistic bigraphs take the total system and

splits it into smaller parts. In both cases, normalisation is needed to move between the system and

smaller parts.

Finally, there are tradeo�s between bigraphs expressability and performance, and PRISM models

are o�en more e�cient to analyse than those constructed from an explicit transition system. �e

di�erences depend on the nature of the system being modelled and its representation (e.g. use of

entities, links etc.). In our experience, as Section 6.3 illustrates, the bigraphs approach is usually

e�cient enough for practical use.

6.5 Future Work
Additional Probabilistic Process Types. We currently support DTMC, CTMC, and MDP models,

however many other probabilistic models are used in practice. For example MDPs have been ex-

tended in multiple ways, e.g. partially observable MDPs (POMDPs) [Åst65], and these are candidates

for further BRS extensions.

In POMDPs, agents cannot directly observe the current state and are instead assigned a set of

observations/beliefs allowing decision making in uncertain environments. One possibility for BRSs

is to �x the actual and observed states into two (bigraph) regions, where cross-region links connect

the observations to the states they observe. Unfortunately while PRISM allows POMDPs to be

speci�ed, there is currently no way to import partially observable models.

9
�e arguments are equally applicable to model checkers such as Storm [DJKV17b].
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Another extension of MDPs is Markov automata (MA) [EHZ10, DH13], combining probabilis-

tic branching, non-determinism, and exponentially distributed delays. In a bigraph model, the

probabilistic states of a MA would be treated as the states of an ABRS, while the Markovian states

would behave like the states of a SBRS. However, rewriting for hybrid states, i.e. states where both

non-deterministic choice over probability distributions and a distribution over states are available,

requires a new de�nition.

Bisimulations. Exploring the RPO framework in the presence of probabilistic rules likewise

remains an open problem. It is likely RPOs exist for probabilistic rules, however these will have to

also account for the normalised probabilities of speci�c matches (to ensure the contexts are equal).

7 CONCLUSION
Bigraphical reactive systems (BRSs) have proved invaluable for modelling a wide range of systems,

both virtual and physical, but are limited in the types of system they can represent. Real-world

systems are o�en probabilistic, stochastic, and feature non-deterministic decisions, and these do

not �t within standard BRSs.

We have shown how, by assigning weights to standard BRS reaction rules we can model proba-

bilistic systems (probabilistic BRSs – PBRSs), and extend this to support systems that make explicit

decision (action) choices (action BRSs – ABRSs).

We have implemented both PBRS and ABRS in BigraphER, an open-source toolkit for working

with bigraphs. To support stochastic systems we also implement stochastic bigraphs as de�ned

by Krivine et al. [KMT08]. We show the new extensions are practical through a set of case study

models: virus spread in computer networks, membrane budding in biological systems, and data

harvesting in wireless sensor networks. Probabilistic bigraphs have further been applied to model

autonomous BDI-agent semantics [ACSX21].

In conclusion, we have successfully extended the capabilities of BRSs and the toolkit BigraphER

to model a wider range of systems, whilst preserving the high level nature and �exibility of the

bigraph formalism.
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